Mineralocorticoid Receptor and Sleep Quality in Chronic Kidney Disease
Abstract
:1. Introduction
2. Mineralocorticoid Receptor
2.1. Mineralocorticoid Receptor Ligands
2.2. Canonical Function of the Mineralocorticoid Receptor
2.3. Non-Canonical Functions of the Mineralocorticoid Receptor
2.4. The Mineralocorticoid Receptor in the Central Nervous System
3. Sleep
3.1. The Circadian Clock
3.2. Role of the Mineralocorticoid Receptor in Sleep
3.3. Sleep Quality in Human Diseases
4. Sleep and Kidney Function
4.1. The Circadian Clock Controls Kidney Function
4.2. Sleep Quality in Chronic Kidney Disease Patients
5. Role of the Mineralocorticoid Receptor in Sleep Disorders in CKD
5.1. MR-Related Mechanisms Able to Trigger Sleep Disturbances in CKD
5.1.1. Circadian Clock Disruption
5.1.2. High Levels of MR Agonist
5.2. Putative Therapeutic Interventions
5.2.1. Insomnia-Related Regulatory Protein-Based Therapeutic Intervention
5.2.2. RAAS-Based Therapeutic Interventions
6. Conclusions
Further Research
Author Contributions
Funding
Conflicts of Interest
References
- Born, J.; DeKloet, E.R.; Wenz, H.; Kern, W.; Fehm, H.L. Gluco- and antimineralocorticoid effects on human sleep: A role of central corticosteroid receptors. Am. J. Physiol. 1991, 260, E183–E188. [Google Scholar] [CrossRef] [PubMed]
- Pandi-Perumal, S.R.; Monti, J.M.; Burman, D.; Karthikeyan, R.; BaHammam, A.S.; Spence, D. W; Brown, GM; Narashimhan, M. Clarifying the role of sleep in depression: A narrative review. Psychiatry Res. 2020, 291, 113239. [Google Scholar] [CrossRef]
- Elrod, M.G.; Hood, B.S. Sleep differences among children with autism spectrum disorders and typically developing peers: A meta-analysis. J. Dev. Behav. Pediatr. 2015, 36, 166–177. [Google Scholar] [CrossRef]
- Lyons, O.D. Sleep disorders in chronic kidney disease. Nat. Rev. Nephrol. 2024, 20, 690–700. [Google Scholar] [CrossRef]
- Tan, L.-H.; Chen, P.-S.; Chiang, H.-Y.; King, E.; Yeh, H.-C.; Hsiao, Y.-L.; Chang, D.R.; Chen, S.H.; Wu, M.Y.; Kuo, C.C. Insomnia and poor sleep in CKD: A systematic review and meta-analysis. Kidney Med. 2022, 4, 100458. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Bigazzi, R.; Campese, V.M. Antagonists of aldosterone and proteinuria in patients with CKD: An uncontrolled pilot study. Am. J. Kidney Dis. 2005, 46, 45–51. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, G.; Anker, S.D.; Agarwal, R.; Ruilope, L.M.; Rossing, P.; Bakris, G.L.; Tasto, C.; Joseph, A.; Kolkhof, P.; Lage, A.; et al. Finerenone Reduces Risk of Incident Heart Failure in Patients With Chronic Kidney Disease and Type 2 Diabetes: Analyses From the FIGARO-DKD Trial. Circulation 2022, 145, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Fuller, P.J. Interactions of the mineralocorticoid receptor–within and without. Mol. Cell. Endocrinol. 2012, 350, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.G.; Welch, A.K.; Cain, B.D.; Sayeski, P.P.; Gumz, M.L.; Wingo, C.S. Aldosterone: Renal action and physiological effects. Compr. Physiol. 2023, 13, 4409–4491. [Google Scholar] [CrossRef] [PubMed]
- Fagart, J.; Wurtz, J.M.; Souque, A.; Hellal-Levy, C.; Moras, D.; Rafestin-Oblin, M.E. Antagonism in the human mineralocorticoid receptor. EMBO J. 1998, 17, 3317–3325. [Google Scholar] [CrossRef]
- Bledsoe, R.K.; Madauss, K.P.; Holt, J.A.; Apolito, C.J.; Lambert, M.H.; Pearce, K.H.; Stanley, T.B.; Stewart, E.L.; Trump, R.P.; Willson, T.M.; et al. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J. Biol. Chem. 2005, 280, 31283–31293. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.W.; Bailey, M.A. Glucocorticoids and 11β-hydroxysteroid dehydrogenases: Mechanisms for hypertension. Curr. Opin. Pharmacol. 2015, 21, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Black, R.; Grodzinsky, A.J. Dexamethasone: Chondroprotective corticosteroid or catabolic killer? Eur. Cells Mater. 2019, 38, 246–263. [Google Scholar] [CrossRef]
- Hübner, G.; Brauchle, M.; Smola, H.; Madlener, M.; Fässler, R.; Werner, S. Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 1996, 8, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Dibas, A.; Yorio, T. Glucocorticoid therapy and ocular hypertension. Eur. J. Pharmacol. 2016, 787, 57–71. [Google Scholar] [CrossRef]
- Barrera-Chimal, J.; Jaisser, F.; Anders, H.-J. The mineralocorticoid receptor in chronic kidney disease. Br. J. Pharmacol. 2022, 179, 3152–3164. [Google Scholar] [CrossRef]
- Veazie, S.; Peterson, K.; Ansari, Y.; Chung, K.A.; Gibbons, C.H.; Raj, S.R.; Helfand, M. Fludrocortisone for orthostatic hypotension. Cochrane Database Syst. Rev. 2021, 5, CD012868. [Google Scholar] [CrossRef]
- Annane, D.; Renault, A.; Brun-Buisson, C.; Megarbane, B.; Quenot, J.P.; Siami, S.; Cariou, A.; Forceville, X.; Schwebel, C.; Martin, C.; et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N. Engl. J. Med. 2018, 378, 809–818. [Google Scholar] [CrossRef]
- Rupprecht, R.; Reul, J.M.; van Steensel, B.; Spengler, D.; Söder, M.; Berning, B.; Holsboer, F.; Damm, K. Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur. J. Pharmacol. 1993, 247, 145–154. [Google Scholar] [CrossRef]
- Katsu, Y.; Oka, K.; Baker, M.E. Evolution of human, chicken, alligator, frog, and zebrafish mineralocorticoid receptors: Allosteric influence on steroid specificity. Sci. Signal 2018, 11, eaao1520. [Google Scholar] [CrossRef] [PubMed]
