Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species
Abstract
:1. Introduction
2. Results
2.1. Geographical Distribution of the Studied Hedysarum Species
2.2. Satellite Repeat Identification by RepeatExplorer/TAREAN Pipelines
2.3. Karyotype Structure and Chromosomal Localization of 35S rDNA, 5S rDNA, and Satellite DNAs in the Studied Hedysarum Species
2.3.1. FISH-Based Localization of 35S rDNA and 5S rDNA
2.3.2. FISH-Based Localization of Satellite DNAs
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Sequence Analysis and Identification of DNA Repeats
4.3. Chromosome Spread Preparation
4.4. FISH Procedure
4.5. Chromosome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fedtschenko, B.A. Hedysarum. In Flora URSS; Komarov, V.L., Shishkin, B.K., Bobrov, E.G., Eds.; Academy of Sciences of the USSR: Moscow, USSR; Leningrad, USSR, 1948; Volume 13, pp. 259–379. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea, Leguminosae, Volume 2; Cambridge University Press: Cambridge, UK, 1968; 455p. [Google Scholar]
- Wu, Z.; Raven, P.H.; Hong, D.Y. Flora of China, Volume 10; Science Press (Beijing) & Missouri Botanical Garden Press: St. Louis, MO, USA, 2010; 642p. [Google Scholar]
- Nechepurenko, I.V.; Polovinka, M.P.; Komarova, N.I.; Korchagina, D.V.; Salakhutdinov, N.F.; Nechepurenko, S.B. Low-molecular-weight phenolic compounds from Hedysarum theinum roots. Chem. Nat. Compd. 2008, 44, 31–34. [Google Scholar] [CrossRef]
- Dong, Y.-M.; Tang, D.; Zhang, N.; Li, Y.; Zhang, C.; Li, L.; Li, M.-H. Phytochemicals and biological studies of plants in genus Hedysarum. Chem. Cent. J. 2013, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Imachuyeva, D.R.; Serebryanaya, F.K.; Zilfikarov, I.N. Quantitative determination of xanthone sum in terms of mangiferin in aerian organs of species of genus Hedysarum L. by uv spectro-photometry. Khimiya Rastit. Syr’ya 2020, 3, 179–186. [Google Scholar] [CrossRef]
- Dyshlyuk, L.S.; Fotina, N.V.; Milentyeva, I.S.; Ivanova, S.A.; Izgarysheva, N.V.; Golubtsova, Y.V. Antimicrobial and antioxidant activity of Panax ginseng and Hedysarum neglectum root crop extracts. Braz. J. Biol. Rev. Brasleira Biol. 2022, 84, e256944. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, Y.S.; Yuzhalin, A.E.; Sukhih, A.S.; Kotova, T.V.; Zakharova, Y.V. Extract of the Herb Hedysarum alpinum L. as a component of functional Food Products with Cardioprotective Properties. Food Ind. 2019, 4, 52–57. [Google Scholar] [CrossRef]
- Gao, X.; Ren, C.; Li, L.; Zhao, H.; Liu, K.; Zhuang, M.; Lv, X.; Zhi, X.; Jiang, H.; Chen, Q.; et al. Pharmacological action of Hedysarum polysaccharides: A review. Front. Pharmacol. 2023, 14, 1119224. [Google Scholar] [CrossRef]
- Mo, X.; Guo, D.; Jiang, Y.; Chen, P.; Huang, L. Isolation, structures and bioactivities of the polysaccharides from Radix Hedysari: A review. Int. J. Biol. Macromol. 2022, 199, 212–222. [Google Scholar] [CrossRef]
- Choi, B.H.; Ohashi, H. Generic criteria and an infrageneric system for Hedysarum and related genera (Papilionoideae-Leguminosae). Taxon 2003, 52, 567–576. [Google Scholar] [CrossRef]
- Duan, L.; Wen, J.; Yang, X.; Liu, P.L.; Arslan, E.; Ertuğrul, K.; Chang, Z.Y. Phylogeny of Hedysarum and tribe Hedysareae (Leguminosae: Papilionoideae) inferred from sequence data of ITS, matK, trnL-F and psbA-trnH. Taxon 2015, 64, 49–64. [Google Scholar] [CrossRef]
- Liu, P.L.; Wen, J.; Duan, L.; Arslan, E.; Ertuğrul, K.; Chang, Z.Y. Hedysarum L. (Fabaceae: Hedysareae) is not monophyletic—Evidence from phylogenetic analyses based on five nuclear and five plastid sequences. PLoS ONE 2017, 12, e0170596. [Google Scholar] [CrossRef]
