The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development
Abstract
:1. Introduction
2. Methodology
3. The Most Common XEs
3.1. Phytoestrogenes
3.1.1. Isoflavones
3.1.2. Stilbenes
3.2. Pesticides
3.3. Metaloestrogens
3.3.1. Cadmium
3.3.2. Aluminum
3.4. Phenols
3.5. Mycoestrogenes
3.5.1. Zearalenone
3.5.2. Ochratoxin A
4. The Influence of XEs Exposure on Cancer Development
4.1. Breast Cancer
4.2. Prostate Cancer (PC)
4.3. Other Carcinomas: Uterine Cancer, Testicular Cancer, Ovarian Cancer, Lung Cancer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, S.; Homaei, A.; Raju, A.B.; Meher, B.R. Estrogen: The Necessary Evil for Human Health, and Ways to Tame It. Biomed. Pharmacother. 2018, 102, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, N.; Silveyra, P. Estrogen Receptor Signaling Mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar]
- Grandi, G.; Del Savio, M.C.; Lopes da Silva-Filho, A.; Facchinetti, F. Estetrol (E4): The New Estrogenic Component of Combined Oral Contraceptives. Expert Rev. Clin. Pharmacol. 2020, 13, 327–330. [Google Scholar] [CrossRef]
- Woźniak, M.; Murias, M. Xenoestrogens: Endocrine Disrupting Compounds. Ginekol. Pol. 2008, 79, 785–790. [Google Scholar]
- Ijichi, N.; Shigekawa, T.; Ikeda, K.; Horie-Inoue, K.; Fujimura, T.; Tsuda, H.; Osaki, A.; Saeki, T.; Inoue, S. Estrogen-Related Receptor γ Modulates Cell Proliferation and Estrogen Signaling in Breast Cancer. J. Steroid Biochem. Mol. Biol. 2011, 123, 1–7. [Google Scholar] [CrossRef]
- Andersson, A.M.; Skakkebæk, N.E. Exposure to Exogenous Estrogens in Food: Possible Impact on Human Development and Health. Eur. J. Endocrinol. 1999, 140, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Albini, A.; Rosano, C.; Angelini, G.; Amaro, A.; Esposito, A.I.; Maramotti, S.; Noonan, D.M.; Pfeffer, U. Exogenous Hormonal Regulation in Breast Cancer Cells by Phytoestrogens and Endocrine Disruptors. Curr. Med. Chem. 2014, 21, 1129–1145. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Wang, L.H.; Chen, L.R.; Chen, K.H. In Vitro and Vivo Identification, Metabolism and Action of Xenoestrogens: An Overview. Int. J. Mol. Sci. 2021, 22, 4013. [Google Scholar] [CrossRef]
- Delbès, G.; Levacher, C.; Habert, R. Estrogen Effects on Fetal and Neonatal Testicular Development. Reproduction 2006, 132, 527–538. [Google Scholar] [CrossRef]
- Kashino, I.; Sasaki, S.; Okada, E.; Matsuura, H.; Goudarzi, H.; Miyashita, C.; Okada, E.; Ito, Y.M.; Araki, A.; Kishi, R. Prenatal Exposure to 11 Perfluoroalkyl Substances and Fetal Growth: A Large-Scale, Prospective Birth Cohort Study. Environ. Int. 2020, 136, 105355. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard-Olesen, C.; Bach, C.C.; Long, M.; Wielsøe, M.; Bech, B.H.; Henriksen, T.B.; Olsen, J.; Bonefeld-Jørgensen, E.C. Associations of Fetal Growth Outcomes with Measures of the Combined Xenoestrogenic Activity of Maternal Serum Perfluorinated Alkyl Acids in Danish Pregnant Women. Environ. Health Perspect. 2019, 127, 17006. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hong, Y.C.; Park, H.; Kim, Y.; Ha, M.; Ha, E. Combined Effects of Multiple Prenatal Exposure to Pollutants on Birth Weight: The Mothers and Children’s Environmental Health (MOCEH) Study. Environ. Res. 2020, 181, 108832. [Google Scholar] [CrossRef]
- Forma, E.; Szymczyk, A.; Krzeslak, A. Selected Xenoestrogens and Their Impact on Human Health. Folia Medica Lodz. 2013, 40, 79–97. [Google Scholar]
- Prossnitz, E.R.; Arterburn, J.B. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol. Rev. 2015, 67, 505–540. [Google Scholar] [CrossRef]
- Li, S.; Washburn, K.A.; Moore, R.; Uno, T.; Teng, C.; Newbold, R.R.; McLachlan, J.A.; Negishi, M. Developmental Exposure to Diethylstilbestrol Elicits Demethylation of Estrogen-Responsive Lactoferrin Gene in Mouse Uterus. Cancer Res. 1997, 57, 4356–4359. [Google Scholar]
- Rosenfeld, C.S.; Cooke, P.S. Endocrine Disruption through Membrane Estrogen Receptors and Novel Pathways Leading to Rapid Toxicological and Epigenetic Effects. J. Steroid Biochem. Mol. Biol. 2019, 187, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine Disruptor Bisphenol A Strongly Binds to Human Estrogen-Related Receptor γ (ERRγ) with High Constitutive Activity. Toxicol. Lett. 2006, 167, 95–105. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, N.; Weng, S.F.; Wang, H.S. Bisphenol A Increases the Migration and Invasion of Triple-Negative Breast Cancer Cells via Oestrogen-Related Receptor Gamma. Basic Clin. Pharmacol. Toxicol. 2016, 119, 389–395. [Google Scholar] [CrossRef]
- Sarath Josh, M.K.; Pradeep, S.; Adarsh, V.K.; Vijayalekshmi Amma, K.S.; Sudha Devi, R.; Balachandran, S.; Sreejith, M.N.; Abdul Jaleel, U.C.; Benjamin, S. In Silico Evidences for the Binding of Phthalates onto Human Estrogen Receptor α, β Subtypes and Human Estrogen-Related Receptor γ. Mol. Simul. 2014, 40, 408–417. [Google Scholar] [CrossRef]
- MacOn, M.B.; Fenton, S.E. Endocrine Disruptors and the Breast: Early Life Effects and Later Life Disease. J. Mammary Gland. Biol. Neoplasia 2013, 18, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Schaeberle, C.M.; Rubin, B.S.; Sonnenschein, C.; Soto, A.M. The Male Mammary Gland: A Target for the Xenoestrogen Bisphenol A. Reprod. Toxicol. 2013, 37, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Munoz-de-Toro, M.; Markey, C.; Wadia, P.R.; Luque, E.H.; Rubin, B.S.; Sonnenschein, C.; Soto, A.M. Perinatal Exposure to Bisphenol A Alters Peripubertal Mammary Gland Development in Mice. Endocrinology 2005, 146, 4138–4147. [Google Scholar] [CrossRef]
