Anticholinesterase and Anti-Inflammatory Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae): In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Composition
2.2. Anticholinesterase Activity
2.3. Anti-Inflammatory Activity
2.4. Brine Shrimp Lethality Activity (BSLA)
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Essential Oil Extraction
3.4. Essential Oil Composition Analysis
3.5. In Vitro Anticholinesterase Assays
3.6. Molecular Docking
3.7. Anti-Inflammatory Activity
3.8. Brine Shrimp Lethality Activity (BSLA) Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- McDade, E.; Bateman, R.J. Stop Alzheimer’s before it starts. Nature 2017, 547, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.N.; Chin, K.W.; Tang, K.S.; Agatonovic-Kustrin, S.; Yeong, K.Y. Neuroprotective, neurite enhancing, and cholinesterase inhibitory effects of Lamiaceae family essential oils in Alzheimer’s disease model. J. Herb. Med. 2023, 41, 100696. [Google Scholar] [CrossRef]
- Wang, T.; Liu, X.H.; Guan, J.; Ge, S.; Wu, M.B.; Lin, J.P. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer’s disease. Eur. J. Med. Chem. 2019, 169, 200–223. [Google Scholar] [CrossRef]
- Lima, E.; Medeiros, J. Terpenes as potential Anti-Alzheimer’s disease agents. Appl. Sci. 2024, 14, 3898. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.Q.; Tang, X.C.; Zhang, H.Y. Retrospect and prospect of active principles from Chinese herbs in the treatment of dementia. Acta Pharmacol. Sin. 2010, 31, 649–664. [Google Scholar] [CrossRef]
- Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective natural products for Alzheimer’s Disease. Cells 2021, 10, 1309. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Yin, R.; Guo, P.; Lei, N.; Li, G.; Xiong, L.; Xie, Y. Therapeutic potential of aromatic plant extracts in Alzheimer’s disease: Comprehensive review of their underlying mechanisms. CNS Neurosci. Ther. 2023, 29, 2045–2059. [Google Scholar] [CrossRef]
- Silva, H. A descriptive overview of the medical uses given to Mentha aromatic herbs throughout history. Biology 2020, 9, 484. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Hatvate, N.T.; Naren, P.; Khan, S.; Chavda, V.P.; Balar, P.C.; Gandhi, J.; Khatri, D.K. Essential Oils for clinical aromatherapy: A comprehensive review. J. Ethnopharmacol. 2024, 330, 118180. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Long, Y.; Ma, Y.; Yu, S.; Li, D.; Deng, J.; Wen, J.; Li, X.; Wu, Y.; He, X.; et al. Natural essential oils derived from herbal medicines: A promising therapy strategy for treating cognitive impairment. Front. Aging Neurosci. 2023, 15, 1104269. [Google Scholar] [CrossRef] [PubMed]
- Maggio, A.; Rosselli, S.; Bruno, M. Essential Oils and Pure Volatile Compounds as Potential Drugs in Alzheimer’s Disease Therapy: An Updated Review of the Literature. Curr. Pharm. Des. 2016, 22, 4011–4027. [Google Scholar] [CrossRef]
- Cho, K.S.; Lim, Y.; Lee, K.; Lee, J.; Lee, J.H.; Lee, I.-S. Terpenes from forests and human health. Toxicol. Res. 2017, 33, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Ball, E.L.; Owen-Booth, B.; Gray, A.; Shenkin, S.D.; Hewitt, J.; McCleery, J. Aromatherapy for dementia. Cochrane Database Syst. Rev. 2020, 8, CD003150. [Google Scholar] [CrossRef] [PubMed]
- Abd Rashed, A.; Abd Rahman, A.Z.; Rathi, D.N.G. Essential oils as a potential neuroprotective remedy for age-related neurodegenerative diseases: A Review. Molecules 2021, 26, 1107. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Islam, M.T.; Jayasena, V.; Sharma, B.; Sharma, S.; Sharma, P.; Kuča, K.; Bhardwaj, P. Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas. Phyther. Res. 2020, 34, 2889–2910. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Silva, A.S.; Atanassova, M.; Sharma, R.; Nepovimova, E.; Musilek, K.; Sharma, R.; Alghuthaymi, M.A.; Dhanjal, D.S.; Nicoletti, M.; et al. Conifers phytochemicals: A valuable forest with therapeutic potential. Molecules 2021, 26, 3005. [Google Scholar] [CrossRef]
- Kopaczyk, J.; Wargula, J.; Jelonek, T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020, 180, 104197. [Google Scholar] [CrossRef]
- Mediavilla, I.; Guillamón, E.; Ruiz, A.; Esteban, L.S. Essential oils from residual foliage of forest tree and shrub species: Yield and antioxidant capacity. Molecules 2021, 26, 3257. [Google Scholar] [CrossRef]
