Computational Investigation of the Therapeutic Potential of Detarium senegalense in the Management of Erectile Dysfunction
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Virtual Screening and Docking Platform
4.2. Phytochemical Library Generation and Preparation
4.3. Receptor Retrieval and Preparation
4.4. Receptor Grid Generation
4.5. Molecular Docking
4.6. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)
4.7. Molecular Dynamic (MD) Simulation and Trajectory Analysis
4.8. Absorption, Distribution, Metabolism, Excretion, and Toxicological (ADMET) Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazzilli, F. Erectile Dysfunction: Causes, Diagnosis and Treatment: An Update. J. Clin. Med. 2022, 11, 6429. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.W.; Sooriyamoorthy, T. Erectile Dysfunction; StatPearls Publishing LLC: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Muneer, A.; Kalsi, J.; Nazareth, I.; Arya, M. Erectile Dysfunction. BMJ 2014, 348, g129. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.W.; Fugl-Meyer, K.S.; Corona, G.; Hayes, R.D.; Laumann, E.O.; Moreira, E.D.; Rellini, A.H.; Segraves, T. Definitions/Epidemiology/Risk Factors for Sexual Dysfunction. J. Sex. Med. 2010, 7, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Shamloul, R.; Ghanem, H. Erectile Dysfunction. Lancet 2013, 381, 153–165. [Google Scholar] [CrossRef]
- Mark, K.P.; Arenella, K.; Girard, A.; Herbenick, D.; Fu, J.; Coleman, E. Erectile Dysfunction Prevalence in the United States: Report from the 2021 National Survey of Sexual Wellbeing. J. Sex. Med. 2024, 21, 296–303. [Google Scholar] [CrossRef]
- MacDonagh, R.; Ewings, P.; Porter, T. The effect of erectile dysfunction on quality of life: Psychometric testing of a new quality of life measure for patients with erectile dysfunction. J. Urol. 2002, 167, 212–217. [Google Scholar] [CrossRef]
- Agaba, P.; Ocheke, A.; Akanbi, M.; Gimba, Z.; Ukeagbu, J.; Mallum, B.; Agaba, E. Sexual Functioning and Health-Related Quality of Life in Men. Niger. Med. J. 2017, 58, 96. [Google Scholar] [CrossRef]
- Dean, R.C.; Lue, T.F. Physiology of Penile Erection and Pathophysiology of Erectile Dysfunction. Urol. Clin. N. Am. 2005, 32, 379–395. [Google Scholar] [CrossRef]
- Ignarro, L.J.; Bush, P.A.; Buga, G.M.; Wood, K.S.; Fukuto, J.M.; Rajfer, J. Nitric Oxide and Cyclic GMP Formation upon Electrical Field Stimulation Cause Relaxation of Corpus Cavernosum Smooth Muscle. Biochem. Biophys. Res. Commun. 1990, 170, 843–850. [Google Scholar] [CrossRef]
- Giuliano, F. Neurophysiology of Erection and Ejaculation. J. Sex. Med. 2011, 8, 310–315. [Google Scholar] [CrossRef]
- Pofi, R.; Giannetta, E.; Feola, T.; Galea, N.; Barbagallo, F.; Campolo, F.; Badagliacca, R.; Barbano, B.; Ciolina, F.; Defeudis, G.; et al. Sex-Specific Effects of Daily Tadalafil on Diabetic Heart Kinetics in RECOGITO, a Randomized, Double-Blind, Placebo-Controlled Trial. Sci. Transl. Med. 2022, 14, eabl8503. [Google Scholar] [CrossRef] [PubMed]
- Salonia, A.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gül, M.; et al. European Association of Urology Guidelines on Sexual and Reproductive Health—2021 Update: Male Sexual Dysfunction. Eur. Urol. 2021, 80, 333–357. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Prakash, P.; Sissodia, N.; Sharma, P.; Porwal, M. Erectile Dysfunction: A Review and Herbs Used for Its Treatment. Int. J. Green Pharm. 2012, 6, 109. [Google Scholar] [CrossRef]