- Nafisi, H.; Kazempour-Osaloo, S.; Mozaffarian, V.; Schneeweiss, G.M. Molecular phylogeny and divergence times of the genus Hedysarum (Fabaceae) with special reference to section Multicaulia in Southwest Asia. Plant. Syst. Evol. 2019, 305, 1001–1017. [Google Scholar] [CrossRef]
- Arslan, E.; Ertugrul, K.; Tugay, O.; Dural, H. Karyological studies of the genus Onobrychis Mill. and the related genera Hedysarum L. and Sartoria Boiss. and Heldr. (Fabaceae, Hedysareae) from Turkey. Caryologia 2012, 65, 11–17. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar Rana, P.; Singhal, V.K.; Singh, H.; Singh Kholia, B. Chromosome count, meiotic abnormalities and pollen sterility in Lahaul sweetvetch (Hedysarum astragaloides Benth. ex Baker, Fabaceae), an endemic and threatened species from India. Acta Bot. Croat. 2018, 77, 203–208. [Google Scholar] [CrossRef]
- Benhizia, H.; Benhizia, Y.; Djeghar, R.; Siljak-Yakovlev, S.; Pustahija, F.; Khalfallah, N. Cytogenetic characterization, nuclear genome size, and pollen morphology of some Hedysarum L. taxa (Fabaceae) from Algeria, with emphasis on the origin of H. perrauderianum Coss. & Durieu. Genet. Resour. Crop. Evol. 2021, 68, 679–691. [Google Scholar] [CrossRef]
- Yurkevich, O.Y.; Samatadze, T.E.; Selyutina, I.Y.; Suprun, N.A.; Suslina, S.N.; Zoshchuk, S.A.; Amosova, A.V.; Muravenko, O.V. Integration of Genomic and Cytogenetic Data on Tandem DNAs for Analyzing the Genome Diversity Within the Genus Hedysarum L. (Fabaceae). Front. Plant Sci. 2022, 13, 865958. [Google Scholar] [CrossRef]
- Polozhii, A.V.; Vydrina, S.N.; Kurbatsky, V.I. Genus Hedysarum L. In Flora Sibiri (Flora of Siberia), Fabaceae (Leguminosae); Krasnoborov, I.M., Malyshev, L.I., Eds.; Nauka: Novosibirsk, Russia, 1994; Volume 9, pp. 153–166. [Google Scholar]
- Yurtsev, B.A. Arctic Flora of the USSR; Nauka: Leningrad, USSR, 1986; Volume 9, Part 2; 188p. [Google Scholar]
- Selyutina, I.Y.; Konichenko, E.S.; Zibzeev, E.G.; Kuban, I.N. Genetic diversity of the endangered endemic species Hedysarum sangilense Krasnoborov et Timokhina (Fabaceae). Bot. Pacifica A J. Plant Sci. Conserv. 2021, 10, 29–35. [Google Scholar] [CrossRef]
- Schanzer, I.A.; Suprun, N.A. Genetic variability of species, allied to Hedysarum grandiflorum PaIl. (Fabaceae), accordiпg to ISSR marking. Bull. Main. Bot. Gard. 2012, 4, 41–48. [Google Scholar]
- Kobrlová, L.; Čížková, J.; Zoulová, V.; Vejvodová, K.; Hřibová, E. First insight into the genomes of the Pulmonaria officinalis group (Boraginaceae) provided by repeatome analysis and comparative karyotyping. BMC Plant Biol. 2024, 24, 859. [Google Scholar] [CrossRef]
- Silva, G.S.; Souza, M.M.; Pamponét, V.C.C.; Micheli, F.; Melo, C.A.F.; Oliveira, S.G.; Costa, E.A. Cytogenomic Characterization of Transposable Elements and Satellite DNA in Passiflora L. Species. Genes 2024, 15, 418. [Google Scholar] [CrossRef]
- He, Y.; He, J.; Zhao, Y.; Zhang, S.; Rao, X.; Wang, H.; Wang, Z.; Song, A.; Jiang, J.; Chen, S.; et al. Divergence of 10 satellite repeats in Artemisia (Asteraceae: Anthemideae) based on sequential fluorescence in situ hybridization analysis: Evidence for species identification and evolution. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2024, 32, 5. [Google Scholar] [CrossRef]
- Louzada, S.; Lopes, M.; Ferreira, D.; Adega, F.; Escudeiro, A.; Gama-Carvalho, M.; Chaves, R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes 2020, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Belyayev, A.; Josefiová, J.; Jandová, M.; Kalendar, R.; Krak, K.; Mandák, B. Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution. Int. J. Mol. Sci. 2019, 20, 1201. [Google Scholar] [CrossRef] [PubMed]