- Arriza, J.L.; Weinberger, C.; Cerelli, G.; Glaser, T.M.; Handelin, B.L.; Housman, D.E.; Evans, R.M. Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 1987, 237, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Butkus, A.; Congiu, M.; Scoggins, B.A.; Coghlan, J.P. The affinity of 17 alpha-hydroxyprogesterone and 17 alpha, 20 alpha-dihydroxyprogesterone for classical mineralocorticoid or glucocorticoid receptors. Clin. Exp. Pharmacol. Physiol. 1982, 9, 157–163. [Google Scholar] [CrossRef]
- Butkus, A.; Coghlan, J.P.; Paterson, R.A.; Scoggins, B.A.; Robinson, J.A.; Funder, J.W. Mineralocorticoid receptors in sheep kidney and parotid: Studies in Na+ replete and Na+ deplete states. Clin. Exp. Pharmacol. Physiol. 1976, 3, 557–565. [Google Scholar] [CrossRef]
- Myles, K.; Funder, J.W. Progesterone binding to mineralocorticoid receptors: In vitro and in vivo studies. Am. J. Physiol. 1996, 270, E601–E607. [Google Scholar] [CrossRef] [PubMed]
- Heilmeyer, L.; Frey, J.; Fischer, R. Effects of ACTH, 11-dehydro-and 11-desoxicorticosterone on experimental animals. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 1952, 214, 416–422. [Google Scholar]
- Otsuka, H.; Abe, M.; Kobayashi, H. The Effect of Aldosterone on Cardiorenal and Metabolic Systems. Int. J. Mol. Sci. 2023, 24, 5370. [Google Scholar] [CrossRef]
- Bradbury, M.J.; Akana, S.F.; Cascio, C.S.; Levin, N.; Jacobson, L.; Dallman, M.F. Regulation of basal ACTH secretion by corticosterone is mediated by both type I (MR) and type II (GR) receptors in rat brain. J. Steroid Biochem. Mol. Biol. 1991, 40, 133–142. [Google Scholar] [CrossRef]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr. Rev. 2020, 41, 470–490. [Google Scholar] [CrossRef]
- Quinkler, M.; Stewart, P.M. Hypertension and the Cortisol-Cortisone Shuttle. J. Clin. Endocrinol. Metab. 2003, 88, 2384–2392. [Google Scholar] [CrossRef]
- Caravaggi, C.; Graziani, G. The pharmacokinetics of a new presentation of betamethasone disodium phosphate. Strahlentherapie. Sonderbd. 1975, 74, 461–464. [Google Scholar] [PubMed]
- Agarwal, M.K.; Hainque, B.; Moustaid, N.; Lazer, G. Glucocorticoid antagonists. FEBS Lett. 1987, 217, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Miyamori, I. 19-Noraldosterone, a new mineralocorticoid. Endocr. J. 1994, 41, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Azar, S.T.; Melby, J.C. 19-Nor-deoxycorticosterone production from aldosterone-producing adenomas. Hypertension 1992, 19, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Funder, J.W.; Adam, W.R. 19-Nor progesterone is a mineralocorticoid agonist. Endocrinology 1981, 109, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Tosca, M.; Rossi, G.A. Beclomethasone dipropionate: Efficacy and safety of the administration by nebulization. Recent. Progress. Med. 2022, 113, 1–12. [Google Scholar] [CrossRef]
- Dołowy, M.; Pyka, A. Evaluation of lipophilic properties of betamethasone and related compounds. Acta Pol. Pharm. 2015, 72, 671–681. [Google Scholar]
- Heo, Y.A. Budesonide/Glycopyrronium/Formoterol: A Review in COPD. Drugs 2021, 81, 1411–1422. [Google Scholar] [CrossRef]
- Armanini, D.; Calò, L.; Semplicini, A. Pseudohyperaldosteronism: Pathogenetic mechanisms. Crit. Rev. Clin. Lab. Sci. 2003, 40, 295–335. [Google Scholar] [CrossRef]
- Guzzo, E.F.M.; Rosa, G.d.L.; Bremm, R.P.; Meska, C.P.; Vargas, C.R.; Coitinho, A.S. Parameters of Oxidative Stress and Behavior in Animals Treated with Dexametasone and Submitted to Pentylenetetrazol Kindling. J. Epilepsy Res. 2021, 11, 113–119. [Google Scholar] [CrossRef]
- Struthers, A.; Krum, H.; Williams, G.H. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin. Cardiol. 2008, 31, 153–158. [Google Scholar] [CrossRef]
- González-Juanatey, J.R.; Górriz, J.L.; Ortiz, A.; Valle, A.; Soler, M.J.; Facila, L. Cardiorenal benefits of finerenone: Protecting kidney and heart. Ann. Med. 2023, 55, 502–513. [Google Scholar] [CrossRef]
- Bosch, N.A.; Teja, B.; Law, A.C.; Pang, B.; Jafarzadeh, S.R.; Walkey, A.J. Comparative Effectiveness of Fludrocortisone and Hydrocortisone vs Hydrocortisone Alone Among Patients With Septic Shock. JAMA Intern. Med. 2023, 183, 451–459. [Google Scholar] [CrossRef]
- Teja, B.; Berube, M.; Pereira, T.V.; Law, A.C.; Schanock, C.; Pang, B.; Wunsch, H.; Walkey, A.J.; Bosch, N.A. Effectiveness of Fludrocortisone Plus Hydrocortisone versus Hydrocortisone Alone in Septic Shock: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Am. J. Respir. Crit. Care Med. 2024, 209, 1219–1228. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Arinaga-Hino, T.; Morishige, S.; Mizuochi, S.; Abe, M.; Kunitake, K.; Sano, T.; Amano, K.; Kuwahara, R.; Ide, T. Prednisolone-responsive primary sclerosing cholangitis with autoimmune hemolytic anemia: A case report and review of the literature. Clin. J. Gastroenterol. 2021, 14, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Krasselt, M.; Baerwald, C. Efficacy and safety of modified-release prednisone in patients with rheumatoid arthritis. Drug Des. Devel Ther. 2016, 10, 1047–1058. [Google Scholar] [CrossRef]
- Triamcinolone, Topical-Drugs and Lactation Database (LactMed®); National Institute of Child Health and Human Development: Bethesda, MD, USA, 2024.