- Agbebi, E.A.; Omotuyi, O.I.; Oyinloye, B.E.; Okeke, U.B.; Apanisile, I.; Okor, B.; Adefabijo, D. Ethnomedicine, Phytochemistry, and Pharmacological Activities of Uvaria Chamae P. Beauv.: A Comprehensive Review. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 397, 5421–5436. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Lee, M.S.; Kim, T.-H.; Alraek, T.; Zaslawski, C.; Kim, J.W.; Moon, D.G. Ginseng for Erectile Dysfunction. Cochrane Database Syst. Rev. 2021, 2021, CD012654. [Google Scholar] [CrossRef]
- Abdillahi, H.S.; Van Staden, J. South African Plants and Male Reproductive Healthcare: Conception and Contraception. J. Ethnopharmacol. 2012, 143, 475–480. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Sharma, V.; Dixit, V.K.; Thakur, M. A Review on Plants Used for Improvement of Sexual Performance and Virility. Biomed Res. Int. 2014, 2014, 868062. [Google Scholar] [CrossRef]
- Folawiyo, M.A.; Omotuyi, I.O.; Ajao, F.O.; Besong, E.; Adelusi, T.I.; Ajayi, A.F. Catechin from Anonna Senegalensis Is a Potential Inhibitor of Erectile Dysfunction: Implication for Its Use in Male Sexual Enhancement. Appl. Biochem. Biotechnol. 2023, 195, 4936–4964. [Google Scholar] [CrossRef]
- Ojo, O.A.; Ojo, A.B.; Maimako, R.F.; Rotimi, D.; Iyobhebhe, M.; Alejolowo, O.O.; Nwonuma, C.O.; Elebiyo, T.C. Exploring the Potentials of Some Compounds from Garcinia Kola Seeds towards Identification of Novel PDE-5 Inhibitors in Erectile Dysfunction Therapy. Andrologia 2021, 53, e14092. [Google Scholar] [CrossRef]
- Ojo, A.B.; Ojo, O.A.; Okesola, M.A.; Ajiboye, B.O.; Oyinloye, B.E. Garcinia Kola Extracts Improve Biochemical Markers Associated with Erectile Function: Possible Applications in Clinical Treatment? Acta Fac. Medicae Naissensis 2019, 36, 15–26. [Google Scholar] [CrossRef]
- Ojo, O.A.; Ojo, A.B.; Oyinloye, B.E.; Ajiboye, B.O.; Anifowose, O.O.; Akawa, A.; Olaiya, O.E.; Olasehinde, O.R.; Kappo, A.P. Ocimum Gratissimum Linn. Leaves Reduce the Key Enzymes Activities Relevant to Erectile Dysfunction in Isolated Penile and Testicular Tissues of Rats. BMC Complement. Altern. Med. 2019, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Adefegha, S.A.; Oboh, G.; Fakunle, B.; Oyeleye, S.I.; Olasehinde, T.A. Quercetin, Rutin, and Their Combinations Modulate Penile Phosphodiesterase-5′, Arginase, Acetylcholinesterase, and Angiotensin-I-Converting Enzyme Activities: A Comparative Study. Comp. Clin. Path. 2018, 27, 773–780. [Google Scholar] [CrossRef]
- Burris-Hiday, S.D.; Scott, E.E. Steroidogenic Cytochrome P450 17A1 Structure and Function. Mol. Cell. Endocrinol. 2021, 528, 111261. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.K.; Inamdar, M.N.; Jamwal, R.; Dethe, S. Effect of Cinnamomum Cassia Methanol Extract and Sildenafil on Arginase and Sexual Function of Young Male Wistar Rats. J. Sex. Med. 2014, 11, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Dassou, G.H.; Favi, G.A.; Salako, K.V.; Ouachinou, J.M.-A.S.; Trekpo, P.; Akouete, P.; Agounde, G.; Djidohokpin, D.; Dansi, M.; Kouyaté, A.M.; et al. An Updated Review of the African Multipurpose Tree Species Detarium Senegalense J.F.Gmel. (Fabaceae). South Afr. J. Bot. 2023, 157, 525–539. [Google Scholar] [CrossRef]
- Janick, J.; Paull, R.E. (Eds.) The Encyclopedia of Fruit & Nuts; CABI: Wallingford, UK, 2008; ISBN 9780851996387. [Google Scholar]
