Identification of Functional Immune Biomarkers in Breast Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics
2.2. aAPC–qPCR Can Be Used to Assess NKT Cell Activation
2.3. aAPC–qPCR Is a Valid Platform in Healthy Donors as Well as Breast Cancer Patients
2.4. Gene Expression Profiling Can Predict Candidates for NKT Cell-Based Immunotherapy
2.5. Pretreatment with BC-Derived Conditioned Medium Abrogates NKT Cell Activation
2.6. Treatment with Lipitor Increases NKT Cell Number and Function In Vivo
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Human Peripheral Blood Mononuclear Cell (PBMC) Isolation
4.3. Generation of Artificial Antigen-Presenting Cells (aAPCs)
4.4. Stimulation of PBMCs
4.5. Cell Lines
4.6. Treatment of Cells with Condition Medium
4.7. ELISAs
4.8. RNA Isolation
4.9. Real-Time Quantitative PCR (qPCR)
4.10. Antibodies and Flow Cytometry
4.11. Mouse Studies
4.12. Whole Mount and Histology
4.13. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van’t Veer, L.J.; Dai, H.; Van De Vijver, M.J.; He, Y.D.; Hart, A.A.; Mao, M.; Peterse, H.L.; van der Kooy, K.; Marton, M.J.; Witteveen, A.T. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.-T.; Wang, Z.; Nuyten, D.S.; Rodriguez, E.H.; Schaner, M.E.; Salim, A.; Wang, Y.; Kristensen, G.B.; Helland, Å.; Børresen-Dale, A.-L. Gene expression programs in response to hypoxia: Cell type specificity and prognostic significance in human cancers. PLoS Med. 2006, 3, e47. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed]
- Van De Vijver, M.J.; He, Y.D.; Van’t Veer, L.J.; Dai, H.; Hart, A.A.; Voskuil, D.W.; Schreiber, G.J.; Peterse, J.L.; Roberts, C.; Marton, M.J. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002, 347, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Qian, H.; Sun, Z.; Yang, Y.; Shi, M.; Gu, H. A novel model based on lipid metabolism-related genes associated with immune microenvironment predicts metastasis of breast cancer. Discov. Oncol. 2024, 15, 372. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Yuan, S.; Fu, Y.; Li, H.; Xiao, S.; Gong, Z.; Zhong, S. Eleven inflammation-related genes risk signature model predicts prognosis of patients with breast cancer. Transl. Cancer Res. 2024, 13, 3652–3667. [Google Scholar] [CrossRef]
- Mackall, C.L.; Merchant, M.S.; Fry, T.J. Immune-based therapies for childhood cancer. Nat. Rev. Clin. Oncol. 2014, 11, 693–703. [Google Scholar] [CrossRef]
- Tran, E.; Turcotte, S.; Gros, A.; Robbins, P.F.; Lu, Y.-C.; Dudley, M.E.; Wunderlich, J.R.; Somerville, R.P.; Hogan, K.; Hinrichs, C.S. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014, 344, 641–645. [Google Scholar] [CrossRef]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef]
- Masucci, G.V.; Cesano, A.; Hawtin, R.; Janetzki, S.; Zhang, J.; Kirsch, I.; Dobbin, K.K.; Alvarez, J.; Robbins, P.B.; Selvan, S.R. Validation of biomarkers to predict response to immunotherapy in cancer: Volume I—Pre-analytical and analytical validation. J. ImmunoTherapy Cancer 2016, 4, 76. [Google Scholar] [CrossRef]
- Rini, B. Future approaches in immunotherapy. Semin. Oncol. 2014, 41, S30–S40. [Google Scholar] [CrossRef] [PubMed]
- Lussier, D.M.; Johnson, J.L.; Hingorani, P.; Blattman, J.N. Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. J. Immunother. Cancer 2015, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.J. Abstract SY07-01: New targets in combination cancer immunotherapies. Cancer Res. 2015, 75, SY07-01. [Google Scholar] [CrossRef]