- Keam, S.J. Vamorolone: First Approval. Drugs 2024, 84, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.R.; Stewart, P.M.; Burt, D.; Brett, L.; McIntyre, M.A.; Sutanto, W.S.; de Kloet, E.R.; Monder, C. Localisation of 11 beta-hydroxysteroid dehydrogenase–tissue specific protector of the mineralocorticoid receptor. Lancet 1988, 2, 986–989. [Google Scholar] [CrossRef]
- Alzamora, R.; Michea, L.; Marusic, E.T. Role of 11beta-hydroxysteroid dehydrogenase in nongenomic aldosterone effects in human arteries. Hypertension 2000, 35, 1099–1104. [Google Scholar] [CrossRef]
- Lombes, M.; Kenouch, S.; Souque, A.; Farman, N.; Rafestin-Oblin, M.E. The mineralocorticoid receptor discriminates aldosterone from glucocorticoids independently of the 11 beta-hydroxysteroid dehydrogenase. Endocrinology 1994, 135, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, J.; Toumazou, C.; Yoon, H.-G.; Wong, J. A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin. Mol. Endocrinol. 2006, 20, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Rogerson, F.M.; Fuller, P.J. Interdomain interactions in the mineralocorticoid receptor. Mol. Cell. Endocrinol. 2003, 200, 45–55. [Google Scholar] [CrossRef]
- Lonard, D.M.; O’malley, B.W. Nuclear receptor coregulators: Judges, juries, and executioners of cellular regulation. Mol. Cell 2007, 27, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Lonard, D.M.; O’Malley, B.W. The expanding cosmos of nuclear receptor coactivators. Cell 2006, 125, 411–414. [Google Scholar] [CrossRef]
- Yudt, M.R.; Cidlowski, J.A. The glucocorticoid receptor: Coding a diversity of proteins and responses through a single gene. Mol. Endocrinol. 2002, 16, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Zennaro, M.C.; Farman, N.; Bonvalet, J.P.; Lombès, M. Tissue-specific expression of alpha and beta messenger ribonucleic acid isoforms of the human mineralocorticoid receptor in normal and pathological states. J. Clin. Endocrinol. Metab. 1997, 82, 1345–1352. [Google Scholar] [CrossRef]
- Jaisser, F.; Farman, N. Emerging roles of the mineralocorticoid receptor in pathology: Toward new paradigms in clinical pharmacology. Pharmacol. Rev. 2016, 68, 49–75. [Google Scholar] [CrossRef] [PubMed]
- Terker, A.S.; Ellison, D.H. Renal mineralocorticoid receptor and electrolyte homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1068–R1070. [Google Scholar] [CrossRef]
- Pearce, D.; Manis, A.D.; Nesterov, V.; Korbmacher, C. Regulation of distal tubule sodium transport: Mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch. 2022, 474, 869–884. [Google Scholar] [CrossRef]
- Valinsky, W.C.; Touyz, R.M.; Shrier, A. Aldosterone, SGK1, and ion channels in the kidney. Clin. Sci. 2018, 132, 173–183. [Google Scholar] [CrossRef]
- Tarjus, A.; Amador, C.; Michea, L.; Jaisser, F. Vascular mineralocorticoid receptor and blood pressure regulation. Curr. Opin. Pharmacol. 2015, 21, 138–144. [Google Scholar] [CrossRef]
- Kitada, K.; Nishiyama, A. Revisiting blood pressure and body fluid status. Clin. Sci. 2023, 137, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Chimal, J.; Jaisser, F. Vascular mineralocorticoid receptor activation and disease. Exp. Eye Res. 2019, 188, 107796. [Google Scholar] [CrossRef] [PubMed]
- DuPont, J.J.; Jaffe, I.Z. 30 years of the mineralocorticoid receptor: The role of the mineralocorticoid receptor in the vasculature. J. Endocrinol. 2017, 234, T67–T82. [Google Scholar] [CrossRef] [PubMed]
- Fraccarollo, D.; Geffers, R.; Galuppo, P.; Bauersachs, J. Mineralocorticoid receptor promotes cardiac macrophage inflammaging. Basic. Res. Cardiol. 2024, 119, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Kloet, E.R.D.; Vreugdenhil, E.; Oitzl, M.S.; Joëls, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998, 19, 269–301. [Google Scholar] [CrossRef]
- Yau, J.L.W.; Seckl, J.R. Local amplification of glucocorticoids in the aging brain and impaired spatial memory. Front. Aging Neurosci. 2012, 4, 24. [Google Scholar] [CrossRef]
- Joëls, M.; Karst, H.; DeRijk, R.; Kloet ER, d.e. The coming out of the brain mineralocorticoid receptor. Trends Neurosci. 2008, 31, 1–7. [Google Scholar] [CrossRef]
- Quirarte, G.L.; Roozendaal, B.; McGaugh, J.L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 1997, 94, 14048–14053. [Google Scholar] [CrossRef]
- Roozendaal, B. Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol. Learn. Mem. 2002, 78, 578–595. [Google Scholar] [CrossRef]
- Fujita, M.; Fujita, T. The role of CNS in the effects of salt on blood pressure. Curr. Hypertens. Rep. 2016, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Leenen, F.H.H.; Blaustein, M.P.; Hamlyn, J.M. Update on angiotensin II: New endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr. Connect. 2017, 6, R131–R145. [Google Scholar] [CrossRef] [PubMed]
- Seckl, J. 11β-Hydroxysteroid dehydrogenase and the brain: Not (yet) lost in translation. J. Intern. Med. 2024, 295, 20–37. [Google Scholar] [CrossRef] [PubMed]
- de Kloet, E.R.; van Acker, S.A.; Sibug, R.M.; Oitzl, M.S.; Meijer, O.C.; Rahmouni, K.; de Jong, W. Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int. 2000, 57, 1329–1336. [Google Scholar] [CrossRef]
- Senovilla, L.; Núñez, L.; Villalobos, C.; García-Sancho, J. Rapid changes in anterior pituitary cell phenotypes in male and female mice after acute cold stress. Endocrinology 2008, 149, 2159–2167. [Google Scholar] [CrossRef]
- Higham, C.E.; Johannsson, G.; Shalet, S.M. Hypopituitarism. Lancet 2016, 388, 2403–2415. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gomez-Sanchez, C.E.; Penman, A.; May, P.J.; Gomez-Sanchez, E. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R328–R340. [Google Scholar] [CrossRef]