- Hasanah, Y.; Chairun Nisa, T.; Armidin, H.; Hanum, H. Isoflavone Content of Soybean [Glycine Max (L). Merr.] Cultivars with Different Nitrogen Souces and Growing Season under Dry Land Conditions. J. Agric. Environ. Int. Dev.-JAEID 2015, 109, 5–17. [Google Scholar]
- Nussey, S.; Whitehead, S. Endocrinology: An Integrated Approach; Chapter 5, The Parathyroid Glands and Vitamin D; BIOS Scientific Publishers: Oxford, UK, 2001. [Google Scholar]
- Setchell, K.D.R.; Brown, N.M.; Lydeking-Olsen, E. The Clinical Importance of the Metabolite Equol—A Clue to the Effectiveness of Soy and Its Isoflavones. J. Nutr. 2002, 132, 3577–3584. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Ye, X.Y.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the US Population to Bisphenol A and 4-Tertiary-Octylphenol: 2003–2004. Environ. Health Perspect. 2008, 116, 39–44. [Google Scholar] [CrossRef]
- Jones-Otazo, H.A.; Clarke, J.P.; Diamond, M.L.; Archbold, J.A.; Ferguson, G.; Harner, T.; Richardson, G.M.; Ryan, J.J.; Wilford, B. Is House Dust the Missing Exposure Pathway for PBDEs? An Analysis of the Urban Fate and Human Exposure to PBDEs. Environ. Sci. Technol. 2005, 39, 5121–5130. [Google Scholar] [CrossRef]
- Abraham, A.; Chakraborty, P. A Review on Sources and Health Impacts of Bisphenol A. Rev. Environ. Health 2019, 35, 201–210. [Google Scholar] [CrossRef]
- Coward, L.; Barnes, N.C.; Setchell, K.D.R.; Barnes, S. Genistein, Daidzein, and Their β-Glycoside Conjugates: Antitumor Isoflavones in Soybean Foods from American and Asian Diets. J. Agric. Food Chem. 1993, 41, 1961–1967. [Google Scholar] [CrossRef]
- Dixon, R.A.; Sumner, L.W. Legume Natural Products: Understanding and Manipulating Complex Pathways for Human and Animal Health. Plant Physiol. 2003, 131, 878–885. [Google Scholar] [CrossRef]
- Adler, S.A.; Purup, S.; Hansen-Møller, J.; Thuen, E.; Steinshamn, H. Phytoestrogens and Their Metabolites in Bulk-Tank Milk: Effects of Farm Management and Season. PLoS ONE 2015, 10, e0127187. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Rangel, M.; Delgado-Zamarreño, M.M.; Pérez-Martín, L.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J. Analysis of Isoflavones in Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Andres, S.; Hansen, U.; Niemann, B.; Palavinskas, R.; Lampen, A. Determination of the Isoflavone Composition and Estrogenic Activity of Commercial Dietary Supplements Based on Soy or Red Clover. Food Funct. 2015, 6, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Frankenfeld, C.L. Dairy Consumption Is a Significant Correlate of Urinary Equol Concentration in a Representative Sample of US Adults. Am. J. Clin. Nutr. 2011, 93, 1109–1116. [Google Scholar] [CrossRef]
- Bláhová, L.; Kohoutek, J.; Procházková, T.; Prudíková, M.; Bláha, L. Phytoestrogens in Milk: Overestimations Caused by Contamination of the Hydrolytic Enzyme Used during Sample Extraction. J. Dairy Sci. 2016, 99, 6973–6982. [Google Scholar] [CrossRef]
- Franke, A.A.; Custer, L.J.; Wang, W.; Shi, C.Y. HPLC Analysis of Isoflavonoids and Other Phenolic Agents from Foods and from Human Fluids. Proc. Soc. Exp. Biol. Med. 1998, 217, 263–273. [Google Scholar] [CrossRef]
- Testa, I.; Salvatori, C.; Di Cara, G.; Latini, A.; Frati, F.; Troiani, S.; Principi, N.; Esposito, S. Soy-Based Infant Formula: Are Phyto-Oestrogens Still in Doubt? Front. Nutr. 2018, 5, 110. [Google Scholar] [CrossRef]
- Cao, Y.; Calafat, A.M.; Doerge, D.R.; Umbach, D.M.; Bernbaum, J.C.; Twaddle, N.C.; Ye, X.; Rogan, W.J. Isoflavones in Urine, Saliva, and Blood of Infants: Data from a Pilot Study on the Estrogenic Activity of Soy Formula. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 223–234. [Google Scholar] [CrossRef]
- Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: The in Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef]
- Papoutsis, A.J.; Lamore, S.D.; Wondrak, G.T.; Selmin, O.I.; Romagnolo, D.F. Resveratrol Prevents Epigenetic Silencing of BRCA-1 by the Aromatic Hydrocarbon Receptor in Human Breast Cancer Cells1,2. J. Nutr. 2010, 140, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; He, B.; Lin, L.; Malhotra, A.; Yuan, N. Potential of Curcumin and Resveratrol as Biochemical and Biophysical Modulators during Lung Cancer in Rats. Drug Chem. Toxicol. 2019, 42, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, G.; Shi, J.; Xie, X.; Fei, N.; Chen, L.; Liu, N.; Yang, M.; Pan, J.; Huang, W.; et al. Trans-Resveratrol Ameliorates Anxiety-like Behaviors and Fear Memory Deficits in a Rat Model of Post-Traumatic Stress Disorder. Neuropharmacology 2018, 133, 181–188. [Google Scholar] [CrossRef]
- Cucciolla, V.; Borriello, A.; Oliva, A.; Galletti, P.; Zappia, V.; Della Ragione, F. Resveratrol: From Basic Science to the Clinic. Cell Cycle 2007, 6, 2495–2510. [Google Scholar] [CrossRef]