- Perez-Gracia, J.L.; Labiano, S.; Rodriguez-Ruiz, M.E.; Sanmamed, M.F.; Melero, I. Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr. Opin. Immunol. 2014, 27, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Motohashi, S.; Ishikawa, E.; Fuchida, H.; Higashino, K.; Otsuji, M.; Iizasa, T.; Nakayama, T.; Taniguchi, M.; Fujisawa, T. A phase I study of α-galactosylceramide (KRN7000)–pulsed dendritic cells in patients with advanced and recurrent non–small cell lung cancer. Clin. Cancer Res. 2005, 11, 1910–1917. [Google Scholar] [CrossRef]
- Motohashi, S.; Ishikawa, A.; Ishikawa, E.; Otsuji, M.; Iizasa, T.; Hanaoka, H.; Shimizu, N.; Horiguchi, S.; Okamoto, Y.; Fujii, S.-I. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non–small cell lung cancer. Clin. Cancer Res. 2006, 12, 6079–6086. [Google Scholar] [CrossRef]
- Giaccone, G.; Punt, C.J.; Ando, Y.; Ruijter, R.; Nishi, N.; Peters, M.; von Blomberg, B.M.E.; Scheper, R.J.; van der Vliet, H.J.; van den Eertwegh, A.J. A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 2002, 8, 3702–3709. [Google Scholar]
- Molling, J.W.; Kölgen, W.; van der Vliet, H.J.; Boomsma, M.F.; Kruizenga, H.; Smorenburg, C.H.; Molenkamp, B.G.; Langendijk, J.A.; Leemans, C.R.; von Blomberg, B.M.E. Peripheral blood IFN-γ-secreting Vα24+ Vβ11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int. J. Cancer 2005, 116, 87–93. [Google Scholar] [CrossRef]
- Sohn, S.; Tiper, I.; Japp, E.; Sun, W.; Tkaczuk, K.; Webb, T.J. Development of a qPCR method to rapidly assess the function of NKT cells. J. Immunol. Methods 2014, 407, 82–89. [Google Scholar] [CrossRef]
- Tachibana, T.; Onodera, H.; Tsuruyama, T.; Mori, A.; Nagayama, S.; Hiai, H.; Imamura, M. Increased intratumor Vα24-positive natural killer T cells: A prognostic factor for primary colorectal carcinomas. Clin. Cancer Res. 2005, 11, 7322–7327. [Google Scholar] [CrossRef]
- Molling, J.W.; Moreno, M.; van der Vliet, H.J.; van den Eertwegh, A.J.; Scheper, R.J.; von Blomberg, B.M.E.; Bontkes, H.J. Invariant natural killer T cells and immunotherapy of cancer. Clin. Immunol. 2008, 129, 182–194. [Google Scholar] [CrossRef]
- Tahir, S.M.A.; Cheng, O.; Shaulov, A.; Koezuka, Y.; Bubley, G.J.; Wilson, S.B.; Balk, S.P.; Exley, M.A. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol. 2001, 167, 4046–4050. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, V.; Muro, K.; Bang, Y.-J.; Geva, R.; Catenacci, D.V.T.; Gupta, S.; Eder, J.P.; Berger, R.; Loboda, A.; Albright, A. Correlation of gene expression signatures and clinical outcomes in patients with advanced gastric cancer treated with pembrolizumab (MK-3475). J. Clin. Oncol. 2015, 33, 3026. [Google Scholar] [CrossRef]
- Webb, T.J.; Bieler, J.G.; Schneck, J.P.; Oelke, M. Ex vivo induction and expansion of natural killer T cells by CD1d1-Ig coated artificial antigen presenting cells. J. Immunol. Methods 2009, 346, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Daniotti, J.L.; Lardone, R.D.; Vilcaes, A.A. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front. Oncol. 2015, 5, 300. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.Y.; Segal, N.H.; Sidobre, S.; Kronenberg, M.; Chapman, P.B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 2003, 198, 173–181. [Google Scholar] [CrossRef]
- Marquina, G.; Waki, H.; Fernandez, L.E.; Kon, K.; Carr, A.; Valiente, O.; Perez, R.; Ando, S. Gangliosides expressed in human breast cancer. Cancer Res. 1996, 56, 5165–5171. [Google Scholar]
