TBCC Domain-Containing Protein Regulates Sporulation and Virulence of Phytophthora capsici via Nutrient-Responsive Signaling
Abstract
:1. Introduction
2. Results
2.1. Identification, Phylogeny, and Transcriptomic Dynamics of Genes Coding for TBCC Domain-Containing Proteins in P. capsici
2.2. PcTbcc1 Functions as a Negative Genetic Regulator of Vegetative Growth in P. capsici Under Nutrient-Deficient Conditions
2.3. PcTbcc1 Exerts Differential Influence on Stress Homeostasis in P. capsici
2.4. Targeted Deletion of the PcTBCC1 Gene Causes Significant Attenuation in Sporangium Production
2.5. PcTbcc1 Plays Essential Roles in Mediating Encystment, Cyst Release, and Survival of Zoospores in P. capsici
2.6. PcTbcc1 Plays a Significant Role in Promoting the Full Virulence of P. capsici
3. Discussion
4. Materials and Methods
4.1. Phytophthora capsici Strains, Bacterial Strains, Culture Conditions, and Test Reagents
4.2. Pepper Cultivar
4.3. Construction of PcTBCC1 Gene Replacement and sgRNA Vectors
4.4. Generation and Identification of PcTBCC1 Gene Deletion Strains
4.5. Total DNA Extraction and Variant Whole Genome Region Analysis
4.6. Total RNA Extraction
4.7. RT-qPCR Verification Assays
4.8. Characterization of Vegetative Growth
4.9. Assessment of Sporangium Production
4.10. Induction and Assessment of Encystment and the Release of Zoospores
4.11. Pathogenicity Assessment Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, P.; Stearns, T. Δ-tubulin and ε-tubulin: Two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat. Cell Biol. 2000, 2, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.E.; Hunt, D.F.; Lee, M.K.; Shabanowitz, J.; Michel, H.; Berlin, S.C.; Macdonald, T.L.; Sundberg, R.J.; Rebhun, L.I.; Frankfurter, A. Characterization of posttranslational modifications in neuron-specific class iii beta-tubulin by mass spectrometry. Proc. Natl. Acad. Sci. USA 1991, 88, 4685–4689. [Google Scholar] [CrossRef]
- Nogales, E.; Wolf, S.G.; Downing, K.H. Structure of the αβ tubulin dimer by electron crystallography. Nature 1998, 393, 191. [Google Scholar] [CrossRef]
- Parvari, R.; Hershkovitz, E.; Grossman, N.; Gorodischer, R.; Gelb, B.D. Mutation of tbce causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive kenny-caffey syndrome. Nat. Genet. 2002, 32, 448–452. [Google Scholar]
- Hurd, T.W.; Fan, S.; Margolis, B.L. Localization of retinitis pigmentosa 2 to cilia is regulated by importin β2. J. Cell Sci. 2011, 124, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.R.; Goehler, L.E.; Relton, J.K.; Tartaglia, N.; Silbert, L.; Martin, D.; Maier, S.F. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: Evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 1995, 183, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Anta, E.I.E. Integrative Analysis of DNA Methylation and Gene Expression in Schizophrenia. Master’s Thesis, Universitat Oberta de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- Azizi, E.; Bucana, C.; Goldberg, L.; Kripke, M.L. Perturbation of epidermal langerhans cells in basal cell carcinomas. Am. J. Dermatopathol. 1987, 9, 465–473. [Google Scholar] [CrossRef]
- Hage-Sleiman, R.; Herveau, S.; Matera, E.L.; Laurier, J.F.; Dumontet, C. Tubulin binding cofactor c (tbcc) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells. BMC Cancer 2010, 10, 135. [Google Scholar] [CrossRef]
- Bartolini, F. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor c. J. Biol. Chem. 2002, 277, 14629–14634. [Google Scholar] [CrossRef]