- Daskalakis, N.P.; Kloet, E.R.D.; Yehuda, R.; Malaspina, D.; Kranz, T.M. Early life stress effects on glucocorticoid-BDNF interplay in the hippocampus. Front. Mol. Neurosci. 2015, 8, 68. [Google Scholar] [CrossRef]
- Lightman, S.L.; Wiles, C.C.; Atkinson, H.C.; Henley, D.E.; Russell, G.M.; Leendertz, J.A.; McKenna, M.A.; Spiga, F.; Wood, S.A.; Conway-Campbell, B.L. The significance of glucocorticoid pulsatility. Eur. J. Pharmacol. 2008, 583, 255–262. [Google Scholar] [CrossRef]
- de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef]
- Swaab, D.F.; Bao, A.-M.; Lucassen, P.J. The stress system in the human brain in depression and neurodegeneration. Ageing Res. Rev. 2005, 4, 141–194. [Google Scholar] [CrossRef] [PubMed]
- Seckl, J.R.; Meaney, M.J. Glucocorticoid programming. Ann. N. Acad. Sci. 2004, 1032, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Anafi, R.C.; Kayser, M.S.; Raizen, D.M. Exploring phylogeny to find the function of sleep. Nat. Rev. Neurosci. 2019, 20, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Cirelli, C.; Tononi, G. Is sleep essential? PLoS Biol. 2008, 6, e216. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M. Clues to the functions of mammalian sleep. Nature 2005, 437, 1264–1271. [Google Scholar] [CrossRef]
- Paller, K.A.; Creery, J.D.; Schechtman, E. Memory and sleep: How sleep cognition can change the waking mind for the better. Annu. Rev. Psychol. 2021, 72, 123–150. [Google Scholar] [CrossRef]
- Lange, T.; Dimitrov, S.; Born, J. Effects of sleep and circadian rhythm on the human immune system. Ann. N. Acad. Sci. 2010, 1193, 48–59. [Google Scholar] [CrossRef]
- Lange, T.; Dimitrov, S.; Bollinger, T.; Diekelmann, S.; Born, J. Sleep after vaccination boosts immunological memory. J. Immunol. 2011, 187, 283–290. [Google Scholar] [CrossRef]
- Sharma, S.; Kavuru, M. Sleep and metabolism: An overview. Int. J. Endocrinol. 2010, 2010, 270832. [Google Scholar] [CrossRef]
- Buckley, T.M.; Schatzberg, A.F. Aging and the role of the HPA axis and rhythm in sleep and memory-consolidation. Am. J. Geriatr. Psychiatry 2005, 13, 344–352. [Google Scholar] [CrossRef]
- Brinkman, J.E.; Reddy, V.; Sharma, S. Physiology of Sleep. StatPearls 2023. [Google Scholar]
- How Sleep Works—Sleep Phases and Stages | National Heart, Lung, and Blood Institute. Bethesda, MD, USA. Last Update: Last Updated on 24 March 2022. Available online: https://www.nhlbi.nih.gov/health/sleep/stages-of-sleep (accessed on 31 August 2024).
- Falup-Pecurariu, C.; Diaconu, Ș.; Țînț, D.; Falup-Pecurariu, O. Neurobiology of sleep (review). Exp. Ther. Med. 2021, 21, 272. [Google Scholar] [CrossRef]
- Coulon, P.; Budde, T.; Pape, H.-C. The sleep relay–the role of the thalamus in central and decentral sleep regulation. Pflugers Arch. 2012, 463, 53–71. [Google Scholar] [CrossRef]
- Yamashita, T.; Yamanaka, A. Lateral hypothalamic circuits for sleep-wake control. Curr. Opin. Neurobiol. 2017, 44, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar] [PubMed]
- Borbély, A.A. Refining sleep homeostasis in the two-process model. J. Sleep Res. 2009, 18, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Kalmus, H. Die Lage des Aufnahmeorganes für die Schlupfperiodik von Drosophila. Z. Für Vgl. Physiol. 1938, 26, 362–365. [Google Scholar] [CrossRef]
- Konopka, R.J.; Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1971, 68, 2112–2116. [Google Scholar] [CrossRef]
- Géron, A.; Werner, J.; Wattiez, R.; Matallana-Surget, S. Towards the discovery of novel molecular clocks in Prokaryotes. Crit. Rev. Microbiol. 2024, 50, 491–503. [Google Scholar] [CrossRef]
- Ashbrook, L.H.; Krystal, A.D.; Fu, Y.-H.; Ptáček, L.J. Genetics of the human circadian clock and sleep homeostat. Neuropsychopharmacology 2020, 45, 45–54. [Google Scholar] [CrossRef]
- Takahashi, J.S.; Hong, H.-K.; Ko, C.H.; McDearmon, E.L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 2008, 9, 764–775. [Google Scholar] [CrossRef]
- Welsh, D.K.; Logothetis, D.E.; Meister, M.; Reppert, S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995, 14, 697–706. [Google Scholar] [CrossRef]
- Wu, T.; Ni, Y.; Dong, Y.; Xu, J.; Song, X.; Kato, H.; Fu, Z. Regulation of circadian gene expression in the kidney by light and food cues in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R635–R641. [Google Scholar] [CrossRef]
- Ayyar, V.S.; Sukumaran, S. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions. J. Pharmacokinet. Pharmacodyn. 2021, 48, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, Q.; Brovkina, M.; Clowney, E.J.; Yadlapalli, S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. PLoS Genet. 2024, 20, e1011278. [Google Scholar] [CrossRef]
- Badura, L.; Swanson, T.; Adamowicz, W.; Adams, J.; Cianfrogna, J.; Fisher, K.; Holland, J.; Kleiman, R.; Nelson, F.; Reynolds, L.; et al. An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. J. Pharmacol. Exp. Ther. 2007, 322, 730–738. [Google Scholar] [CrossRef]
- Solocinski, K.; Gumz, M.L. The circadian clock in the regulation of renal rhythms. J. Biol. Rhythms 2015, 30, 470–486. [Google Scholar] [CrossRef] [PubMed]
- González-Suárez, M.; Aguilar-Arnal, L. Histone methylation: At the crossroad between circadian rhythms in transcription and metabolism. Front. Genet. 2024, 15, 1343030. [Google Scholar] [CrossRef] [PubMed]
- Doi, M.; Hirayama, J.; Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125, 497–508. [Google Scholar] [CrossRef]
- Spiga, F.; Walker, J.J.; Terry, J.R.; Lightman, S.L. HPA axis-rhythms. Compr. Physiol. 2014, 4, 1273–1298. [Google Scholar] [CrossRef] [PubMed]