- Cioanca, O.; Hancianu, M.; Mihasan, M.; Hritcu, L. Anti-acetylcholinesterase and antioxidant activities of inhaled Juniper oil on amyloid beta (1–42)-induced oxidative stress in the rat hippocampus. Neurochem. Res. 2015, 40, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Janeiro, A.; Lima, A.; Arruda, F.; Wortham, T.; Rodrigues, T.; Baptista, J.; Lima, E. Variations in essential oil biological activities of female cones at different developmental stages from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae). Separations 2024, 11, 102. [Google Scholar] [CrossRef]
- Simas, F.P.C. Assessment of the Potential as Fuel of the Main Forest Species in São Miguel Island, Azores. Master’s Thesis, Instituto Superior Técnico, Lisboa, Portugal, 2016. [Google Scholar]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins: A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Murata, K.; Tanaka, K.; Akiyama, R.; Noro, I.; Nishio, A.; Nakagawa, S.; Matsumura, S.; Matsuda, H. Anti-cholinesterase activity of crude drugs selected from the ingredients of incense sticks and heartwood of Chamaecyparis obtusa. Nat. Prod. Commun. 2018, 13, 803–806. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Lima, E. Chemical compositions and in vitro antioxidant activities of the essential oils of sawdust and resin-rich bark from Azorean Cryptomeria japonica (Cupressaceae). Antioxidants 2024, 13, 728. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Martins, M.; Silva, R.M.M.; Pinto, M.; Sousa, E. Marine natural products, multitarget therapy and repurposed agents in Alzheimer’s disease. Pharmaceuticals 2020, 13, 242. [Google Scholar] [CrossRef]
- Owokotomo, I.A.; Ekundayo, O.; Abayomi, T.G.; Chukwuka, A.V. In-vitro anti-cholinesterase activity of essential oil from four tropical medicinal plants. Toxicol. Rep. 2015, 2, 850–857. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 2011, 16, 7672–7690. [Google Scholar] [CrossRef]
- Chen, S.X.; Xiang, J.Y.; Han, J.X.; Yang-Feng; Li, H.Z.; Chen, H.; Xu, M. Essential oils from spices inhibit cholinesterase activity and improve behavioral disorder in AlCl3 induced dementia. Chem. Biodivers. 2022, 1, e202100443. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother. 2022, 146, 112556. [Google Scholar] [CrossRef] [PubMed]
- Bakir, D.; Akdeniz, M.; Ertas, A.; Yilmaz, M.A.; Yener, I.; Firat, M.; Kolak, U. A GC-MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol. J. Food Biochem. 2020, 44, e13350. [Google Scholar] [CrossRef]
- Matsubara, E.; Tsunetsugu, Y.; Ohira, T.; Sugiyama, M. Essential oil of Japanese cedar (Cryptomeria japonica) wood increases salivary dehydroepiandrosterone sulfate levels after monotonous work. Int. J. Environ. Res. Public Health 2017, 14, 97. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Kan, Y.; Sener, B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z. Naturforsch. C 2008, 63, 547–553. [Google Scholar] [CrossRef]
- Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Shyur, L.F.; Huang, C.C.; Lo, C.P.; Chiu, C.Y.; Chen, Y.P.; Wang, S.Y.; Chang, S.T. Hepatoprotective phytocompounds from Cryptomeria japonica are potent modulators of inflammatory mediators. Phytochemistry 2008, 69, 1348–1358. [Google Scholar] [CrossRef]
- Azra, M.N.; Noor, M.I.M.; Burlakovs, J.; Abdullah, M.F.; Abd Latif, Z.; Yik Sung, Y. Trends and new developments in Artemia research. Animals 2022, 12, 2321. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A conveninent general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Karchesy, Y.M.; Kelsey, R.G.; Constantine, G.; Karchesy, J.J. Biological screening of selected Pacific northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay. Springerplus 2016, 5, 510. [Google Scholar] [CrossRef]
- Parra, A.L.; Yhebra, R.S.; Sardiñas, I.G.; Buela, L.I. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 2001, 8, 395–400. [Google Scholar] [CrossRef]
- Council of Europe. European Directorate for the Quality of Medicines, in European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010; p. 241. [Google Scholar]
- ISO 7609; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. ISO: Geneva, Switzerland, 1985.