- Frémont, L. Minireview: Biological Effects of Resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Kraft, T.E.; Parisotto, D.; Schempp, C.; Efferth, T. Fighting Cancer with Red Wine? Molecular Mechanisms of Resveratrol. Crit. Rev. Food Sci. Nutr. 2009, 49, 782–799. [Google Scholar] [CrossRef]
- Pascale, A.; Laborde, A. Impact of Pesticide Exposure in Childhood. Rev. Environ. Health 2020, 35, 221–227. [Google Scholar] [CrossRef]
- Xiao, J.; Dong, X.; Zhang, X.; Ye, F.; Cheng, J.; Dan, G.; Zhao, Y.; Zou, Z.; Cao, J.; Sai, Y. Pesticides Exposure and Dopaminergic Neurodegeneration. Expo. Health 2021, 13, 295–306. [Google Scholar] [CrossRef]
- Aloizou, A.M.; Siokas, V.; Vogiatzi, C.; Peristeri, E.; Docea, A.O.; Petrakis, D.; Provatas, A.; Folia, V.; Chalkia, C.; Vinceti, M.; et al. Pesticides, Cognitive Functions and Dementia: A Review. Toxicol. Lett. 2020, 326, 31–51. [Google Scholar] [CrossRef]
- Burns, C.J.; McIntosh, L.J.; Mink, P.J.; Jurek, A.M.; Li, A.A. Pesticide Exposure and Neurodevelopmental Outcomes: Review of the Epidemiologic and Animal Studies. J. Toxicol. Environ. Health B Crit. Rev. 2013, 16, 127–283. [Google Scholar] [CrossRef]
- de Graaf, L.; Boulanger, M.; Bureau, M.; Bouvier, G.; Meryet-Figuiere, M.; Tual, S.; Lebailly, P.; Baldi, I. Occupational Pesticide Exposure, Cancer and Chronic Neurological Disorders: A Systematic Review of Epidemiological Studies in Greenspace Workers. Environ. Res. 2022, 203, 111822. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, J.V. Differences in Sensitivity of Children and Adults to Chemical Toxicity: The NAS Panel Report. Regul. Toxicol. Pharmacol. 2000, 31, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Salameh, P.R.; Baldi, I.; Brochard, P.; Raherison, C.; Abi Saleh, B.; Salamon, R. Respiratory Symptoms in Children and Exposure to Pesticides. Eur. Respir. J. 2003, 22, 507–512. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Chiu, Y.H.; Lee, D.H.; Wang, S.; Hart, J.E.; Mínguez-Alarcón, L.; Laden, F.; Ardisson Korat, A.V.; Birmann, B.; Heather Eliassen, A.; et al. Intake of Fruits and Vegetables by Pesticide Residue Status in Relation to Cancer Risk. Environ. Int. 2021, 156, 106744. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed]
- Krzastek, S.C.; Farhi, J.; Gray, M.; Smith, R.P. Impact of Environmental Toxin Exposure on Male Fertility Potential. Transl. Androl. Urol. 2021, 9, 2797–2813. [Google Scholar] [CrossRef]
- Hellou, J.; Lebeuf, M.; Rudi, M. Review on DDT and Metabolites in Birds and Mammals of Aquatic Ecosystems. Environ. Rev. 2012, 21, 53–69. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Bini Dhouib, I.; Annabi, A.; Jallouli, M.; Marzouki, S.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. Carbamates Pesticides Induced Immunotoxicity and Carcinogenicity in Human: A Review. J. Appl. Biomed. 2016, 14, 85–90. [Google Scholar] [CrossRef]
- Duliban, M.; Pawlicki, P.; Kamińska, A.; Yurdakok-Dikmen, B.; Tekin, K.; Kotula-Balak, M. Status of Estrogen Receptor Expression and Epigenetic Methylation in Leydig Cells after Exposure to Metalloestrogen—Selenium. Reprod. Toxicol. 2023, 118, 108389. [Google Scholar] [CrossRef]
- Denier, X.; Hill, E.M.; Rotchell, J.; Minier, C. Estrogenic Activity of Cadmium, Copper and Zinc in the Yeast Estrogen Screen. Toxicol. Vitr. 2009, 23, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, A.; Kshetrimayum, C. Environmental & Occupational Exposure & Female Reproductive Dysfunction. Indian J. Med. Res. 2019, 150, 532–545. [Google Scholar]
- Kumar, S.; Sharma, A. Cadmium Toxicity: Effects on Human Reproduction and Fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Evaluation of Certain Food Additives and Contaminants. Forty-First Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series 837; WHO: Geneva, Switzerland, 1993. [Google Scholar]
- WHO (World Health Organization). Evaluation of Certain Food Additives and Contaminants. Thirty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series 776; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- Satarug, S.; Moore, M.R. Adverse Health Effects of Chronic Exposure to Low-Level Cadmium in Foodstuffs and Cigarette Smoke. Environ. Health Perspect. 2004, 112, 1099–1103. [Google Scholar] [CrossRef]
- Whyte, A.L.H.; Raumati Hook, G.; Greening, G.E.; Gibbs-Smith, E.; Gardner, J.P.A. Human Dietary Exposure to Heavy Metals via the Consumption of Greenshell Mussels (Perna Canaliculus Gmelin 1791) from the Bay of Islands, Northern New Zealand. Sci. Total Environ. 2009, 407, 4348–4355. [Google Scholar] [CrossRef]
- Copes, R.; Clark, N.A.; Rideout, K.; Palaty, J.; Teschke, K. Uptake of Cadmium from Pacific Oysters (Crassostrea gigas) in British Columbia Oyster Growers. Environ. Res. 2008, 107, 160–169. [Google Scholar] [CrossRef]
- Clark, N.A.; Teschke, K.; Rideout, K.; Copes, R. Trace Element Levels in Adults from the West Coast of Canada and Associations with Age, Gender, Diet, Activities, and Levels of Other Trace Elements. Chemosphere 2007, 70, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S. Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Arao, T. Mitigation Strategies for Cadmium and Arsenic in Rice. In Cadmium Toxicity; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Järup, L.; Åkesson, A. Current Status of Cadmium as an Environmental Health Problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012.