- Czeisler, C.A.; Klerman, E.B. Circadian and sleep-dependent regulation of hormone release in humans. Recent. Prog. Horm. Res. 1999, 54, 97–130; discussion 130–132. [Google Scholar]
- Charloux, A.; Gronfier, C.; Lonsdorfer-Wolf, E.; Piquard, F.; Brandenberger, G. Aldosterone release during the sleep-wake cycle in humans. Am. J. Physiol. 1999, 276, E43–E49. [Google Scholar] [CrossRef]
- Scheuermaier, K.; Chang, A.-M.; Duffy, J.F. Sleep-independent circadian rhythm of aldosterone secretion in healthy young adults. Sleep Health 2024, 10, S103–S107. [Google Scholar] [CrossRef] [PubMed]
- Lack, L.C.; Micic, G.; Lovato, N. Circadian aspects in the aetiology and pathophysiology of insomnia. J. Sleep Res. 2023, 32, e13976. [Google Scholar] [CrossRef] [PubMed]
- Groch, S.; Wilhelm, I.; Lange, T.; Born, J. Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep. Psychoneuroendocrinology 2013, 38, 2962–2972. [Google Scholar] [CrossRef] [PubMed]
- Rimmele, U.; Besedovsky, L.; Lange, T.; Born, J. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans. Neuropsychopharmacology 2013, 38, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, L.; Born, J.; Lange, T. Blockade of mineralocorticoid receptors enhances naïve T-helper cell counts during early sleep in humans. Brain Behav. Immun. 2012, 26, 1116–1121. [Google Scholar] [CrossRef]
- Born, J.; Steinbach, D.; Dodt, C.; Fehm, H.L. Blocking of central nervous mineralocorticoid receptors counteracts inhibition of pituitary-adrenal activity in human sleep. J. Clin. Endocrinol. Metab. 1997, 82, 1106–1110. [Google Scholar] [CrossRef]
- Warris, L.T.; van den Heuvel-Eibrink, M.M.; Aarsen, F.K.; Pluijm, S.M.F.; Bierings, M.B.; van den Bos, C.; Zwaan, C.M.; Thygesen, H.H.; Tissing, W.J.; Veening, M.A.; et al. Hydrocortisone as an intervention for dexamethasone-induced adverse effects in pediatric patients with acute lymphoblastic leukemia: Results of a double-blind, randomized controlled trial. J. Clin. Oncol. 2016, 34, 2287–2293. [Google Scholar] [CrossRef]
- Morgan, B.; Nageye, F.; Masi, G.; Cortese, S. Sleep in adults with Autism Spectrum Disorder: A systematic review and meta-analysis of subjective and objective studies. Sleep Med. 2020, 65, 113–120. [Google Scholar] [CrossRef]
- Ruzzo, E.K.; Pérez-Cano, L.; Jung, J.Y.; Wang, L.K.; Kashef-Haghighi, D.; Hartl, C.; Singh, C.; Xu, J.; Hoekstra, J.N.; Leventhal, O.; et al. Inherited and DE Novo genetic risk for autism impacts shared networks. Cell 2019, 178, 850–866.e26. [Google Scholar] [CrossRef] [PubMed]
- Hlavacova, N.; Jezova, D. Chronic treatment with the mineralocorticoid hormone aldosterone results in increased anxiety-like behavior. Horm. Behav. 2008, 54, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Murck, H.; Adolf, C.; Schneider, A.; Schlageter, L.; Heinrich, D.; Ritzel, K.; Sturm, L.; Quinkler, M.; Beuschlein, F.; Reincke, M.; et al. Differential effects of reduced mineralocorticoid receptor activation by unilateral adrenalectomy vs mineralocorticoid antagonist treatment in patients with primary aldosteronism—Implications for depression and anxiety. J. Psychiatr. Res. 2021, 137, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Murck, H.; Lehr, L.; Hahn, J.; Braunisch, M.C.; Jezova, D.; Zavorotnyy, M. Adjunct therapy with Glycyrrhiza glabra rapidly improves outcome in depression-A pilot study to support 11-beta-hydroxysteroid dehydrogenase type 2 inhibition as a new target. Front. Psychiatry 2020, 11, 605949. [Google Scholar] [CrossRef]
- Adolf, C.; Murck, H.; Sarkis, A.-L.; Schneider, H.; Heinrich, D.A.; Williams, T.A.; Reincke, M.; Künzel, H. Differential central regulatory mineralocorticoidreceptor systems for anxiety and depression—Could KCNJ5 be an interesting target for further investigations in major depression? J Psychiatr Res 2022, 156, 69–77. [Google Scholar] [CrossRef]
- Murck, H.; Schüssler, P.; Steiger, A. Renin-angiotensin-aldosterone system: The forgotten stress hormone system: Relationship to depression and sleep. Pharmacopsychiatry 2012, 45, 83–95. [Google Scholar] [CrossRef]
- Morin, C.M.; Jarrin, D.C. Epidemiology of insomnia: Prevalence, course, risk factors, and public health burden. Sleep Med. Clin. 2022, 17, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Benz, F.; Meneo, D.; Baglioni, C.; Hertenstein, E. Insomnia symptoms as risk factor for somatic disorders: An umbrella review of systematic reviews and meta-analyses. J. Sleep Res. 2023, 32, e13984. [Google Scholar] [CrossRef]
- Uehli, K.; Mehta, A.J.; Miedinger, D.; Hug, K.; Schindler, C.; Holsboer-Trachsler, E.; Leuppi, J.D.; Künzli, N. Sleep problems and work injuries: A systematic review and meta-analysis. Sleep Med. Rev. 2014, 18, 61–73. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, F.; Wei, L.; Li, X.; Lyu, Z.; Feng, X.; Wen, Y.; Guo, L.; He, J.; Dai, M.; et al. Sleep duration and the risk of cancer: A systematic review and meta-analysis including dose-response relationship. BMC Cancer 2018, 18, 1149. [Google Scholar] [CrossRef]
- Yin, J.; Jin, X.; Shan, Z.; Shuzhen, H.L.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: A systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef]
- Chen, Y.; Kartsonaki, C.; Clarke, R.; Guo, Y.; Du, H.; Yu, C.; Yang, L.; Pei, P.; Stevens, R.; Burgess, S.; et al. Sleep duration and risk of stroke and coronary heart disease: A 9-year community-based prospective study of 0.5 million Chinese adults. BMC Neurol. 2023, 23, 327. [Google Scholar] [CrossRef]