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Majid, H.; Silva, F.V.M. Inhibition of enzymes important for Alzheimer’s disease by antioxidant extracts prepared from 15 New Zealand medicinal trees and bushes. J. R. Soc. N. Z. 2020, 50, 538–551. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in casp8. Proteins 2009, 77, 114–122. [Google Scholar] [CrossRef]
- Bajda, M.; Więckowska, A.; Hebda, M.; Guzior, N.; Sotriffer, C.A.; Malawska, B. Structure-Based Search for New Inhibitors of Cholinesterases. Int. J. Mol. Sci. 2013, 14, 5608–5632. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Matotoka, M.M.; Mashabela, G.T.; Masoko, P. Phytochemical content, antibacterial activity, and antioxidant, anti-inflammatory, and cytotoxic effects of traditional medicinal plants against respiratory tract bacterial pathogens. Evid. Based Complement. Altern. Med. 2023, 2023, 1243438. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
Component | Class | RT | RIL | RIC | Relative Content (%) | |
---|---|---|---|---|---|---|
CJS–EO | CJRRB–EO | |||||
α-Pinene | MH | 12.54 | 932 | 927 | 42.74 | |
δ-3-Carene | MH | 16.82 | 1008 | 1003 | 6.02 | |
Limonene | MH | 18.11 | 1024 | 1022 | 8.93 | |
δ-Cadinene | SH | 50.44 | 1522 | 1507 | 6.42 | 7.23 |
epi-Cubebol | OS | 49.06 | 1493 | 1486 | 4.73 | 0.79 |
Cubebol | OS | 50.26 | 1514 | 1504 | 6.76 | 1.28 |
1-Epicubenol | OS | 56.87 | 1627 | 1615 | 10.74 | 1.93 |
τ-Cadinol | OS | 57.71 | 1632 | 5.90 | ||
δ-Cadinol | OS | 57.93 | 1636 | 4.32 | 0.40 | |
β+α-Eudesmol | OS | 58.40 | 1649/1652 | 1643 | 13.54 | 0.54 |
β-Bisabolenal | OS | 62.29 | 1768 | 1714 | 4.03 | |
Sandaracopimarinal | OD | 84.53 | 2184 | 2164 | 3.03 | 0.09 |
Sandaracopimarinol | OD | 88.30 | 2269 | 2253 | 5.48 | |
trans-Ferruginol | OD | 90.37 | 2331 | 2301 | 3.64 | 0.90 |
Identified components (%) | 95.71 | 96.92 | ||||
Grouped components (%) | ||||||
Monoterpene hydrocarbons (MH) | 0.00 | 63.97 | ||||
Oxygenated monoterpenes (OM) | 0.00 | 5.42 | ||||
Sesquiterpene hydrocarbons (SH) | 13.38 | 19.09 | ||||
Oxygenated sesquiterpenes (OS) | 66.64 | 6.39 | ||||
Diterpene hydrocarbons (DH) | 0.86 | 0.16 | ||||
Oxygenated diterpenes (OD) | 14.83 | 1.89 |
Samples | Cholinesterase Inhibitory Activity (IC50, µg/mL) | |
---|---|---|
AChE | BChE | |
Sawdust EO | NA | 159 ± 104 b |
Resin-rich bark EO | 1935 ± 338 c | 600 ± 238 c |
(–)-α-Pinene | 96 ± 4 b | 648 ± 22 c |
Ferruginol | 27.3 * | 6.3 * |
Donepezil | 0.01 ± 0.00 a | 1.85 ± 0.29 a |
Samples | Protection Against Protein Denaturation (%) | |||
---|---|---|---|---|
2.21 µg/mL | 4.43 µg/mL | 8.85 µg/mL | 17.71 µg/mL | |
Sawdust EO | 51 ± 9 bc | 67 ± 15 ab | 75 ± 18 ab | 84 ± 15 ab |
Resin-rich bark EO | 70 ± 3 a | 86 ± 7 a | 89 ± 9 a | 92 ± 3 a |
(–)-α-Pinene | 45 ± 6 c | 62 ± 6 b | 70 ± 8 b | 77 ± 12 b |
DCF | 59 ± 10 ab | 76 ± 11 ab | 84 ± 12 ab | 87 ± 14 ab |
Samples | Concentration (µg/mL) | LC50 | LC90 | Intercept ± SEM | Slope ± SEM | Toxicity Class * |
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | ||||
Sawdust EO | 50, 100, 150, 300 | 73 a (68–79) | 136 a (122–159) | −9 ± 1 a | 4.8 ± 0.5 a (3.8–5.8) | Strongly toxic |
Resin-rich bark EO | 50, 100, 150, 300 | 313 b (268–402) | 882 b (611–1735) | −8 ± 1.9 a | 3.2 ± 0.9 a (1.5–4.9) | Moderately toxic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.; Arruda, F.; Frias, J.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Lima, E. Anticholinesterase and Anti-Inflammatory Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae): In Vitro and In Silico Studies. Int. J. Mol. Sci. 2024, 25, 12328. https://doi.org/10.3390/ijms252212328
Lima A, Arruda F, Frias J, Wortham T, Janeiro A, Rodrigues T, Baptista J, Lima E. Anticholinesterase and Anti-Inflammatory Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae): In Vitro and In Silico Studies. International Journal of Molecular Sciences. 2024; 25(22):12328. https://doi.org/10.3390/ijms252212328
Chicago/Turabian StyleLima, Ana, Filipe Arruda, Jorge Frias, Tanner Wortham, Alexandre Janeiro, Tânia Rodrigues, José Baptista, and Elisabete Lima. 2024. "Anticholinesterase and Anti-Inflammatory Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae): In Vitro and In Silico Studies" International Journal of Molecular Sciences 25, no. 22: 12328. https://doi.org/10.3390/ijms252212328
APA StyleLima, A., Arruda, F., Frias, J., Wortham, T., Janeiro, A., Rodrigues, T., Baptista, J., & Lima, E. (2024). Anticholinesterase and Anti-Inflammatory Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae): In Vitro and In Silico Studies. International Journal of Molecular Sciences, 25(22), 12328. https://doi.org/10.3390/ijms252212328