- Taha, M.M.; Mahdy-Abdallah, H.; Shahy, E.M.; Ibrahim, K.S.; Elserougy, S. Impact of Occupational Cadmium Exposure on Bone in Sewage Workers. Int. J. Occup. Environ. Health 2018, 24, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Penttinen-Damdimopoulou, P.E.; Mäkelä, S.I.; Berglund, M.; Stenius, U.; Åkesson, A.; Håkansson, H.; Halldin, K. Estrogen-like Effects of Cadmium in Vivo Do Not Appear to Be Mediated via the Classical Estrogen Receptor Transcriptional Pathway. Environ. Health Perspect. 2010, 118, 1389–1394. [Google Scholar] [CrossRef]
- Stoica, A.; Katzenellenbogen, B.S.; Martin, M.B. Activation of Estrogen Receptor-α by the Heavy Metal Cadmium. Mol. Endocrinol. 2000, 14, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Malgieri, G.; Palmieri, M.; Esposito, S.; Maione, V.; Russo, L.; Baglivo, I.; De Paola, I.; Milardi, D.; Diana, D.; Zaccaro, L.; et al. Zinc to Cadmium Replacement in the Prokaryotic Zinc-Finger Domain. Metallomics 2014, 6, 96–104. [Google Scholar] [CrossRef]
- Darbre, P.D. Metalloestrogens: An Emerging Class of Inorganic Xenoestrogens with Potential to Add to the Oestrogenic Burden of the Human Breast. J. Appl. Toxicol. 2006, 26, 191–197. [Google Scholar] [CrossRef]
- Garcia-Morales, P.; Saceda, M.; Kenney, N.; Kim, N.; Salomon, D.S.; Gottardis, M.M.; Solomon, H.B.; Sholler, P.F.; Jordan, V.C.; Martini, M.B. Effect of Cadmium on Estrogen Receptor Levels and Estrogen-Induced Responses in Human Breast Cancer Cells. J. Biol. Chem. 1994, 269, 16896–16901. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Cadmium—A Metallohormone? Toxicol. Appl. Pharmacol. 2009, 238, 266–271. [Google Scholar] [CrossRef]
- Tsuchihashi, R.; Sakamoto, S.; Kodera, M.; Nohara, T.; Kinjo, J. Microbial Metabolism of Soy Isoflavones by Human Intestinal Bacterial Strains. J. Nat. Med. 2008, 62, 456–460. [Google Scholar] [CrossRef]
- Il’yasova, D.; Schwartz, G.G. Cadmium and Renal Cancer. Toxicol. Appl. Pharmacol. 2005, 207, 179–186. [Google Scholar] [CrossRef]
- Feki-Tounsi, M.; Hamza-Chaffai, A. Cadmium as a Possible Cause of Bladder Cancer: A Review of Accumulated Evidence. Environ. Sci. Pollut. Res. 2014, 21, 10561–10573. [Google Scholar] [CrossRef]
- Carroll, D.G. Nonhormonal Therapies for Hot Flashes in Menopause. Am. Fam. Physician 2006, 73, 457–764. [Google Scholar] [PubMed]
- Rojas, K.; Stuckey, A. Breast Cancer Epidemiology and Risk Factors. Clin. Obstet. Gynecol. 2016, 59, 651–672. [Google Scholar] [CrossRef]
- Henson, M.C.; Chedrese, P.J. Endocrine Disruption by Cadmium, a Common Environmental Toxicant with Paradoxical Effects on Reproduction. Exp. Biol. Med. 2004, 229, 383–392. [Google Scholar] [CrossRef]
- Tietz, T.; Lenzner, A.; Kolbaum, A.E.; Zellmer, S.; Riebeling, C.; Gürtler, R.; Jung, C.; Kappenstein, O.; Tentschert, J.; Giulbudagian, M.; et al. Aggregated Aluminium Exposure: Risk Assessment for the General Population. Arch. Toxicol. 2019, 93, 3503–3521. [Google Scholar] [CrossRef] [PubMed]
- IAI. Primary Aluminium Production in 2018; World Aluminium—The Website of the International Aluminium Institute: London, UK, 2018. [Google Scholar]
- European Food Safety Authority. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a Request from the Commission Related to 2,2-Bis(4-Hydroxyphenyl) Propane (Bisphenol A). Question Number. EFSA J. 2007, 5, 428. [Google Scholar] [CrossRef]
- Arnich, N.; Sirot, V.; Rivière, G.; Jean, J.; Noël, L.; Guérin, T.; Leblanc, J.C. Dietary Exposure to Trace Elements and Health Risk Assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 2012, 50, 2432–2449. [Google Scholar] [CrossRef]
- Hwang, H.-G. Alluminium and Cadmium Interfere with Estrogen Receptor Level in the Primary Culture of Hepatocytes in the Rainbow Trout Oncorhynchus Mykiss. Fish. Sci. Technol. 2001, 4, 180–185. [Google Scholar]
- BfR. Aluminiumhaltige Antitranspirantien Tragen zur Aufnahme von Aluminium Bei—Stellungnahme Nr. 007/2014 Des BfR Vom 26. 2014, pp. 1–15. Available online: https://www.bfr.bund.de/cm/343/aluminiumhaltige-antitranspirantien-tragen-zur-aufnahme-von-aluminium-bei.pdf (accessed on 21 October 2024).