- Sanni, F.S.; Onyeyili, P.A.; Hamza, H.G.; Sanni, S.; Enefe, N.G. Effects of Detarium Senegalense JF Gmelin Aqueous Stem Bark Extract on Castor Oil Induced Diarrhoea in Albino Rats. Sokoto J. Vet. Sci. 2018, 16, 41. [Google Scholar] [CrossRef]
- Sowemimo, A.A.; Pendota, C.; Okoh, B.; Omotosho, T.; Idika, N.; Adekunle, A.A.; Afolayan, A.J. Chemical Composition, Antimicrobial Activity, Proximate Analysis and Mineral Content of the Seed of Detarium Senegalense JF Gmelin. African J. Biotechnol. 2011, 10, 9875–9879. [Google Scholar] [CrossRef]
- Adeyi, A.O.; Ajisebiola, B.S.; Sanni, A.A.; Oladele, J.O.; Mustapha, A.-R.K.; Oyedara, O.O.; Fagbenro, O.S. Kaempferol Mitigates Reproductive Dysfunctions Induced by Naja Nigricollis Venom through Antioxidant System and Anti-Inflammatory Response in Male Rats. Sci. Rep. 2024, 14, 3933. [Google Scholar] [CrossRef]
- Kunjiappan, S.; Pandian, S.R.K.; Panneerselvam, T.; Pavadai, P.; Kabilan, S.J.; Sankaranarayanan, M. Exploring the Role of Plant Secondary Metabolites for Aphrodisiacs. In Plant Specialized Metabolites: Phytochemistry, Ecology and Biotechnology; Springer Nature: Cham, Switzerland, 2023; pp. 1–19. [Google Scholar]
- Elterman, D.S.; Bhattacharyya, S.K.; Mafilios, M.; Woodward, E.; Nitschelm, K.; Burnett, A.L. The Quality of Life and Economic Burden of Erectile Dysfunction. Res. Reports Urol. 2021, 13, 79–86. [Google Scholar] [CrossRef]
- ElHady, A.K.; El-Gamil, D.S.; Abdel-Halim, M.; Abadi, A.H. Advancements in Phosphodiesterase 5 Inhibitors: Unveiling Present and Future Perspectives. Pharmaceuticals 2023, 16, 1266. [Google Scholar] [CrossRef]
- Andersson, K.-E. Mechanisms of Penile Erection and Basis for Pharmacological Treatment of Erectile Dysfunction. Pharmacol. Rev. 2011, 63, 811–859. [Google Scholar] [CrossRef] [PubMed]
- Akorede, B.A.; Hassan, S.A.; Akhigbe, R.E. Penile Erection and Cardiovascular Function: Effects and Pathophysiology. Aging Male 2024, 27, 2336627. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- El Assar, M.; La Fuente, J.M.; Sosa, P.; Fernández, A.; Pepe-Cardoso, A.J.; Martínez-Salamanca, J.I.; Rodríguez-Mañas, L.; Angulo, J. PKC Inhibition Improves Human Penile Vascular Function and the NO/CGMP Pathway in Diabetic Erectile Dysfunction: The Role of NADPH Oxidase. Int. J. Mol. Sci. 2024, 25, 3111. [Google Scholar] [CrossRef]
- Angulo, J.; González-Corrochano, R.; Cuevas, P.; Fernández, A.; La Fuente, J.M.; Rolo, F.; Allona, A.; Sáenz de Tejada, I. Diabetes Exacerbates the Functional Deficiency of NO/CGMP Pathway Associated with Erectile Dysfunction in Human Corpus Cavernosum and Penile Arteries. J. Sex. Med. 2010, 7, 758–768. [Google Scholar] [CrossRef]
- Nafissatou, D.N.; Sylvie, M.; Yves, P.; Ric, B.F.E.D.E.; Christian, M.; Marc, L.; Claudie, D.M.; Manuel, D. Comparison of Phenolic and Volatile Profiles of Edible and Toxic Forms of Detarium Senegalense J. F. GMEL. African J. Biotechnol. 2016, 15, 622–632. [Google Scholar] [CrossRef]
- Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Olasehinde, T.A.; Oyeleye, S.I.; Boligon, A.A.; Athayde, M.L. Phenolic Extract from Moringa Oleifera Leaves Inhibits Key Enzymes Linked to Erectile Dysfunction and Oxidative Stress in Rats’ Penile Tissues. Biochem. Res. Int. 2015, 2015, 175950. [Google Scholar] [CrossRef]
- Behdarvand-Margha, Z.; Ahangarpour, A.; Shahraki, M.; Komeili, G.; Khorsandi, L. The Effects of Gallic Acid and Metformin on Male Reproductive Dysfunction in Diabetic Mice Induced by Methylglyoxal: An Experimental Study. Int. J. Reprod. Biomed. 2021, 19, 715–724. [Google Scholar] [CrossRef]