- Younis, R.H.; Han, K.L.; Webb, T.J. Human Head and Neck Squamous Cell Carcinoma–Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. J. Immunol. 2016, 196, 1419–1429. [Google Scholar] [CrossRef]
- Tiper, I.V.; Temkin, S.M.; Spiegel, S.; Goldblum, S.E.; Giuntoli, R.L.; Oelke, M.; Schneck, J.P.; Webb, T.J. VEGF potentiates GD3-mediated immune suppression by human ovarian cancer cells. Clin. Cancer Res. 2016, 22, 4249–4258. [Google Scholar] [CrossRef]
- Webb, T.J.; Li, X.; Giuntoli, R.L., 2nd; Lopez, P.H.; Heuser, C.; Schnaar, R.L.; Tsuji, M.; Kurts, C.; Oelke, M.; Schneck, J.P. Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res. 2012, 72, 3744–3752. [Google Scholar] [CrossRef]
- Nakou, E.; Babageorgakas, P.; Bouchliou, I.; Tziakas, D.N.; Miltiades, P.; Spanoudakis, E.; Margaritis, D.; Kotsianidis, I.; Stakos, D.A. Statin-induced immunomodulation alters peripheral invariant natural killer T-cell prevalence in hyperlipidemic patients. Cardiovasc. Drugs Ther. 2012, 26, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Narod, S.A.; Foulkes, W.D. BRCA1 and BRCA2: 1994 and beyond. Nat. Rev. Cancer 2004, 4, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.M.; Fan, S.; Isaacs, C. BRCA1 in hormonal carcinogenesis: Basic and clinical research. Endocr. Relat. Cancer 2005, 12, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wagner, K.U.; Larson, D.; Weaver, Z.; Li, C.; Ried, T.; Hennighausen, L.; Wynshaw-Boris, A.; Deng, C.X. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 1999, 22, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Shissler, S.C.; Bates, J.P.; Hester, D.; Jones, L.P.; Webb, T.J. Inbred Strain Characteristics Impact the NKT Cell Repertoire. Immunohorizons 2021, 5, 147–156. [Google Scholar] [CrossRef]
- Rabinovich, G.A.; Gabrilovich, D.; Sotomayor, E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007, 25, 267–296. [Google Scholar] [CrossRef]
- Zigler, M.; Shir, A.; Levitzki, A. Targeted cancer immunotherapy. Curr. Opin. Pharmacol. 2013, 13, 504–510. [Google Scholar] [CrossRef]
- Stewart, T.J.; Smyth, M.J. Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev. 2011, 30, 125–140. [Google Scholar] [CrossRef]
- Crowe, N.Y.; Coquet, J.M.; Berzins, S.P.; Kyparissoudis, K.; Keating, R.; Pellicci, D.G.; Hayakawa, Y.; Godfrey, D.I.; Smyth, M.J. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 2005, 202, 1279–1288. [Google Scholar] [CrossRef]
- Taniguchi, M.; Seino, K.-I.; Nakayama, T. The NKT cell system: Bridging innate and acquired immunity. Nat. Immunol. 2003, 4, 1164–1166. [Google Scholar] [CrossRef]
- Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Sato, H.; Kondo, E.; Harada, M.; Koseki, H.; Nakayama, T. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc. Natl. Acad. Sci. USA 1998, 95, 5690–5693. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, K.; Takahashi, T.; Nakahara, F.; Matsumoto, A.; Kurokawa, M.; Ogawa, S.; Oda, H.; Hirai, H.; Chiba, S. CD1d expression level in tumor cells is an important determinant for anti-tumor immunity by natural killer T cells. Leuk. Lymphoma 2006, 47, 2218–2223. [Google Scholar] [CrossRef] [PubMed]
- Eberl, G.; Brawand, P.; MacDonald, H.R. Selective bystander proliferation of memory CD4+ and CD8+ T cells upon NK T or T cell activation. J. Immunol. 2000, 165, 4305–4311. [Google Scholar] [CrossRef] [PubMed]