- AGES. Aluminium in Lebensmitteln und Anderen Verbrauchernahen Produkten 2010–2017; Österreichische Agentur Für Gesundheit Und Ernährungssicherheit GmbH: Wien, Österreich, 2017. [Google Scholar]
- Filippini, T.; Tancredi, S.; Malagoli, C.; Cilloni, S.; Malavolti, M.; Violi, F.; Vescovi, L.; Bargellini, A.; Vinceti, M. Aluminum and Tin: Food Contamination and Dietary Intake in an Italian Population. J. Trace Elem. Med. Biol. 2019, 52, 293–301. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Health and Food Safety, Final Opinion on Tolerable Intake of Aluminium with Regards to Adapting the Migration Limits for Aluminium in Toys; 2017; ISBN 978-92-79-80134-1. Available online: https://op.europa.eu/en/publication-detail/-/publication/f55246b3-32fb-11e8-b5fe-01aa75ed71a1/language-en (accessed on 21 October 2024). [CrossRef]
- Darbre, P.D. Aluminium, Antiperspirants and Breast Cancer. J. Inorg. Biochem. 2005, 99, 1912–1919. [Google Scholar] [CrossRef]
- Tsialtas, I.; Gorgogietas, V.A.; Michalopoulou, M.; Komninou, A.; Liakou, E.; Georgantopoulos, A.; Kalousi, F.D.; Karra, A.G.; Protopapa, E.; Psarra, A.M.G. Neurotoxic Effects of Aluminum Are Associated with Its Interference with Estrogen Receptors Signaling. Neurotoxicology 2020, 77, 114–126. [Google Scholar] [CrossRef]
- Darbre, P.D.; Mannello, F.; Exley, C. Aluminium and Breast Cancer: Sources of Exposure, Tissue Measurements and Mechanisms of Toxicological Actions on Breast Biology. J. Inorg. Biochem. 2013, 128, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Goeyens, L.; Covaci, A. Are Potential Sources for Human Exposure to Bisphenol-A Overlooked? Int. J. Hyg. Environ. Health 2011, 214, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Catenza, C.J.; Farooq, A.; Shubear, N.S.; Donkor, K.K. A Targeted Review on Fate, Occurrence, Risk and Health Implications of Bisphenol Analogues. Chemosphere 2021, 268, 129273. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.P.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.M.; Pussemier, L.; Scippo, M.L.; et al. A Review of Dietary and Non-Dietary Exposure to Bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. High Levels of Bisphenol A in Paper Currencies from Several Countries, and Implications for Dermal Exposure. Environ. Sci. Technol. 2011, 45, 6761–6768. [Google Scholar] [CrossRef]
- Lu, S.Y.; Chang, W.J.; Sojinu, S.O.; Ni, H.G. Bisphenol A in Supermarket Receipts and Its Exposure to Human in Shenzhen, China. Chemosphere 2013, 92, 1190–1194. [Google Scholar] [CrossRef]
- Chapin, R.E.; Adams, J.; Boekelheide, K.; Gray, L.E.; Hayward, S.W.; Lees, P.S.J.; McIntyre, B.S.; Portier, K.M.; Schnorr, T.M.; Selevan, S.G.; et al. NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Bisphenol A. Birth Defects Res. B Dev. Reprod. Toxicol. 2008, 83, 157–395. [Google Scholar] [CrossRef]
- Chen, M.Y.; Ike, M.; Fujita, M. Acute Toxicity, Mutagenicity, and Estrogenicity of Bisphenol-A and Other Bisphenols. Environ. Toxicol. 2002, 17, 80–86. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol a Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Zhao, Q.; Howard, E.W.; Parris, A.B.; Ma, Z.; Xing, Y.; Yang, X. Bisphenol AF Promotes Estrogen Receptor-Positive Breast Cancer Cell Proliferation through Amphiregulin-Mediated Crosstalk with Receptor Tyrosine Kinase Signaling. PLoS ONE 2018, 14, e0216469. [Google Scholar] [CrossRef]
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, T.; Kawamura, N.; Hara, K.; Tsugane, S. Urinary Bisphenol A and Plasma Hormone Concentrations in Male Workers Exposed to Bisphenol A Diglycidyl Ether and Mixed Organic Solvents. Occup. Environ. Med. 2002, 59, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Roark, A.M. Endocrine Disruptors and Marine Systems. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Corrales, J.; Kristofco, L.A.; Baylor Steele, W.; Yates, B.S.; Breed, C.S.; Spencer Williams, E.; Brooks, B.W. Global Assessment of Bisphenol a in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Sampath, S.; Mukhopadhyay, M.; Selvaraj, S.; Bharat, G.K.; Nizzetto, L. Baseline Investigation on Platicizers, Bisphenol A, Polycyclic Aromatic Hydrocarbons and Heavy Metals in the Surface Soil of the Informal Electronic Waste Recycling Workshops and Nearby Open Dumpsites in Indian Metropolitan Cities. Environ. Pollut. 2019, 248, 1036–1045. [Google Scholar] [CrossRef]
- Staniszewska, M.; Koniecko, I.; Falkowska, L.; Burska, D.; Kiełczewska, J. The Relationship between the Black Carbon and Bisphenol A in Sea and River Sediments (Southern Baltic). J. Environ. Sci. 2016, 41, 24–32. [Google Scholar] [CrossRef]
- Biedermann, S.; Tschudin, P.; Grob, K. Transfer of Bisphenol A from Thermal Printer Paper to the Skin. Anal. Bioanal. Chem. 2010, 398, 571–576. [Google Scholar] [CrossRef]
- Freire, C.; Molina-Molina, J.-M.; Iribarne-Durán, L.M.; Jiménez-Díaz, I.; Vela-Soria, F.; Mustieles, V.; Arrebola, J.P.; Fernández, M.F.; Artacho-Cordón, F.; Olea, N. Concentrations of Bisphenol A and Parabens in Socks for Infants and Young Children in Spain and Their Hormone-like Activities. Environ. Int. 2019, 127, 592–600. [Google Scholar] [CrossRef]