- Oyinloye, B.E.; Shamaki, D.E.; Agbebi, E.A.; Onikanni, S.A.; Ubah, C.S.; Aruleba, R.T.; Dao, T.N.P.; Owolabi, O.V.; Idowu, O.T.; Mathenjwa-Goqo, M.S.; et al. In Silico Comparison of Bioactive Compounds Characterized from Azadirachta Indica with an FDA-Approved Drug Against Schistosomal Agents: New Insight into Schistosomiasis Treatment. Molecules 2024, 29, 1909. [Google Scholar] [CrossRef]
- Saibu, O.A.; Singh, G.; Omoboyowa, D.A.; Oyejoke, A.K.; Olugbodi, S.A.; Bamisaye, A.; Adeniji, C.B.; Ajayi, T.M.; Akinpelu, Y.I.; Ogunwole, C.A.; et al. Discovery of Putative Natural Compounds Inhibitor of the Germinant Spore Receptor CspC in Clostridioides Difficile Infection: Gaining Insights via In Silico and Bioinformatics Approach. Informatics Med. Unlocked 2023, 42, 101339. [Google Scholar] [CrossRef]
- Macalalad, M.A.B.; Gonzales, A.A. In Silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules 2023, 28, 5301. [Google Scholar] [CrossRef] [PubMed]
- Borjian Boroujeni, M.; Shahbazi Dastjerdeh, M.; Shokrgozar, M.; Rahimi, H.; Omidinia, E. Computational Driven Molecular Dynamics Simulation of Keratinocyte Growth Factor Behavior at Different PH Conditions. Informatics Med. Unlocked 2021, 23, 100514. [Google Scholar] [CrossRef]
- Saliu, T.P.; Umar, H.I.; Ogunsile, O.J.; Okpara, M.O.; Yanaka, N.; Elekofehinti, O.O. Molecular Docking and Pharmacokinetic Studies of Phytocompounds from Nigerian Medicinal Plants as Promising Inhibitory Agents against SARS-CoV-2 Methyltransferase (Nsp16). J. Genet. Eng. Biotechnol. 2021, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Omotuyi, O.; Oyinloye, B.; Agboola, S.; Agbebi, A.E.; Afolabi, E.O.; Femi-Oyewo, M. Bridelia Ferruginea Phytocompounds Interact with SARS-CoV-2 Drug Targets: Experimental Validation of Corilagin Contribution. Sci. African 2023, 22, e01920. [Google Scholar] [CrossRef]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the Chemical Beauty of Drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and Drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef]
- Ekene, E.N.; Odigie, M.O.; Edward, U.F.; Enebeli, S.K.; Akuodor, G.C.; Chilaka, K.C. Comparative Antihyperglycemic Potentials of Different Fractions of Detarium Senegalense Stem Bark Extract on Streptozotocin-Induced Diabetic Wistar Rats. GSC Biol. Pharm. Sci. 2023, 23, 249–259. [Google Scholar] [CrossRef]
- Defeudis, G.; Mazzilli, R.; Tenuta, M.; Rossini, G.; Zamponi, V.; Olana, S.; Faggiano, A.; Pozzilli, P.; Isidori, A.M.; Gianfrilli, D. Erectile Dysfunction and Diabetes: A Melting Pot of Circumstances and Treatments. Diabetes. Metab. Res. Rev. 2022, 38, e3494. [Google Scholar] [CrossRef]
- Parmar, R.; Verma, S.; Neelkamal; Pathak, V.; Bhadoria, A. Prevalence of Erectile Dysfunction in Type 2 Diabetes Mellitus (T2DM) and Its Predictors among Diabetic Men. J. Fam. Med. Prim. Care 2022, 11, 3875. [Google Scholar] [CrossRef]
- Nwachukwu, E.O.; Akuodor, G.C.; Ilo, C.E.; Anele, D.O.; Ofor, C.C.; Ramalan, M.A.; Ezeokpo, B.C. The Anti-Seizure and Anti-Nociceptive Potential of Hexane Fraction from the Leaves of Detarium Senegalense. Magna Sci. Adv. Res. Rev. 2022, 6, 005–013. [Google Scholar] [CrossRef]
- Santa Cruz Biotechnology, Inc. Material Safety Data Sheet. (+)-Catechin (hydrate) Sc-205673. 2010. Available online: https://datasheets.scbt.com/sc-204673.pdf (accessed on 8 November 2024).