- Šatović-Vukšić, E.; Plohl, M. Satellite DNAs-From Localized to Highly Dispersed Genome Components. Genes 2023, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Amosova, A.V.; Yurkevich, O.Y.; Rodionov, A.V.; Bolsheva, N.L.; Samatadze, T.E.; Zoshchuk, S.A.; Muravenko, O.V. Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae). Genes 2022, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Krasnoborov, I.M.; Azovtsev, G.R.; Orlov, V.P. A new species of the genus Hedysarum L. (Fabaceae L.) from southern Siberia. Bot. Zh. 1985, 70, 968–973. [Google Scholar]
- Bajtenov, M.S. Flora of Kazahstan. Generic Complex of Flora; Almaty: Gylym, Kazakhstan, 2001; Volume 2, 280p. [Google Scholar]
- Kharkevich, S.S. Vascular Plants of the Soviet Far East; Nauka: Leningrad, USSR, 1989; Volume 4, 379p. [Google Scholar]
- Chang, C.-S.; Kim, H.; Chang, K.S. Checklist of Far East Asian Vascular Flora 2; EABCN: Seoul, Republic of Korea, 2021; pp. 627–1887. [Google Scholar]
- Novak, P.; Robledillo, L.A.; Koblizkova, A.; Vrbova, I.; Neumann, P.; Macas, J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017, 45, e111. [Google Scholar] [CrossRef]
- Probatova, N.S.; Barkalov, V.Y.; Rudyka, E.G.; Pavlova, N.S. Further chromosome studies on vascular plant species from Sakhalin, Moneron and Kurile Islands. Biodivers. Biogeogr. Kuril. Isl. Sakhalin 2006, 2, 93–110. [Google Scholar]
- Gurzenkov, N.N. Studies of chromosome numbers of plants from the south of the Soviet Far East. Komar. Lect. 1973, 20, 47–61. [Google Scholar]
- Bennetzen, J.L.; Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant. Biol. 2014, 65, 505–530. [Google Scholar] [CrossRef]
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef]
- Macas, J.; Novák, P.; Pellicer, J.; Čížková, J.; Koblížková, A.; Neumann, P.; Fuková, I.; Doležel, J.; Kelly, L.J.; Leitch, I.J. In Depth characterization of repetitive DNA in 23 Plant genomes reveals sources of genome size variation in the Legume Tribe Fabeae. PLoS ONE 2015, 10, e0143424. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. Satellite DNA in plants: More than just rubbish. Cytogenet. Genome Res. 2015, 146, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Ávila Robledillo, L.; Neumann, P.; Koblížková, A.; Novák, P.; Vrbová, I.; Macas, J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the Legume tribe Fabeae. Mol. Biol. Evol. 2020, 1, 2341–2356. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Vasconcelos, E.; Dos Santos, K.G.B.; Vaio, M.; Brasileiro-Vidal, A.C.; Pedrosa-Harand, A. Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2020, 28, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.E.; Ribeiro, T.; Sader, M.; Nascimento, T.; Pedrosa-Harand, A. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2023, 31, 30. [Google Scholar] [CrossRef]
- Belyayev, A.; Jandová, M.; Josefiová, J.; Kalendar, R.; Mahelka, V.; Mandák, B.; Krak, K. The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis”. PLoS ONE 2020, 15, e0241206. [Google Scholar] [CrossRef]
- Yurkevich, O.Y.; Samatadze, T.E.; Selyutina, I.Y.; Romashkina, S.I.; Semenov, A.R.; Zoshchuk, S.A.; Amosova, A.V.; Muravenko, O.V. Comparative analysis of genomes of six species of Hedysarum L. (Fabaceae) by the rapidGISH technique. Probl. Bot. South Sib. Mong. 2023, 22, 436–440. [Google Scholar] [CrossRef]