- He, Q.; Sun, H.; Wu, X.; Zhang, P.; Dai, H.; Ai, C.; Shi, J. Sleep duration and risk of stroke: A dose-response meta-analysis of prospective cohort studies. Sleep Med. 2017, 32, 66–74. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Casini, A.; Macchi, C.; Abbate, R.; Gensini, G.F. Insomnia and risk of cardiovascular disease: A meta-analysis. Eur J Prev Cardiol 2014, 21, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, C.; Gan, Y.; Qu, X.; Lu, Z. Insomnia and the risk of depression: A meta-analysis of prospective cohort studies. BMC Psychiatry 2016, 16, 375. [Google Scholar] [CrossRef] [PubMed]
- Bubu, O.M.; Brannick, M.; Mortimer, J.; Umasabor-Bubu, O.; Sebastião, Y.V.; Wen, Y.; Schwartz, S.; Borenstein, A.R.; Wu, Y.; Morgan, D.; et al. Sleep, Cognitive impairment, and Alzheimer’s disease: A Systematic Review and Meta-Analysis. Sleep 2017, 40, zsw032. [Google Scholar] [CrossRef] [PubMed]
- Luyster, F.S.; Boudreaux-Kelly, M.Y.; Bon, J.M. Insomnia in chronic obstructive pulmonary disease and associations with healthcare utilization and costs. Respir. Res. 2023, 24, 93. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Ray, M.; Ward, K.D.; Dobalian, A.; Ahn, S. Longitudinal associations between insomnia symptoms and all-cause mortality among middle-aged and older adults: A population-based cohort study. Sleep 2022, 45, zsac019. [Google Scholar] [CrossRef]
- Beaudin, A.E.; Raneri, J.K.; Ahmed, S.; Allen, A.J.H.; Nocon, A.; Gomes, T.; Gakwaya, S.; Sériès, F.; Kimoff, J.R.; Skomro, R.; et al. Association of insomnia and short sleep duration, alone or with comorbid obstructive sleep apnea, and the risk of chronic kidney disease. Sleep 2022, 45, zsac088. [Google Scholar] [CrossRef]
- Pizarro, A.; Hayer, K.; Lahens, N.F.; Hogenesch, J.B. CircaDB: A database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013, 41, D1009–D1013. [Google Scholar] [CrossRef]
- Gumz, M.L.; Rabinowitz, L. Role of circadian rhythms in potassium homeostasis. Semin. Nephrol. 2013, 33, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Saifur Rohman, M.; Emoto, N.; Nonaka, H.; Okura, R.; Nishimura, M.; Yagita, K.; van der Horst, G.T.; Matsuo, M.; Okamura, H.; Yokoyama, M. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int. 2005, 67, 1410–1419. [Google Scholar] [CrossRef]
- Solocinski, K.; Richards, J.; All, S.; Cheng, K.-Y.; Khundmiri, S.J.; Gumz, M.L. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am. J. Physiol. Ren. Physiol. 2015, 309, F933–F942. [Google Scholar] [CrossRef]
- Richards, J.; Greenlee, M.M.; Jeffers, L.A.; Cheng, K.-Y.; Guo, L.; Eaton, D.C.; Gumz, M.L. Inhibition of αENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1δ/ε. Am. J. Physiol. Ren. Physiol. 2012, 303, F918–F927. [Google Scholar] [CrossRef]
- Richards, J.; Ko, B.; All, S.; Cheng, K.Y.; Hoover, R.S.; Gumz, M.L. A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J. Biol. Chem. 2014, 289, 11791–11806. [Google Scholar] [CrossRef]
- Doi, M.; Takahashi, Y.; Komatsu, R.; Yamazaki, F.; Yamada, H.; Haraguchi, S.; Emoto, N.; Okuno, Y.; Tsujimoto, G.; Kanematsu, A.; et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat. Med. 2010, 16, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ede, M.C.M.; Brennan, M.F.; Ball, M.R. Circadian variation of intercompartmental potassium fluxes in man. J. Appl. Physiol. 1975, 38, 163–170. [Google Scholar] [CrossRef]
- Salhi, A.; Centeno, G.; Firsov, D.; Crambert, G. Circadian expression of H,K-ATPase type 2 contributes to the stability of plasma K+ levels. FASEB J. 2012, 26, 2859–2867. [Google Scholar] [CrossRef]
- Firsov, D.; Tokonami, N.; Bonny, O. Role of the renal circadian timing system in maintaining water and electrolytes homeostasis. Mol. Cell. Endocrinol. 2012, 349, 51–55. [Google Scholar] [CrossRef]
- Zuber, A.M.; Centeno, G.; Pradervand, S.; Nikolaeva, S.; Maquelin, L.; Cardinaux, L.; Bonny, O.; Firsov, D. Molecular clock is involved in predictive circadian adjustment of renal function. Proc. Natl. Acad. Sci. USA 2009, 106, 16523–16528. [Google Scholar] [CrossRef]
- Büttner-Teleagă, A.; Kim, Y.-T.; Osel, T.; Richter, K. Sleep disorders in cancer-A systematic review. Int. J. Env. Res. Public. Health 2021, 18, 11696. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.; Vecchio, M.; Craig, J.C.; Tonelli, M.; Johnson, D.W.; Nicolucci, A.; Pellegrini, F.; Saglimbene, V.; Logroscino, G.; Fishbane, S.; et al. Prevalence of depression in chronic kidney disease: Systematic review and meta-analysis of observational studies. Kidney Int. 2013, 84, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Wee, P.H.; Low, L.L.; Koong, Y.L.A.; Htay, H.; Fan, Q.; Foo, W.Y.M.; Seng, J.J.B. Prevalence and risk factors for elevated anxiety symptoms and anxiety disorders in chronic kidney disease: A systematic review and meta-analysis. Gen. Hosp. Psychiatry 2021, 69, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Nigam, G.; Camacho, M.; Chang, E.T.; Riaz, M. Exploring sleep disorders in patients with chronic kidney disease. Nat. Sci. Sleep 2018, 10, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Hanly, P.J.; Pierratos, A. Improvement of sleep apnea in patients with chronic renal failure who undergo nocturnal hemodialysis. N. Engl. J. Med. 2001, 344, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.Z.; Novak, M.; Szeifert, L.; Ambrus, C.; Keszei, A.; Koczy, A.; Lindner, A.; Barotfi, S.; Szentkiralyi, A.; Remport, A.; et al. Restless legs syndrome, insomnia, and quality of life after renal transplantation. J. Psychosom. Res. 2007, 63, 591–597. [Google Scholar] [CrossRef]