- Santa Cruz Biotechnology, Inc. Material Safety Data Sheet. (-)Epicatechin Sc-205672. 2010. Available online: https://datasheets.scbt.com/sc-205672.pdf (accessed on 8 November 2024).
- Variya, B.C.; Bakrania, A.K.; Madan, P.; Patel, S.S. Acute and 28-Days Repeated Dose Sub-Acute Toxicity Study of Gallic Acid in Albino Mice. Regul. Toxicol. Pharmacol. 2019, 101, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.D.; Krmic, M.; Hussain, A.; Marvilli, C.; Fabian, R.; Niha, A.; Danai, M.; Smith, Z.; Jalshgari, A.; Malik, N.; et al. Toxicity of Natural Products. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 257–282. [Google Scholar]
- Oyinloye, B.E.; Agbebi, E.A.; Agboola, O.E.; Ubah, C.S.; Owolabi, O.V.; Aruleba, R.T.; Onikanni, S.A.; Ejeje, J.N.; Ajiboye, B.O.; Omotuyi, O.I. Skin Anti-Aging Potentials of Phytochemicals from Peperomia Pellucida against Selected Metalloproteinase Targets: An In Silico Approach. Cosmetics 2023, 10, 151. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Huai, Q.; Cai, J.; Zoraghi, R.; Francis, S.H.; Corbin, J.D.; Robinson, H.; Xin, Z.; Lin, G.; et al. Multiple Conformations of Phosphodiesterase-5. J. Biol. Chem. 2006, 281, 21469–21479. [Google Scholar] [CrossRef] [PubMed]
- Van Zandt, M.C.; Whitehouse, D.L.; Golebiowski, A.; Ji, M.K.; Zhang, M.; Beckett, R.P.; Jagdmann, G.E.; Ryder, T.R.; Sheeler, R.; Andreoli, M.; et al. Discovery of (R)-2-Amino-6-Borono-2-(2-(Piperidin-1-Yl)Ethyl)Hexanoic Acid and Congeners as Highly Potent Inhibitors of Human Arginases I and II for Treatment of Myocardial Reperfusion Injury. J. Med. Chem. 2013, 56, 2568–2580. [Google Scholar] [CrossRef]
- Fehl, C.; Vogt, C.D.; Yadav, R.; Li, K.; Scott, E.E.; Aubé, J. Structure-Based Design of Inhibitors with Improved Selectivity for Steroidogenic Cytochrome P450 17A1 over Cytochrome P450 21A2. J. Med. Chem. 2018, 61, 4946–4960. [Google Scholar] [CrossRef]
- Wagner, J.; von Matt, P.; Sedrani, R.; Albert, R.; Cooke, N.; Ehrhardt, C.; Geiser, M.; Rummel, G.; Stark, W.; Strauss, A.; et al. Discovery of 3-(1 H -Indol-3-Yl)-4-[2-(4-Methylpiperazin-1-Yl)Quinazolin-4-Yl]Pyrrole-2,5-Dione (AEB071), a Potent and Selective Inhibitor of Protein Kinase C Isotypes. J. Med. Chem. 2009, 52, 6193–6196. [Google Scholar] [CrossRef]
- Martin, S.E.S.; Tan, Z.-W.; Itkonen, H.M.; Duveau, D.Y.; Paulo, J.A.; Janetzko, J.; Boutz, P.L.; Törk, L.; Moss, F.A.; Thomas, C.J.; et al. Structure-Based Evolution of Low Nanomolar O-GlcNAc Transferase Inhibitors. J. Am. Chem. Soc. 2018, 140, 13542–13545. [Google Scholar] [CrossRef]