- Mironov, Y.M. Pericarp anatomy of East European species of the genus Hedysarum L. (Papilionaceae): Sections Gamotion and Multicaulia. Bull. Mosc. Soc. Nat. Ser. Biol. 2000, 105, 50–53. [Google Scholar]
- Kobayashi, T. A new role of the rDNA and nucleolus in the nucleus—rDNA instability maintains genome integrity. BioEssays 2008, 30, 267–272. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ganley, A.R. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 2005, 309, 1581–1584. [Google Scholar] [CrossRef]
- Tsang, E.; Carr, A.M. Replication fork arrest, recombination and the maintenance of ribosomal DNA stability. DNA Repair. 2008, 7, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Hasterok, R.; Wolny, E.; Hosiawa, M.; Kowalczyk, M.; Kulak-Ksiazczyk, S.; Ksiazczyk, T.; Heneen, W.K.; Maluszynska, J. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 2006, 97, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.T.; Yang, S.Q.; Li, Z.A.; Zhang, Y.X.; Wang, Y.Z.; Cheng, C.Y.; Li, J.; Chen, J.F.; Lou, Q.F. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome 2016, 59, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Tomlekova, N.; Idziak-Helmcke, D.; Franke, P.; Rojek-Jelonek, M.; Kwasniewska, J. Phaseolus vulgaris mutants reveal variation in the nuclear genome. Front. Plant Sci. 2024, 14, 1308830. [Google Scholar] [CrossRef]
- Raskina, O.; Belyayev, A.; Nevo, E. Quantum speciation in Aegilops: Molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc. Natl. Acad. Sci. USA 2004, 101, 14818–14823. [Google Scholar] [CrossRef]
- Rosselló, J.A.; Maravilla, A.J.; Rosato, M. The Nuclear 35S rDNA World in Plant Systematics and Evolution: A Primer of Cautions and Common Misconceptions in Cytogenetic Studies. Front. Plant Sci. 2022, 13, 788911. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Garcia, S.; Leitch, A.R.; Kovařík, A. Intragenomic rDNA variation—The product of concerted evolution, mutation, or something in between? Heredity 2023, 131, 179–188. [Google Scholar] [CrossRef]
- Garcia, S.; Kovarik, A.; Maiwald, S.; Mann, L.; Schmidt, N.; Pascual-Díaz, J.P.; Vitales, D.; Weber, B.; Heitkam, T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol. Biol. Evol. 2024, 41, msae025. [Google Scholar] [CrossRef]
- Kurylo, C.M.; Parks, M.M.; Juette, M.F.; Zinshteyn, B.; Altman, R.B.; Thibado, J.K.; Vincent, C.T.; Blanchard, S.C. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Cell Rep. 2018, 25, 236–248.e6. [Google Scholar] [CrossRef]
- Pedrosa-Harand, A.; de Almeida, C.C.; Mosiolek, M.; Blair, M.W.; Schweizer, D.; Guerra, M. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor. Appl. Genet. 2006, 112, 924–933. [Google Scholar] [CrossRef]
- Bogunić, F.; Siljak-Yakovlev, S.; Muratović, E.; Ballian, D. Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. Plant Biol. 2011, 13, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Scaldaferro, M.A.; da Cruz, M.V.; Cecchini, N.M.; Moscone, E.A. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae). Genome 2016, 59, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Karnaukhova, N.; Dorogina, O.; Selyutina, I. The anatomical structure of leaf in species of Hedysarum L. SECT. Gamotion Basin. In South Siberia. Turczaninowia 2018, 21, 150–160. [Google Scholar] [CrossRef]
- Lee, Y.I.; Yap, J.W.; Izan, S.; Leitch, I.J.; Fay, M.F.; Lee, Y.C.; Hidalgo, O.; Dodsworth, S.; Smulders, M.J.M.; Gravendeel, B.; et al. Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genom. 2018, 19, 578. [Google Scholar] [CrossRef] [PubMed]
- Tek, A.L.; Kara Öztürk, S.D.; Yıldız, H.; Karalar, D. Novel Centromeric and Subtelomeric Repetitive DNA Sequences for Karyotyping the Bambara Groundnut (Vigna subterranea L. Verdc.). Cytogenet. Genome Res. 2021, 161, 585–594. [Google Scholar] [CrossRef]