- Knop, M.; Schiebel, E. Spc98p and spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with spc110p. EMBO J. 1998, 16, 6985–6995. [Google Scholar] [CrossRef]
- Dyer, R.K.; Weinstock, M.A.; Cohen, T.S.D.; Rizzo, A.E.; Bingham, S.F.; Group, V.T. Predictors of basal cell carcinoma in high-risk patients in the vattc (va topical tretinoin chemoprevention) trial. J. Investig. Dermatol. 2012, 132, 2544–2551. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.R. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 1995, 128, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, T.B.D.; Birney, E.; Cameron, G.; Chen, Y.; Clark, L.; Cox, T.; Cuff, J.; Curwen, V.; Down, T.; Durbin, R.; et al. The ensembl genome database project. Nucleic Acids Res. 2002, 30, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Kirik, V.; Mathur, J.; Grini, P.E.; Klinkhammer, I.; Adler, K.; Bechtold, N.; Herzog, M.; Bonneville, J.M.; Hülskamp, M. Functional analysis of the tubulin-folding cofactor c in arabidopsis thaliana. Curr. Biol. 2002, 12, 1519–1523. [Google Scholar] [CrossRef]
- Roll-Mecak, A.; Vale, R.D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 2008, 451, 363–367. [Google Scholar] [CrossRef]
- Huang, L.; Peng, Y.; Tao, X.; Ding, X.; Li, R.; Jiang, Y.; Zuo, W. Microtubule organization is essential for maintaining cellular morphology and function. Oxidative Med. Cell. Longev. 2022, 2022, 1623181. [Google Scholar] [CrossRef]
- Spreng, B.; Fleckenstein, H.; Kübler, P.; Di Biagio, C.; Benz, M.; Patra, P.; Schwarz, U.S.; Cyrklaff, M.; Frischknecht, F. Microtubule number and length determine cellular shape and function in plasmodium. EMBO J. 2019, 38, e100984. [Google Scholar] [CrossRef]
- Binarová, P.; Tuszynski, J. Tubulin: Structure, functions and roles in disease. Cells 2019, 8, 1294. [Google Scholar] [CrossRef]
- Gobler, C.J.; Truchon, A.R.; Wilhelm, S.W.; Gann, E.R.; Papoulis, S.E.; Dyhrman, S.T. Aureococcus anophagefferens (pelagophyceae) genomes improve evaluation of nutrient acquisition strategies involved in brown tide dynamics. J. Phycol. 2022, 58, 146–160. [Google Scholar]
- Du, Y.; Chen, X.; Guo, Y.; Zhang, X.; Zhang, H.; Li, F.; Huang, G.; Meng, Y.; Shan, W. Phytophthora infestans rxlr effector pitg20303 targets a potato mkk1 protein to suppress plant immunity. New Phytol. 2021, 229, 501–515. [Google Scholar] [CrossRef]
- West, P.V. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist 2006, 20, 99–104. [Google Scholar] [CrossRef]
- Kortazar, D.; Fanarraga, M.L.; Carranza, G.; Bellido, J.; Villegas, J.C.; Avila, J.; Zabala, J.C. Role of cofactors b (tbcb) and e (tbce) in tubulin heterodimer dissociation. Exp. Cell Res. 2007, 313, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Jiang, J.; Yu, M.; Yin, Y.; Ma, Z. The tubulin cofactor a is involved in hyphal growth, conidiation and cold sensitivity in fusarium asiaticum. BMC Microbiol. 2015, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Fu, Z.; Li, M.; Shen, Q.; Sun, C.; Feng, Y.; Liu, Y.; Jiang, J.; Qin, T.; Mao, T. Maize tubulin folding cofactor b is required for cell division and cell growth through modulating microtubule homeostasis. New Phytol. 2023, 239, 1707–1722. [Google Scholar] [CrossRef] [PubMed]
- Steinborn, K.; Maulbetsch, C.; Priester, B.; Trautmann, S.; Pacher, T.; Geiges, B.; Küttner, F.; Lepiniec, L.; Stierhof, Y.-D.; Schwarz, H.; et al. The arabidopsis pilz group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev. 2002, 16, 959–971. [Google Scholar] [CrossRef]