- Negev, M.; Berman, T.; Reicher, S.; Sadeh, M.; Ardi, R.; Shammai, Y. Concentrations of Trace Metals, Phthalates, Bisphenol A and Flame-Retardants in Toys and Other Children’s Products in Israel. Chemosphere 2018, 192, 217–224. [Google Scholar] [CrossRef]
- Khan, N.G.; Correia, J.; Adiga, D.; Rai, P.S.; Dsouza, H.S.; Chakrabarty, S.; Kabekkodu, S.P. A Comprehensive Review on the Carcinogenic Potential of Bisphenol A: Clues and Evidence. Environ. Sci. Pollut. Res. 2021, 28, 19643–19663. [Google Scholar] [CrossRef]
- Rubin, B.S. Bisphenol A: An Endocrine Disruptor with Widespread Exposure and Multiple Effects. J. Steroid Biochem. Mol. Biol. 2011, 127, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.C.; Leonard, L.S.; Maness, S.C.; Wagner, B.L.; Conner, K.; Zacharewski, T.; Safe, S.; McDonnell, D.P.; Gaido, K.W. Bisphenol A Interacts with the Estrogen Receptor α in a Distinct Manner from Estradiol. Mol. Cell Endocrinol. 1998, 142, 203–214. [Google Scholar] [CrossRef]
- Tatay, E.; Espín, S.; García-Fernández, A.J.; Ruiz, M.J. Estrogenic Activity of Zearalenone, α-Zearalenol and β-Zearalenol Assessed Using the E-Screen Assay in MCF-7 Cells. Toxicol. Mech. Methods 2018, 28, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Huangfu, B.; Xu, T.; Xu, W.; Asakiya, C.; He, X.; Huang, K. Research Progress of Safety of Zearalenone: A Review. Toxins 2022, 14, 386. [Google Scholar] [CrossRef]
- Duarte, S.C.; Pena, A.; Lino, C.M. A Review on Ochratoxin A Occurrence and Effects of Processing of Cereal and Cereal Derived Food Products. Food Microbiol. 2010, 27, 187–198. [Google Scholar] [CrossRef]
- Frizzell, C.; Verhaegen, S.; Ropstad, E.; Elliott, C.T.; Connolly, L. Endocrine Disrupting Effects of Ochratoxin A at the Level of Nuclear Receptor Activation and Steroidogenesis. Toxicol. Lett. 2013, 217, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef]
- Patra, S.; Gorai, S.; Pal, S.; Ghosh, K.; Pradhan, S.; Chakrabarti, S. A Review on Phytoestrogens: Current Status and Future Direction. Phytother. Res. 2023, 37, 3097–3120. [Google Scholar] [CrossRef]
- Zhang, C.; Schilirò, T.; Gea, M.; Bianchi, S.; Spinello, A.; Magistrato, A.; Gilardi, G.; Di Nardo, G. Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor. Int. J. Environ. Res. Public Health 2020, 17, 5664. [Google Scholar] [CrossRef]
- Gea, M.; Zhang, C.; Tota, R.; Gilardi, G.; Di Nardo, G.; Schilirò, T. Assessment of Five Pesticides as Endocrine-Disrupting Chemicals: Effects on Estrogen Receptors and Aromatase. Int. J. Environ. Res. Public Health 2022, 19, 1959. [Google Scholar] [CrossRef]
- Silva, N.; Peiris-John, R.; Wickremasinghe, R.; Senanayake, H.; Sathiakumar, N. Cadmium a Metalloestrogen: Are We Convinced? J. Appl. Toxicol. 2012, 32, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Demaegdt, H.; Daminet, B.; Evrard, A.; Scippo, M.L.; Muller, M.; Pussemier, L.; Callebaut, A.; Vandermeiren, K. Endocrine Activity of Mycotoxins and Mycotoxin Mixtures. Food Chem. Toxicol. 2016, 96, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.L.Y.; Walker, C.L. Molecular Pathways: Environmental Estrogens Activate Nongenomic Signaling to Developmentally Reprogram the Epigenome. Clin. Cancer Res. 2013, 19, 3732–3737. [Google Scholar] [CrossRef] [PubMed]
- Engström, W.; Darbre, P.; Eriksson, S.; Gulliver, L.; Hultman, T.; Karamouzis, M.V.; Klaunig, J.E.; Mehta, R.; Moorwood, K.; Sanderson, T.; et al. The Potential for Chemical Mixtures from the Environment to Enable the Cancer Hallmark of Sustained Proliferative Signalling. Carcinogenesis 2015, 36 (Suppl. S1), S38–S60. [Google Scholar] [CrossRef] [PubMed]
- Hom, M.; Sriprasert, I.; Ihenacho, U.; Castelao, J.E.; Siegmund, K.; Bernstein, L.; Cortessis, V.K. Systematic Review and Meta-Analysis of Testicular Germ Cell Tumors Following In Utero Exposure to Diethylstilbestrol. JNCI Cancer Spectr. 2019, 3, pkz045. [Google Scholar] [CrossRef]
- Troisi, R.; Hatch, E.E.; Titus, L.; Strohsnitter, W.; Gail, M.H.; Huo, D.; Adam, E.; Robboy, S.J.; Hyer, M.; Hoover, R.N.; et al. Prenatal Diethylstilbestrol Exposure and Cancer Risk in Women. Environ. Mol. Mutagen. 2019, 60, 395–403. [Google Scholar] [CrossRef]
- Dudley, S.Z. Are Xenoestrogens Breast Cancer Risk Factors? Unravelling the Cocktail Effect. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2018. [Google Scholar]
- Viñas, R.; Jeng, Y.J.; Watson, C.S. Non-Genomic Effects of Xenoestrogen Mixtures. Int. J. Environ. Res. Public Health 2012, 9, 2694–2714. [Google Scholar] [CrossRef]
- Elskens, M.; Boonen, I.; Eisenreich, S. Prediction and Assessment of Xenoestrogens Mixture Effects Using the in Vitro ERα-CALUX Assay. Front. Toxicol. 2023, 5, 1252847. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- da Costa Vieira, R.A.; Biller, G.; Uemura, G.; Ruiz, C.A.; Curado, M.P. Breast Cancer Screening in Developing Countries. Clinics 2017, 72, 244–253. [Google Scholar] [CrossRef]