- Terasaka, T.; Kinoshita, T.; Kuno, M.; Nakanishi, I. A Highly Potent Non-Nucleoside Adenosine Deaminase Inhibitor: Efficient Drug Discovery by Intentional Lead Hybridization. J. Am. Chem. Soc. 2004, 126, 34–35. [Google Scholar] [CrossRef]
- Onikanni, S.A.; Lawal, B.; Fadaka, A.O.; Bakare, O.; Adewole, E.; Taher, M.; Khotib, J.; Susanti, D.; Oyinloye, B.E.; Ajiboye, B.O.; et al. Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora Myristica: A Novel DNA Gyrase Inhibitor. Molecules 2023, 28, 1593. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
Target | Compound | Glide Score | MM/GBSA | Key Interaction |
---|---|---|---|---|
2H42 | CCL | −11.926 | −85.1 | H-bond-GLN817 Pi-stacking-TYR612, PHE820 |
Catechin | −9.877 | −36.42 | H-bond-GLN775, GLN817 Pi-stacking-TYR612, HIS613 | |
Epicatechin | −11.408 | −41.31 | H-bond-ASN661, THR723, GLN817 Pi-stacking-HIS613, PHE820 | |
Pheophytin | −9.97 | −52.17 | H-bond-ASN662, THR723 Pi-stacking-PHE820 | |
3IW4 | CCL | −13.574 | −75.51 | H-bond-THR401, GLU418, VAL420, ASP467 Pi-cation-ASP424, ASP467 |
Catechin | −10.458 | −48.93 | H-bond-GLU387, VAL420 | |
Epicatechin | −9.072 | −43.69 | H-bond-GLU418, ASP467, ASN468 | |
Pheophytin | −7.834 | −41.5 | H-bond-GLU418, GLY423 Pi-stacking-PHE350 | |
6MA5 | CCL | −10.236 | −47.56 | H-bond-GLN839, ALA896, LYS898 Pi-stacking-HIE558, HIE901 Salt bridge-LYS842 |
Catechin | −6.276 | −33.24 | H-bond-ASN557, PHE837, ALA896 | |
Epicatechin | −7.586 | −32.16 | H-bond-HIE562, ALA896, LYS898 Pi-stacking-HIE901 | |
Pheophytin | −6.573 | −52.16 | H-bond-HIE558, PHE837, GLN839, HIE920, THR922 | |
1NDZ | CCL | −12.244 | −77.9 | H-bond-HIS17, ASP19, GLU217, ASH296 Pi-stacking-HIS17, PHE61, PHE65 |
Catechin | −6.667 | −29.13 | H-bond-GLY184, GLU217, ASH296 | |
Epicatechin | −7.019 | −31.54 | H-bond-LEU56, GLU217 | |
Pheophytin | −9.682 | −71.91 | H-bond-HIS17, ASP19, SER103, ASP185, GLU217 | |
4IO6 | CCL | −10.414 | −7.95 | H-bond-ASP147, SER156, ASN158, HIS160, ASP202, GLU205 |
Catechin | −8.048 | −21.31 | H-bond-HIS160, GLY161, ASP202, GLU205, ASP253 Pi-stacking-HIE145, HIS160 | |
Epicatechin | −6.935 | −13.95 | H-bond-THR154, ASN158, GLY161, ASP200, GLU296 Pi-stacking-HIE145, HIS160 | |
Pheophytin | −4.408 | −22.5 | H-bond-SER155, ASP200, VAL201, ASP202, GLU205 | |
6CIZ | CCL | −9.029 | −35.21 | H-bond-ASN202 |
Catechin | −7.921 | −29.08 | H-bond-ASP298, VAL482 | |
Epicatechin | −8.547 | −18.77 | H-bond-ASP298, VAL482 |
Receptor | Ligand | P_RMSF | RMSD | rGyr | MolSA | SASA | PSA |
---|---|---|---|---|---|---|---|
2H42 | Sildenafil | 0.83 ± 0.035 | 1.73 ± 0.008 | 4.15 ± 0.001 | 410.0 ± 0.17 | 54.20 ± 0.34 | 140.8 ± 0.12 |
Epicatechin | 0.91 ± 0.027 | 1.729 ± 0.007 | 3.77 ± 0.001 | 255.7 ± 0.04 | 56.81 ± 0.33 | 245.8 ± 0.08 | |