- Ávila Robledillo, L.; Koblížková, A.; Novák, P.; Böttinger, K.; Vrbová, I.; Neumann, P.; Schubert, I.; Macas, J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci. Rep. 2018, 8, 5838. [Google Scholar] [CrossRef]
- Amosova, A.V.; Ghukasyan, L.; Yurkevich, O.Y.; Bolsheva, N.L.; Samatadze, T.E.; Zoshchuk, S.A.; Muravenko, O.V. Cytogenomics of Deschampsia P. Beauv. (Poaceae) Species Based on Sequence Analyses and FISH Mapping of CON/COM Satellite DNA Families. Plants 2021, 10, 1105. [Google Scholar] [CrossRef]
- Muravenko, O.V.; Yurkevich, O.Y.; Kalnyuk, J.V.; Samatadze, T.E.; Zoshchuk, S.A.; Amosova, A.V. Integration of Repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus Salvia (Lamiaceae). Plants 2022, 11, 2244. [Google Scholar] [CrossRef]
- Gálvez-Galván, A.; Barea, L.; Garrido-Ramos, M.A.; Prieto, P. Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare. Plant Mol. Biol. 2024, 114, 108. [Google Scholar] [CrossRef]
- Wei, L.; Liu, B.; Zhang, C.; Yu, Y.; Yang, X.; Dou, Q.; Dong, Q. Identification and characterization of satellite DNAs in Poa L. Mol. Cytogenet. 2020, 13, 47. [Google Scholar] [CrossRef]
- Plohl, M.; Meštrovic, N.; Mravinac, B. Satellite DNA evolution. In Repetitive DNA; Garrido-Ramos, M.A., Ed.; Karger: Granada, Spain, 2012; pp. 126–152. [Google Scholar]
- Juramurodov, I.; Makhmudjanov, D.; Liu, P.-L.; Yusupov, Z.; Nikitina, E.; Deng, T.; Tojibaev, K.; Sun, H. Phylogenetic relationships and biogeography in Hedysarum (Hedysareae, Fabaceae) with a focus on Central Asian taxa. TAXON 2023, 72, 1262–1284. [Google Scholar] [CrossRef]
- Voroshilov, V.N. On changes in the list of Far Eastern flora. Bull. Mosc. Soc. Nat. Biol. Ser. 1991, 96, 129–133. [Google Scholar]
- Rogers, S.O.; Bendich, A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985, 5, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, A.M.J. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, W.L.; Bedbrook, J.R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979, 7, 1869–1885. [Google Scholar] [CrossRef]
- Gerlach, W.L.; Dyer, T.A. Sequence organization of the repeating units in the nucleus of wheat which contain5S rRNA genes. Nucleic Acids Res. 1980, 8, 4851–4855. [Google Scholar] [CrossRef]
Tandem Repeat/Genome Proportion, % | Repeat Length, bp | Blast Homology | Chromosome Localization | ||
---|---|---|---|---|---|
H. flavescens | H. alpinum | H. theinum | |||
HF 5/1.2 | HA 42/0.49 (93% identity with HF 5) HA 80/0.29 | HT 55/0.39 (95% identity with HF 5) | 29 (HF 5, HA 42, HT 55) 59 (HA 80) | 83–100% identity with Medicago truncatula, chromosome: 5 clone mte1-70c15, Sequence ID: CT009651.1 | Pericentromeric regions |
HF 21/0.69 | HA 46/0.45 (94% identity with HF 21) | HT 67/0.35 (97.93% identity with HF 21) | 179 (HF 21) 176 (HA 46) 188 (HT 67) | 73–89% identity with Trifolium fragiferum genome assembly, chromosome: 1 Sequence ID: X940789.1 | Subtelomeric and pericentromeric regions of some chromosomes |
HF 35/0.51 | no | no | 53 | no | Pericentromeric regions of satellite chromosomes |
HF 61/0.32 | HA 186/0.014 (84% identity with HF 61) HA 200/0.012 (73% identity with HF 61) | no | 167 (HF 61) 189 (HA 186) 189 (HA 200) | no | Pericentromeric regions |
HF 145/0.074 | HA 211/0.011 (97% identity with HF 145) | HT 218/0.027 (97% identity with HF 145) | 51 | no | Pericentromeric regions of satellite chromosomes |
HF 186/0.029 | HA 154/0.019 (97% identity with HF 186) | HT 234/0.019 (96.12% identity with HF 186) | 168 (HF 186) 200 (HA 154) 178 (HT 234) | no | Weak signals in the pericentromeric regions of some chromosomes |