- Davis, D.L.; Bradlow, H.L. Can Environmental Estrogens Cause Breast Cancer? Sci. Am. 1995, 273, 166–172. [Google Scholar] [CrossRef]
- Josephy, P.D.; Feigelson, H.S.; Henderson, B.E. Re: Feigelson, H.S. and Henderson, B.E. (1996) Estrogens and Breast Cancer. Carcinogenesis, 17, 2279-2284 (Multiple Letters). Carcinogenesis 1997, 18, 1859–1860. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, S.V.; Huang, Y.; Snider, K.E.; Zhou, Y.; Pogash, T.J.; Russo, J. Expression and DNA Methylation Changes in Human Breast Epithelial Cells after Bisphenol A Exposure. Int. J. Oncol. 2012, 41, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Bin Hong, Y.; Weon Yi, Y.; Cho, C.H.; Wang, A.; Bae, I. The Correlations between BRCA1 Defect and Environmental Factors in the Risk of Breast Cancer. J. Toxicol. Sci. 2013, 38, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Härkönen, P.L.; Mäkelä, S.I. Role of Estrogens in Development of Prostate Cancer. J. Steroid Biochem. Mol. Biol. 2004, 92, 297–305. [Google Scholar] [CrossRef]
- Andersen, H.R.; Andersson, A.M.; Arnold, S.F.; Autrup, H.; Barfoed, M.; Beresford, N.A.; Bjerregaard, P.; Christiansen, L.B.; Gissel, B.; Hummel, R.; et al. Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals. Environ. Health Perspect. 1999, 107, 89–108. [Google Scholar] [CrossRef]
- Henderson, A.K.; Rosen, D.; Miller, G.L.; Figgs, L.W.; Zahm, S.H.; Sieber, S.M.; Humphrey, H.E.B.; Sinks, T. Breast Cancer among Women Exposed to Polybrominated Biphenyls. Epidemiology 1995, 6, 544–546. [Google Scholar] [CrossRef]
- Hileman, B. Environmental Estrogens Linked to Reproductive Abnormalities, Cancer. Chem. Eng. News 1994, 72, 19–23. [Google Scholar] [CrossRef]
- Duan, D.; Shang, M.; Han, Y.; Liu, J.; Liu, J.; Kong, S.H.; Hou, J.; Huang, B.; Lu, J.; Zhang, Y. EZH2-CCF-CGAS Axis Promotes Breast Cancer Metastasis. Int. J. Mol. Sci. 2022, 23, 1788. [Google Scholar] [CrossRef]
- Newbold, R.R. Prenatal Exposure to Diethylstilbestrol (DES). Fertil. Steril. 2008, 89, e55–e56. [Google Scholar] [CrossRef]
- Doherty, L.F.; Bromer, J.G.; Zhou, Y.; Aldad, T.S.; Taylor, H.S. In Utero Exposure to Diethylstilbestrol (DES) or Bisphenol-A (BPA) Increases EZH2 Expression in the Mammary Gland: An Epigenetic Mechanism Linking Endocrine Disruptors to Breast Cancer. Horm. Cancer 2010, 1, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.E.; Feigelson, H.S. Hormonal Carcinogenesis. Carcinogenesis 2000, 21, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Aichinger, G.; Beisl, J.; Marko, D. The Hop Polyphenols Xanthohumol and 8-Prenyl-Naringenin Antagonize the Estrogenic Effects of Fusarium Mycotoxins in Human Endometrial Cancer Cells. Front. Nutr. 2018, 5, 85. [Google Scholar] [CrossRef]
- Pajewska, M.; Łojko, M.; Cendrowski, K.; Sawicki, W.; Kowalkowski, T.; Buszewski, B.; Gadzała-Kopciuch, R. The Determination of Zearalenone and Its Major Metabolites in Endometrial Cancer Tissues. Anal. Bioanal. Chem. 2018, 410, 1571–1582. [Google Scholar] [CrossRef]
- Braunstein, G.D. Environmental Gynecomastia. Endocr. Pract. 2008, 14, 409–411. [Google Scholar] [CrossRef]
- Clemons, J.; Michael Glodé, L.; Gao, D.; Flaig, T.W. Low-Dose Diethylstilbestrol for the Treatment of Advanced Prostate Cancer. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 198–204. [Google Scholar] [CrossRef]
- Fentiman, I.S. The Biology of Male Breast Cancer. Breast 2018, 38, 132–135. [Google Scholar] [CrossRef]
- Fritz, H.; Seely, D.; Flower, G.; Skidmore, B.; Fernandes, R.; Vadeboncoeur, S.; Kennedy, D.; Cooley, K.; Wong, R.; Sagar, S.; et al. Soy, Red Clover, and Isoflavones and Breast Cancer: A Systematic Review. PLoS ONE 2013, 8, e81968. [Google Scholar] [CrossRef] [PubMed]
- Pagliacci, M.C.; Smacchia, M.; Migliorati, G.; Grignani, F.; Riccardi, C.; Nicoletti, I. Growth-Inhibitory Effects of the Natural Phyto-Oestrogen Genistein in MCF-7 Human Breast Cancer Cells. Eur. J. Cancer 1994, 30, 1675–1682. [Google Scholar] [CrossRef]
- Smolich, B.D.; Yuen, H.A.; West, K.A.; Giles, F.J.; Albitar, M.; Cherrington, J.M. The Antiangiogenic Protein Kinase Inhibitors SU5416 and SU6668 Inhibit the SCF Receptor (c-Kit) in a Human Myeloid Leukemia Cell Line and in Acute Myeloid Leukemia Blasts. Blood 2001, 97, 1413–1421. [Google Scholar] [CrossRef]
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; et al. Genistein and Cancer: Current Status, Challenges, and Future Directions. Adv. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef] [PubMed]
- El Touny, L.H.; Banerjee, P.P. Identification of Both Myt-1 and Wee-1 as Necessary Mediators of the P21-Independent Inactivation of the Cdc-2/Cyclin B1 Complex and Growth Inhibition of TRAMP Cancer Cells by Genistein. Prostate 2006, 66, 1542–1555. [Google Scholar] [CrossRef] [PubMed]
- Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Castoria, G. Estrogens and Their Receptors in Prostate Cancer: Therapeutic Implications. Front. Oncol. 2018, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Eubanks, M. The Safety of Xenoestrogens. Environ. Health Perspect. 2004, 112, A897. [Google Scholar] [CrossRef]