- Elder, S.J.; Pisoni, R.L.; Akizawa, T.; Fissell, R.; Andreucci, V.E.; Shunichi, K.F.; Fukuhara, S.; Kurokawa, K.; Rayner, H.C.; Furniss, A.L.; et al. Sleep quality predicts quality of life and mortality risk in haemodialysis patients: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transpl. 2008, 23, 998–1004. [Google Scholar] [CrossRef]
- Kim, H.W.; Heo, G.Y.; Kim, H.J.; Kang, S.-W.; Park, J.T.; Lee, E. Insomnia in patients on incident maintenance dialysis and the risk of major acute cardio-cerebrovascular events and all-cause mortality. Nephrol. Dial. Transpl. 2024, 39, 830–837. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lee, C.T.; Lee, Y.J.; Huang, T.L.; Yu, C.Y.; Lee, L.C.; Lam, K.K.; Chien, Y.S.; Chuang, F.R.; Hsu, K.T. Better sleep quality and less daytime symptoms in patients on evening hemodialysis: A questionnaire-based study. Artif. Organs 2008, 32, 711–716. [Google Scholar] [CrossRef]
- Brekke, F.B.; Waldum-Grevbo, B.; von der Lippe, N. Os, I. The effect of renal transplantation on quality of sleep in former dialysis patients. Transpl. Int. Off. J. Eur. Soc. Organ. Transplant. 2017, 30, 49–56. [Google Scholar] [CrossRef]
- Russcher, M.; Nagtegaal, J.E.; Nurmohamed, S.A.; Koch, B.C.P.; van der Westerlaken, M.M.L.; van Someren, E.J.W.; Bakker, S.J.; Ter Wee, P.M.; Gaillard, C.A. The effects of kidney transplantation on sleep, melatonin, circadian rhythm and quality of life in kidney transplant recipients and living donors. Nephron 2015, 129, 6–15. [Google Scholar] [CrossRef]
- Knobbe, T.J.; Kremer, D.; Eisenga, M.F.; Londen, M.V.; Annema, C.; Bültmann, U.; Kema, I.P.; Navis, G.J.; Berger, S.P.; Bakker, S.J.L. Sleep quality, fatigue, societal participation and health-related quality of life in kidney transplant recipients: A cross-sectional and longitudinal cohort study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2023, 39, 74–83. [Google Scholar] [CrossRef]
- Rodrigue, J.R.; Mandelbrot, D.A.; Hanto, D.W.; Johnson, S.R.; Karp, S.J.; Pavlakis, M. A cross-sectional study of fatigue and sleep quality before and after kidney transplantation. Clin. Transplant. 2011, 25, E13–E21. [Google Scholar] [CrossRef]
- Natale, P.; Ruospo, M.; Saglimbene, V.M.; Palmer, S.C.; Strippoli, G.F.M. Interventions for improving sleep quality in people with chronic kidney disease. Cochrane Database Syst. Rev. 2019, 5, CD012625. [Google Scholar] [CrossRef]
- Delyani, J.A. Mineralocorticoid receptor antagonists: The evolution of utility and pharmacology. Kidney Int. 2000, 57, 1408–1411. [Google Scholar] [CrossRef]
- Bianchi, S.; Bigazzi, R.; Campese, V.M. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 2006, 70, 2116–2123. [Google Scholar] [CrossRef] [PubMed]
- Hammer, F.; Buehling, S.S.; Masyout, J.; Malzahn, U.; Hauser, T.; Auer, T.; Grebe, S.; Feger, M.; Tuffaha, R.; Degenhart, G.; et al. Protective effects of spironolactone on vascular calcification in chronic kidney disease. Biochem. Biophys. Res. Commun. 2021, 582, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, K.; Minakuchi, H.; Wakino, S.; Fujimura, K.; Hasegawa, K.; Komatsu, M.; Yoshifuji, A.; Futatsugi, K.; Shinozuka, K.; Washida, N.; et al. Insulin resistance in chronic kidney disease is ameliorated by spironolactone in rats and humans. Kidney Int. 2015, 87, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Edwards, N.C.; Ferro, C.J.; Kirkwood, H.; Chue, C.D.; Young, A.A.; Stewart, P.M.; Steeds, R.P.; Townend, J.N. Effect of spironolactone on left ventricular systolic and diastolic function in patients with early stage chronic kidney disease. Am. J. Cardiol. 2010, 106, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, P.; Williams, B.; Mayo, M.R.; Warren, S.; Arthur, S.; Ackourey, G.; White, W.B.; Agarwal, R. Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): Results in the pre-specified subgroup with heart failure. Eur. J. Heart Fail. 2020, 22, 1462–1471. [Google Scholar] [CrossRef]
- Palacios-Ramirez, R.; Lima-Posada, I.; Bonnard, B.; Genty, M.; Fernandez-Celis, A.; Hartleib-Geschwindner, J.; Foufelle, F.; Lopez-Andres, N.; Bamberg, K.; Jaisser, F. Mineralocorticoid Receptor Antagonism Prevents the Synergistic Effect of Metabolic Challenge and Chronic Kidney Disease on Renal Fibrosis and Inflammation in Mice. Front. Physiol. 2022, 13, 859812. [Google Scholar] [CrossRef] [PubMed]
- Lima Posada, I.; Soulié, M.; Stephan, Y.; Palacios Ramirez, R.; Bonnard, B.; Nicol, L.; Pitt, B.; Kolkhof, P.; Mulder, P.; Jaisser, F. Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Improves Diastolic Dysfunction in Preclinical Nondiabetic Chronic Kidney Disease. J. Am. Heart Assoc. 2024, 13, e032971. [Google Scholar] [CrossRef]
- Palacios-Ramirez, R.; Soulié, M.; Fernandez-Celis, A.; Nakamura, T.; Boujardine, N.; Bonnard, B.; Bamberg, K.; Lopez-Andres, N.; Jaisser, F. Mineralocorticoid receptor (MR) antagonist eplerenone and MR modulator balcinrenone prevent renal extracellular matrix remodeling and inflammation via the MR/proteoglycan/TLR4 pathway. Clin. Sci. 2024, 138, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Oike, H.; Nagai, K.; Fukushima, T.; Ishida, N.; Kobori, M. High-salt diet advances molecular circadian rhythms in mouse peripheral tissues. Biochem. Biophys. Res. Commun. 2010, 402, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Speed, J.S.; Hyndman, K.A.; Roth, K.; Heimlich, J.B.; Kasztan, M.; Fox, B.M.; Fox, B.M.; Johnston, J.G.; Becker, B.K.; Jin, C.; et al. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am. J. Physiol. Renal Physiol. 2018, 314, F89–F98. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lin, L.; Ke, J.; Chen, B.; Xia, Y.; Wang, C. Higher Nocturnal Blood Pressure and Blunted Nocturnal Dipping Are Associated With Decreased Daytime Urinary Sodium and Potassium Excretion in Patients With CKD. Kidney Int. Rep. 2023, 9, 73–86. [Google Scholar] [CrossRef]