- Akutsu, Y.; Nakayama, T.; Harada, M.; Kawano, T.; Motohashi, S.; Shimizu, E.; Ito, T.; Kamada, N.; Saito, T.; Matsubara, H. Expansion of Lung Vα14 NKT Cells by Administration of α-Galactosylceramide-pulsed Dendritic Cells. Cancer Sci. 2002, 93, 397–403. [Google Scholar]
- Motohashi, S.; Kobayashi, S.; Ito, T.; Magara, K.K.; Mikuni, O.; Kamada, N.; Iizasa, T.; Nakayama, T.; Fujisawa, T.; Taniguchi, M. Preserved IFN-α production of circulating Vα24 NKT cells in primary lung cancer patients. Int. J. Cancer 2002, 102, 159–165. [Google Scholar] [CrossRef]
- Motohashi, S.; Okamoto, Y.; Yoshino, I.; Nakayama, T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin. Immunol. 2011, 140, 167–176. [Google Scholar] [CrossRef]
- Gulubova, M.; Manolova, I.; Kyurkchiev, D.; Julianov, A.; Altunkova, I. Decrease in intrahepatic CD56+ lymphocytes in gastric and colorectal cancer patients with liver metastases. Apmis 2009, 117, 870–879. [Google Scholar] [CrossRef]
- Konishi, J.; Yamazaki, K.; Yokouchi, H.; Shinagawa, N.; Iwabuchi, K.; Nishimura, M. The characteristics of human NKT cells in lung cancer—CD1d independent cytotoxicity against lung cancer cells by NKT cells and decreased human NKT cell response in lung cancer patients. Hum. Immunol. 2004, 65, 1377–1388. [Google Scholar] [CrossRef]
- Berzofsky, J.A.; Terabe, M. The contrasting roles of NKT cells in tumor immunity. Curr. Mol. Med. 2009, 9, 667–672. [Google Scholar] [CrossRef]
- Cerundolo, V.; Silk, J.D.; Masri, S.H.; Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 2009, 9, 28–38. [Google Scholar] [CrossRef]
- Dhodapkar, M.V. Harnessing human CD1d restricted T cells for tumor immunity: Progress and challenges. Front. Biosci. A J. Virtual Libr. 2009, 14, 796. [Google Scholar] [CrossRef] [PubMed]
- Exley, M.A.; Friedlander, P.; Alatrakchi, N.; Vriend, L.; Yue, S.C.; Sasada, T.; Zang, W.; Mizukami, Y.; Clark, J.; Nemer, D. Adoptive Transfer of Invariant NKT Cells as Immunotherapy for Advanced Melanoma: A Phase 1 Clinical Trial. Clin. Cancer Res. 2017, 23, 3510–3519. [Google Scholar] [CrossRef] [PubMed]
- Huard, B.; Gaulard, P.; Faure, F.; Hercend, T.; Triebel, F. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 1994, 39, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Triebel, F.; Jitsukawa, S.; Baixeras, E.; Roman-Roman, S.; Genevee, C.; Viegas-Pequignot, E.; Hercend, T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 1990, 171, 1393–1405. [Google Scholar] [CrossRef]
- Kisielow, M.; Kisielow, J.; Capoferri-Sollami, G.; Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol. 2005, 35, 2081–2088. [Google Scholar] [CrossRef]
- Brignone, C.; Gutierrez, M.; Mefti, F.; Brain, E.; Jarcau, R.; Cvitkovic, F.; Bousetta, N.; Medioni, J.; Gligorov, J.; Grygar, C. First-line chemoimmunotherapy in metastatic breast carcinoma: Combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J. Transl. Med. 2010, 8, 71. [Google Scholar] [CrossRef]
- Mauri, D.N.; Ebner, R.; Montgomery, R.I.; Kochel, K.D.; Cheung, T.C.; Yu, G.-L.; Ruben, S.; Murphy, M.; Eisenberg, R.J.; Cohen, G.H. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 1998, 8, 21–30. [Google Scholar] [CrossRef]
- Tamada, K.; Shimozaki, K.; Chapoval, A.I.; Zhu, G.; Sica, G.; Flies, D.; Boone, T.; Hsu, H.; Fu, Y.-X.; Nagata, S. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat. Med. 2000, 6, 283–289. [Google Scholar] [CrossRef]