HF 265/0.013 | HA 171/0.028 (65% identity with HF 265) | no | 651 (HF 265) 144 (HA 171) | no | Pericentromeric regions; subtelomeric and pericentromeric regions of some chromosomes: H. flavescens and H. consaguineum |
HF 252/0.014 | no | no | 217 | no | Weak signals in the pericentromeric regions of some chromosomes |
Species | Voucher/Origin |
---|---|
H. alpinum L. | K 57-20/Russia, Kirov, Botanical Garden of Vyatka State University/germplasm collection of AIMAP, 2020 |
H. alpinum L. | K 04-08/germplasm collection of AIMAP, 2023 |
H. alpinum L. | K 30-19/Russia, Tomsk, Botanical Garden of Tomsk State University/germplasm collection of AIMAP, 2023 |
H. arcticum B. Fedtsch. | K 107-19/Russia, Volgograd Regional Botanical Garden (VRBG)/germplasm collection of AIMAP, 2019 |
H. arcticum B. Fedtsch. | K 292-19/Russia, Volgograd Regional Botanical Garden (VRBG)/germplasm collection of AIMAP, 2019 |
H. consanguineum DC. | AKT25082004/N49.90941, E088.03343 Russia, Altai region, Kosh-Agachsky district, Beltir village, right bank of the Taldura River/Collected by Selyutina I. Yu. 25.08.2004 |
H. flavescens Rgl. et Schmalh. | CSBG_Fl_U30072007/Sweden, Uppsala, Botanical Garden of University of Uppsala/germplasm collection of CSBG, 2022 |
H. hedysaroides (L.) Schinz et Thell. | K 473-17/Austria, Botanical Garden of University of Vienna/germplasm collection of AIMAP, 2017 |
H. hedysaroides (L.) Schinz et Thell. | K 358-18/Austria, Botanical Garden of University of Vienna, germplasm collection of AIMAP, 2018 |
H. sachalinense B. Fedtsch. | SMZ05102021/N48.24823, E142.58493 Russia, Sakhalin region, Makarovsky district, khr. Zhdanko, rocky slope/Collected by Shejko V.V. 05.10.2021 |
H. theinum Krasnob. | CSBG_Fl_KVKRI(I)20081992/N50.31667, E 083.85194 East Kazakhstan, Ridder district, Ivanovsky Ridge, subalpine meadow/Collected by Volodarskaya S.V. 25.08.1992/germplasm collection of CSBG, 2008 |
H. theinum Krasnob. | CSBG_Fl_AUSK(I)05092008/N50.04391, E 085.12013 Russia, Altai region, Krasnaya Mountain, subalpine meadow/Collected by Syeva S.Y. 05.09.2008/germplasm collection of CSBG, 2010 |
H. ussuriense I. Schischk. et Kom. | K 145-21/France, Lautaret Alpine Garden/germplasm collection of AIMAP, 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurkevich, O.Y.; Samatadze, T.E.; Zoshchuk, S.A.; Semenov, A.R.; Morozov, A.I.; Selyutina, I.Y.; Amosova, A.V.; Muravenko, O.V. Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species. Int. J. Mol. Sci. 2024, 25, 12340. https://doi.org/10.3390/ijms252212340
Yurkevich OY, Samatadze TE, Zoshchuk SA, Semenov AR, Morozov AI, Selyutina IY, Amosova AV, Muravenko OV. Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species. International Journal of Molecular Sciences. 2024; 25(22):12340. https://doi.org/10.3390/ijms252212340
Chicago/Turabian StyleYurkevich, Olga Yu., Tatiana E. Samatadze, Svyatoslav A. Zoshchuk, Alexey R. Semenov, Alexander I. Morozov, Inessa Yu. Selyutina, Alexandra V. Amosova, and Olga V. Muravenko. 2024. "Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species" International Journal of Molecular Sciences 25, no. 22: 12340. https://doi.org/10.3390/ijms252212340
APA StyleYurkevich, O. Y., Samatadze, T. E., Zoshchuk, S. A., Semenov, A. R., Morozov, A. I., Selyutina, I. Y., Amosova, A. V., & Muravenko, O. V. (2024). Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species. International Journal of Molecular Sciences, 25(22), 12340. https://doi.org/10.3390/ijms252212340