- Lu, Y.; Ku, E.; Campese, V.M. Aldosterone in the pathogenesis of chronic kidney disease and proteinuria. Curr. Hypertens. Rep. 2010, 12, 303–306. [Google Scholar] [CrossRef]
- Sagmeister, M.S.; Harper, L.; Hardy, R.S. Cortisol excess in chronic kidney disease—A review of changes and impact on mortality. Front. Endocrinol. 2023, 13, 1075809. [Google Scholar] [CrossRef]
- Uslar, T.; Newman, A.J.; Tapia-Castillo, A.; Carvajal, C.A.; Fardella, C.E.; Allende, F.; Solari, S.; Tsai, L.C.; Milks, J.; Cherney, M.; et al. Progressive 11β-Hydroxysteroid Dehydrogenase Type 2 Insufficiency as Kidney Function Declines. J. Clin. Endocrinol. Metab. 2024, dgae663. [Google Scholar] [CrossRef]
- Hostetter, T.H.; Ibrahim, H.N. Aldosterone in chronic kidney and cardiac disease. J. Am. Soc. Nephrol. JASN 2003, 14, 2395–2401. [Google Scholar] [CrossRef]
- Arendt, J.; Aulinas, A.; Feingold, K.R.; Anawalt, B.; Blackman, M.R.; Boyce, A.; Chrousos, G.; Corpas, E.; de Herder, W.W.; Dhatariya, K.; et al. Physiology of the Pineal Gland and Melatonin. Eds.; Endotext: Dartmouth, MA, USA, 2000. [Google Scholar]
- Cao, X.L.; Peng, X.M.; Li, G.B.; Ding, W.S.; Wang, K.Z.; Wang, X.L.; Xiong, Y.Y.; Xiong, W.J.; Li, F.; Song, M. Chaihu-Longgu-Muli decoction improves sleep disorders by restoring orexin-A function in CKD mice. Front. Endocrinol. 2023, 14, 1206353. [Google Scholar] [CrossRef] [PubMed]
- Pizza, F.; Barateau, L.; Dauvilliers, Y.; Plazzi, G. The orexin story, sleep and sleep disturbances. J. Sleep Res. 2022, 31, e13665. [Google Scholar] [CrossRef] [PubMed]
- Ventzke, K.; Oster, H.; Jöhren, O. Diurnal Regulation of the Orexin/Hypocretin System in Mice. Neuroscience 2019, 421, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.J.; Schmidt, M.A.; Hemmer, K.; Krömmelbein, N.; Seilheimer, B. Multicomponent drug Neurexan mitigates acute stress-induced insomnia in rats. J. Sleep Res. 2022, 31, e13550. [Google Scholar] [CrossRef]
- Ota, M.; Maki, Y.; Xu, L.-Y.; Makino, T. Prolonging effects of Valeriana fauriei root extract on pentobarbital-induced sleep in caffeine-induced insomnia model mice and the pharmacokinetics of its active ingredients under conditions of glycerol fatty acid ester as emulsifiers. J. Ethnopharmacol. 2022, 298, 115625. [Google Scholar] [CrossRef]
- Revel, F.G.; Gottowik, J.; Gatti, S.; Wettstein, J.G.; Moreau, J.L. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci. Biobehav. Rev. 2009, 33, 874–899. [Google Scholar] [CrossRef]
- Geuther, B.; Chen, M.; Galante, R.J.; Han, O.; Lian, J.; George, J.; Pack, A.I.; Kumar, V. High-throughput visual assessment of sleep stages in mice using machine learning. Sleep 2022, 45, zsab260. [Google Scholar] [CrossRef]
- Fisher, S.P.; Godinho, S.I.H.; Pothecary, C.A.; Hankins, M.W.; Foster, R.G.; Peirson, S.N. Rapid assessment of sleep-wake behavior in mice. J. Biol. Rhythms 2012, 27, 48–58. [Google Scholar] [CrossRef]
Compound Name | Binding Receptor | Origin | References |
---|---|---|---|
11-Deoxycorticosterone | MR | Natural | [26] |
Aldosterone | MR | Natural | [27] |
Corticosterone | MR/GR | Natural | [28] |
Cortisol | MR/GR | Natural | [29] |
Cortisone | MR/GR | Natural | [30] |
Progesterone | MR | Natural | [31] |
11-oxa-Cortisol | GR | Synthetic | [32] |
11-oxa-Prednisolone | GR | Synthetic | [32] |
19-Noraldosterone | MR | Synthetic | [33] |
19-Nor-Desoxycorticosterone | MR | Synthetic | [34] |
19-Nor-progesterone | MR | Synthetic | [35] |
Beclomethasone | GR | Synthetic | [36] |
Betamethasone | GR | Synthetic | [37] |
Budesonide | GR | Synthetic | [38] |
Deoxycorticosterone acetate | MR | Synthetic | [39] |
Dexamethasone | GR | Synthetic | [40] |
Dexamethasone oxetanone | GR | Synthetic | [32] |
Eplerenone | MR | Synthetic | [41] |
Finerenone | MR | Synthetic | [42] |
Fludrocortisone | MR | Synthetic | [43] |
Hydrocortisone | MR/GR | Synthetic | [44] |
Prednisolone | MR | Synthetic | [45] |
Prednisone | GR | Synthetic | [46] |
Spironolactone | MR | Synthetic | [41] |
Triamcinolone | GR | Synthetic | [47] |
Vamorolone | GR | Synthetic | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Puente-Aldea, J.; Lopez-Llanos, O.; Horrillo, D.; Marcos-Sanchez, H.; Sanz-Ballesteros, S.; Franco, R.; Jaisser, F.; Senovilla, L.; Palacios-Ramirez, R. Mineralocorticoid Receptor and Sleep Quality in Chronic Kidney Disease. Int. J. Mol. Sci. 2024, 25, 12320. https://doi.org/10.3390/ijms252212320
de la Puente-Aldea J, Lopez-Llanos O, Horrillo D, Marcos-Sanchez H, Sanz-Ballesteros S, Franco R, Jaisser F, Senovilla L, Palacios-Ramirez R. Mineralocorticoid Receptor and Sleep Quality in Chronic Kidney Disease. International Journal of Molecular Sciences. 2024; 25(22):12320. https://doi.org/10.3390/ijms252212320
Chicago/Turabian Stylede la Puente-Aldea, Juan, Oscar Lopez-Llanos, Daniel Horrillo, Hortensia Marcos-Sanchez, Sandra Sanz-Ballesteros, Raquel Franco, Frederic Jaisser, Laura Senovilla, and Roberto Palacios-Ramirez. 2024. "Mineralocorticoid Receptor and Sleep Quality in Chronic Kidney Disease" International Journal of Molecular Sciences 25, no. 22: 12320. https://doi.org/10.3390/ijms252212320
APA Stylede la Puente-Aldea, J., Lopez-Llanos, O., Horrillo, D., Marcos-Sanchez, H., Sanz-Ballesteros, S., Franco, R., Jaisser, F., Senovilla, L., & Palacios-Ramirez, R. (2024). Mineralocorticoid Receptor and Sleep Quality in Chronic Kidney Disease. International Journal of Molecular Sciences, 25(22), 12320. https://doi.org/10.3390/ijms252212320