- Holmes, T.D.; Wilson, E.B.; Black, E.V.; Benest, A.V.; Vaz, C.; Tan, B.; Tanavde, V.M.; Cook, G.P. Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc. Natl. Acad. Sci. USA 2014, 111, E5688–E5696. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Rad, F.R.; Ajdary, S.; Omranipour, R.; Alimohammadian, M.H.; Hassan, Z.M. Comparative analysis of CD4+ and CD8+ T cells in tumor tissues, lymph nodes and the peripheral blood from patients with breast cancer. Iran. Biomed. J. 2015, 19, 35. [Google Scholar]
- Loi, S.; Sirtaine, N.; Piette, F.; Salgado, R.; Viale, G.; Van Eenoo, F.; Rouas, G.; Francis, P.; Crown, J.P.; Hitre, E. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J. Clin. Oncol. 2013, 31, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Menard, S.; Tomasic, G.; Casalini, P.; Balsari, A.; Pilotti, S.; Cascinelli, N.; Salvadori, B.; Colnaghi, M.I.; Rilke, F. Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin. Cancer Res. 1997, 3, 817–819. [Google Scholar] [PubMed]
- Rilke, F.; Colnaghi, M.I.; Cascinelli, N.; Andreola, S.; Baldini, M.T.; Bufalino, R.; Porta, G.D.; Ménard, S.; Pierotti, M.A.; Testori, A. Prognostic significance of her-2/neu expression in breast cancer and its relationship to other prognostic factors. Int. J. Cancer 1991, 49, 44–49. [Google Scholar] [CrossRef]
- Liyanage, U.K.; Moore, T.T.; Joo, H.-G.; Tanaka, Y.; Herrmann, V.; Doherty, G.; Drebin, J.A.; Strasberg, S.M.; Eberlein, T.J.; Goedegebuure, P.S. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 2002, 169, 2756–2761. [Google Scholar] [CrossRef]
- Rubbert, A.; Manger, B.; Lang, N.; Kalden, J.R.; Platzer, E. Functional characterization of tumor-infiltrating lymphocytes, lymph-node lymphocytes and peripheral-blood lymphocytes from patients with breast cancer. Int. J. Cancer 1991, 49, 25–31. [Google Scholar] [CrossRef]
- Webb, T.J.; Carey, G.B.; East, J.E.; Sun, W.; Bollino, D.R.; Kimball, A.S.; Brutkiewicz, R.R. Alterations in cellular metabolism modulate CD1d-mediated NKT cell responses. Pathog. Dis. 2016, 74, ftw055. [Google Scholar] [CrossRef]
- Sriram, V.; Cho, S.; Li, P.; O’Donnell, P.W.; Dunn, C.; Hayakawa, K.; Blum, J.S.; Brutkiewicz, R.R. Inhibition of glycolipid shedding rescues recognition of a CD1+ T cell lymphoma by natural killer T (NKT) cells. Proc. Natl. Acad. Sci. USA 2002, 99, 8197–8202. [Google Scholar] [CrossRef]
- Lantz, O.; Bendelac, A. An invariant T cell receptor a chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8-T cells in mice and humans. J. Exp. Med. 1994, 180, 1097–1106. [Google Scholar] [CrossRef]
- Brutkiewicz, R.R.; Bennink, J.R.; Yewdell, J.W.; Bendelac, A. TAP-independent, b2-microglobulin-dependent surface expression of functional mouse CD1.1. J. Exp. Med. 1995, 182, 1913–1919. [Google Scholar] [CrossRef]
- Burdin, N.; Brossay, L.; Koezuka, Y.; Smiley, S.T.; Grusby, M.J.; Gui, M.; Taniguchi, M.; Hayakawa, K.; Kronenberg, M. Selective ability of mouse CD1 to present glycolipids: A-galactosylceramide specifically stimulates Va14+ NK T lymphocytes. J. Immunol. 1998, 161, 3271–3281. [Google Scholar] [CrossRef] [PubMed]
- Tilli, M.T.; Parrish, A.R.; Cotarla, I.; Jones, L.P.; Johnson, M.D.; Furth, P.A. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP imaging, and ultrasound. BMC Cancer 2008, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.P.; Sampson, A.; Kang, H.J.; Kim, H.J.; Yi, Y.W.; Kwon, S.Y.; Babus, J.K.; Wang, A.; Bae, I. Loss of BRCA1 leads to an increased sensitivity to Bisphenol A. Toxicol. Lett. 2010, 199, 261–268. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Number of Patients | Avg. NKT Cell % | NKT Cell Function |