Catechin | 0.74 ± 0.023 | 1.517 ± 0.005 | 3.58 ± 0.002 | 253.5 ± 0.05 | 26.88 ± 0.27 | 259.8 ± 0.11 |
Receptor | Ligand | MM/GBSA |
---|---|---|
2H42 | Sildenafil | −76.29 ± 0.38 |
Epicatechin | −38.84 ± 0.69 | |
Catechin | −45.72 ± 0.46 |
Compound | MW | #H-Bond Acceptors | #H-Bond Donors | TPSA | Consensus Log P | #Lipinski Violation | Synthetic Accessibility |
---|---|---|---|---|---|---|---|
Catechin | 290.27 | 6 | 5 | 110.38 | 0.83 | 0 | 3.5 |
Gallic acid | 170.12 | 5 | 4 | 97.99 | 0.21 | 0 | 1.22 |
Pheophytin | 871.2 | 8 | 2 | 121.94 | 9.91 | 2 | 10 |
GI Absorption | BBB Permeant | P-Glycoprotein Substrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | Bioavailability Score | |
---|---|---|---|---|---|---|---|---|---|
Catechin | High | No | Yes | No | No | No | No | No | 0.55 |
Gallic acid | High | No | No | No | No | No | No | Yes | 0.56 |
Pheophytin | Low | No | Yes | No | No | No | No | No | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejeje, J.N.; Agbebi, E.A.; Mathenjwa-Goqo, M.S.; Oje, O.A.; Agboinghale, P.E.; Ebe, I.T.; Obafemi, T.O.; Adewole, E.; Omaka, O.N.; Onikanni, S.A.; et al. Computational Investigation of the Therapeutic Potential of Detarium senegalense in the Management of Erectile Dysfunction. Int. J. Mol. Sci. 2024, 25, 12362. https://doi.org/10.3390/ijms252212362
Ejeje JN, Agbebi EA, Mathenjwa-Goqo MS, Oje OA, Agboinghale PE, Ebe IT, Obafemi TO, Adewole E, Omaka ON, Onikanni SA, et al. Computational Investigation of the Therapeutic Potential of Detarium senegalense in the Management of Erectile Dysfunction. International Journal of Molecular Sciences. 2024; 25(22):12362. https://doi.org/10.3390/ijms252212362
Chicago/Turabian StyleEjeje, Jerius Nkwuda, Emmanuel Ayodeji Agbebi, Makhosazana Siduduzile Mathenjwa-Goqo, Obinna Aru Oje, Precious Eseose Agboinghale, Ikechukwu Theophilus Ebe, Tajudeen Olabisi Obafemi, Ezekiel Adewole, Omaka N. Omaka, Sunday Amos Onikanni, and et al. 2024. "Computational Investigation of the Therapeutic Potential of Detarium senegalense in the Management of Erectile Dysfunction" International Journal of Molecular Sciences 25, no. 22: 12362. https://doi.org/10.3390/ijms252212362
APA StyleEjeje, J. N., Agbebi, E. A., Mathenjwa-Goqo, M. S., Oje, O. A., Agboinghale, P. E., Ebe, I. T., Obafemi, T. O., Adewole, E., Omaka, O. N., Onikanni, S. A., Ajiboye, B. O., Omotuyi, O. I., & Oyinloye, B. E. (2024). Computational Investigation of the Therapeutic Potential of Detarium senegalense in the Management of Erectile Dysfunction. International Journal of Molecular Sciences, 25(22), 12362. https://doi.org/10.3390/ijms252212362