- Lin, L.; Tijjani, I.; Guo, H.; An, Q.; Cao, J.; Chen, X.; Liu, W.; Wang, Z.; Norvienyeku, J. Cytoplasmic dynein1 intermediate-chain2 regulates cellular trafficking and physiopathological development in magnaporthe oryzae. iScience 2023, 26, 106050. [Google Scholar] [CrossRef]
- Joel, D.M.; Hershenhorn, J.; Eizenberg, H.; Aly, R.; Rubiales, D. Biology and Management of Weedy Root Parasites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Juergens, L.; Bieniussa, L.; Voelker, J.; Hagen, R.; Rak, K. Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice. Histochem. Cell Biol. 2020, 154, 671–681. [Google Scholar] [CrossRef]
- Wiphawee, L.; Judelson, H.S. A mads-box transcription factor regulates a central step in sporulation of the oomycete phytophthora infestans. Mol. Microbiol. 2018, 110, 562–575. [Google Scholar]
- Khabudaev, K.V.; Petrova, D.P.; Bedoshvili, Y.D.; Likhoshway, Y.V.; Grachev, M.A. Molecular evolution of tubulins in diatoms. Int. J. Mol. Sci. 2022, 23, 618. [Google Scholar] [CrossRef]
- Wang, X.; Gigant, B.; Zheng, X.; Chen, Q. Microtubule-targeting agents for cancer treatment: Seven binding sites and three strategies. MedComm-Oncol. 2023, 2, e46. [Google Scholar] [CrossRef]
- Wang, Z.; Tyler, B.M.; Liu, X. Protocol of phytophthora capsici transformation using the crispr-cas9 system. In Plant Pathogenic Fungi and Oomycetes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 265–274. [Google Scholar]
- Ah-Fong, A.M.V.; Judelson, H.S. Vectors for fluorescent protein tagging in phytophthora: Tools for functional genomics and cell biology. Fungal Biol. 2011, 115, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Herlihy, J.H.; Bombarely, A.; Mcdowell, J.M.; Haak, D.C. Draft assembly of phytophthora capsici from long-read sequencing uncovers complexity. Mol. Plant-Microbe Interact. 2019, 32, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and samtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Von Bubnoff, N.; Lange, T.; Maier, J. Methods and Compositions for Diagnosing Gastrointestinal Stromal Tumors. U.S. Patent 9,085,805, 21 July 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Qiu, X.; Lai, B.; Ou, C.; Wang, H.; Guo, H.; Li, L.; Lin, L.; Yu, D.; Liu, W.; et al. TBCC Domain-Containing Protein Regulates Sporulation and Virulence of Phytophthora capsici via Nutrient-Responsive Signaling. Int. J. Mol. Sci. 2024, 25, 12301. https://doi.org/10.3390/ijms252212301
Guo Y, Qiu X, Lai B, Ou C, Wang H, Guo H, Li L, Lin L, Yu D, Liu W, et al. TBCC Domain-Containing Protein Regulates Sporulation and Virulence of Phytophthora capsici via Nutrient-Responsive Signaling. International Journal of Molecular Sciences. 2024; 25(22):12301. https://doi.org/10.3390/ijms252212301
Chicago/Turabian StyleGuo, Yaru, Xiang Qiu, Bingting Lai, Caihuan Ou, Huirong Wang, Hengyuan Guo, Linying Li, Lili Lin, Dan Yu, Wenbo Liu, and et al. 2024. "TBCC Domain-Containing Protein Regulates Sporulation and Virulence of Phytophthora capsici via Nutrient-Responsive Signaling" International Journal of Molecular Sciences 25, no. 22: 12301. https://doi.org/10.3390/ijms252212301
APA StyleGuo, Y., Qiu, X., Lai, B., Ou, C., Wang, H., Guo, H., Li, L., Lin, L., Yu, D., Liu, W., & Norvienyeku, J. (2024). TBCC Domain-Containing Protein Regulates Sporulation and Virulence of Phytophthora capsici via Nutrient-Responsive Signaling. International Journal of Molecular Sciences, 25(22), 12301. https://doi.org/10.3390/ijms252212301