---|---|---|---|
Age (years) | |||
≤50 | 15 | 0.044 ± 0.04 | 4.40 ± 10.7 |
>50 | 15 | 0.038 ± 0.05 | 3.61 ± 7.9 |
Race | |||
White | 13 | 0.046 ± 0.05 | 1.47 ± 1.04 |
≤50 | 7 | 0.031 ± 0.03 | 1.03 ± 0.6 |
>50 | 6 | 0.065 ± 0.06 | 1.98 ± 1.2 |
African American | 14 | 0.032 ± 0.04 | 6.77 ± 13.2 |
≤50 | 5 | 0.056 ± 0.06 | 10.52 ± 18.2 |
>50 | 9 | 0.02 ± 0.02 | 4.7 ± 10.2 |
Asian | 3 | 0.056 ± 0.01 | 2.08 ± 0.8 |
≤50 | 3 | 0.056 ± 0.01 | 2.08 ± 0.8 |
>50 | 0 | 0 | 0 |
Histologic type | |||
Ductal | 24 | 0.038 | 4.71 |
Lobular | 3 | 0.076 | 1.26 |
Tubular | 1 | 0.03 | 1.43 |
Colloid | 1 | 0.05 | 0.5 |
Not indicated | 1 | 0 | 1.55 |
ER+ | 21 | 0.037 | 3.4 |
PR+ | 17 | 0.035 | 3.85 |
ER+/HER2+ | 2 | 0.02 | 1.85 |
TNBC | 8 | 0.05 | 7.72 |
Staging | |||
I | 11 | 0.025 | 1.06 |
II | 12 | 0.058 | 5.67 |
III | 6 | 0.043 | 6.5 |
Tumor grade | |||
1 | 9 | 0.015 | 1.41 |
2 | 11 | 0.061 | 5.39 |
3 | 9 | 0.046 | 5.18 |
Low Responder ID | Age at Dx | Race | BMI | Pathology | Classification | Grade | Stage | NKT Cells % | NKT Cell Function | T Cell Function |
3 | 63 | B | 37.3 | Invasive colloid | ER+/PR+ | 1 | I | 0.05 | 0.5 | 0 |
16 | 49 | W | 21.2 | Invasive ductal carcinoma | ER+/PR+ | 1 | I | 0 | 0.1 | 0.7 |
29 | 49 | B | 27.6 | Invasive ductal carcinoma | ER+/PR+ | 2 | I | 0 | 0.5 | 3.7 |
30 | 47 | W | 23.7 | Invasive ductal carcinoma | ER+/PR+ | 3 | I | 0.06 | 0.5 | 8.6 |
33 | 43 | W | 36.5 | Invasive ductal carcinoma | TNBC | 3 | IIA | 0.08 | 0.5 | 6.2 |
High Responder ID | Age at Dx | Race | BMI | Pathology | Classification | Grade | Stage | NKT Cell % | NKT Cell Function | T Cell Function |
6 | 43 | AS | 21.0 | Invasive ductal carcinoma | ER+/PR+ | 2 | II | 0.07 | 3.1 | 23.4 |
11 | 60 | W | 27.6 | Invasive ductal carcinoma | TNBC | 2 | II | 0.2 | 4 | 2.7 |
13 | 47 | B | 29.2 | Invasive ductal carcinoma | ER+/PR+ | 2 | II | 0.1 | 43 | 3 |
18 | 54 | B | 70.3 | Invasive ductal carcinoma | TNBC | 3 | IIIB | 0.02 | 32 | 8.6 |
27 | 49 | B | 39.6 | Invasive ductal carcinoma | ER+/PR+ | 1 | II | 0 | 4.5 | 114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derakhshandeh, R.; Zhu, Y.; Li, J.; Hester, D.; Younis, R.; Koka, R.; Jones, L.P.; Sun, W.; Goloubeva, O.; Tkaczuk, K.; et al. Identification of Functional Immune Biomarkers in Breast Cancer Patients. Int. J. Mol. Sci. 2024, 25, 12309. https://doi.org/10.3390/ijms252212309
Derakhshandeh R, Zhu Y, Li J, Hester D, Younis R, Koka R, Jones LP, Sun W, Goloubeva O, Tkaczuk K, et al. Identification of Functional Immune Biomarkers in Breast Cancer Patients. International Journal of Molecular Sciences. 2024; 25(22):12309. https://doi.org/10.3390/ijms252212309
Chicago/Turabian StyleDerakhshandeh, Roshanak, Yuyi Zhu, Junxin Li, Danubia Hester, Rania Younis, Rima Koka, Laundette P. Jones, Wenji Sun, Olga Goloubeva, Katherine Tkaczuk, and et al. 2024. "Identification of Functional Immune Biomarkers in Breast Cancer Patients" International Journal of Molecular Sciences 25, no. 22: 12309. https://doi.org/10.3390/ijms252212309
APA StyleDerakhshandeh, R., Zhu, Y., Li, J., Hester, D., Younis, R., Koka, R., Jones, L. P., Sun, W., Goloubeva, O., Tkaczuk, K., Bates, J., Reader, J., & Webb, T. J. (2024). Identification of Functional Immune Biomarkers in Breast Cancer Patients. International Journal of Molecular Sciences, 25(22), 12309. https://doi.org/10.3390/ijms252212309