- Koong, L.Y.; Watson, C.S. Rapid, Nongenomic Signaling Effects of Several Xenoestrogens Involved in Early- vs. Late-Stage Prostate Cancer Cell Proliferation. Endocr. Disruptors 2015, 3, e995003. [Google Scholar] [CrossRef]
- Wetherill, Y.B.; Fisher, N.L.; Staubach, A.; Danielsen, M.; De Vere White, R.W.; Knudsen, K.E. Xenoestrogen Action in Prostate Cancer: Pleiotropic Effects Dependent on Androgen Receptor Status. Cancer Res. 2005, 65, 54–65. [Google Scholar] [CrossRef]
- Eden, J.A. Phytoestrogens for Menopausal Symptoms: A Review. Maturitas 2012, 72, 157–159. [Google Scholar] [CrossRef]
- Amaral, C.; Toloi, M.R.T.; Vasconcelos, L.D.; Fonseca, M.J.V.; Correia-Da-Silva, G.; Teixeira, N. The Role of Soybean Extracts and Isoflavones in Hormone-Dependent Breast Cancer: Aromatase Activity and Biological Effects. Food Funct. 2017, 8, 3064–3074. [Google Scholar] [CrossRef]
- Varinska, L.; Gal, P.; Mojzisova, G.; Mirossay, L.; Mojzis, J. Soy and Breast Cancer: Focus on Angiogenesis. Int. J. Mol. Sci. 2015, 16, 11728–11749. [Google Scholar] [CrossRef]
- D’Alonzo, M.; Bounous, V.E.; Villa, M.; Biglia, N. Current Evidence of the Oncological Benefit-Risk Profile of Hormone Replacement Therapy. Medicina 2019, 55, 573. [Google Scholar] [CrossRef]
- Fucic, A.; Gamulin, M.; Ferencic, Z.; Katic, J.; Krayer Von Krauss, M.; Bartonova, A.; Merlo, D.F. Environmental Exposure to Xenoestrogens and Oestrogen Related Cancers: Reproductive System, Breast, Lung, Kidney, Pancreas, and Brain. Environ. Health 2012, 11, S8. [Google Scholar] [CrossRef] [PubMed]
- Trushin, N.; Leder, G.; El-Bayoumy, K.; Hoffmann, D.; Beger, H.G.; Henne-Bruns, D.; Ramadani, M.; Prokopczyk, B. The Tobacco Carcinogen NNK Is Stereoselectively Reduced by Human Pancreatic Microsomes and Cytosols. Langenbecks Arch. Surg. 2008, 393, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Majidi, M.; Al-Wadei, H.A.; Takahashi, T.; Schuller, H.M. Nongenomic β Estrogen Receptors Enhance Β1 Adrenergic Signaling Induced by the Nicotine-Derived Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)- 1-Butanone in Human Small Airway Epithelial Cells. Cancer Res. 2007, 67, 6863–6871. [Google Scholar] [CrossRef] [PubMed]
- Pauly, J.R.; Slotkin, T.A. Maternal Tobacco Smoking, Nicotine Replacement and Neurobehavioural Development. Acta Paediatr. Int. J. Paediatr. 2008, 97, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Storgaard, L.; Bonde, J.P.; Olsen, J. Male Reproductive Disorders in Humans and Prenatal Indicators of Estrogen Exposure: A Review of Published Epidemiological Studies. Reprod. Toxicol. 2006, 21, 4–15. [Google Scholar] [CrossRef]
- Sawicka, E.; Saczko, J.; Kulbacka, J.; Szydełko, M.; Szymańska, B.; Piwowar, A. The Influence of Interaction between Cd with 17β-Estradiol, 2-Methoxyestradiol and 16α-Hydroxyestrone on Viability and P-Glycoprotein in Ovarian Cancer Cell Line. Int. J. Mol. Sci. 2022, 23, 2628. [Google Scholar] [CrossRef]
- Kunisue, T.; Chen, Z.; Buck Louis, G.; Sundaram, R.; Hediger, M.L.; Sun, L.; Kannan, K. Urinary Concentrations of Benzophenone-Type UV Filters in U.S. Women and Their Association with Endometriosis. Environ. Sci. Technol. 2012, 46, 4624–4632. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, T.; Gao, Y.; Cui, S.; Liu, W.; Zhang, C.; Zhuang, S. Benzophenone-1 Induced Aberrant Proliferation and Metastasis of Ovarian Cancer Cells via Activated ERα and Wnt/β-Catenin Signaling Pathways. Environ. Pollut. 2022, 292, 118370. [Google Scholar] [CrossRef]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, Environmental Exposure, and Health Outcomes. Environ. Health Perspect. 2010, 118, 2587–2602. [Google Scholar] [CrossRef]
- Ronchetti, S.A.; Miler, E.A.; Duvilanski, B.H.; Cabilla, J.P. Cadmium Mimics Estrogen-Driven Cell Proliferation and Prolactin Secretion from Anterior Pituitary Cells. PLoS ONE 2013, 8, e81101. [Google Scholar] [CrossRef]
- Kolbaum, A.E.; Berg, K.; Müller, F.; Kappenstein, O.; Lindtner, O. Dietary Exposure to Elements from the German Pilot Total Diet Study (TDS). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1822–1836. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T.I. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Novotna, E. Ochratoxin A: Developmental and Reproductive Toxicity-an Overview. Birth Defects Res. B Dev. Reprod. Toxicol. 2013, 98, 493–502. [Google Scholar] [CrossRef] [PubMed]
Xenoestrogen | Effect of Action | References |
---|---|---|
Phytoestrogenes | ||
Genistein (7,4′-dihydroxy-6-methoxyisoflavone) | Estrogenic and anti-estrogenic activity, Inhibition of 5α-reductase activity, Inhibition of aromatase activity | [4,128] |
Daidzein (7,4′-dihydroxy isoflavone) | ||
Biochanin A (5,7 dihydroxy-4′-methoxy isoflavone) | ||
Formononetin (7-hydroxy-4′-methoxyisoflavone) | ||
Equol | ||
Pesticides | ||
Thiacloprid | Estrogenic activity at high concentrations | [129] |
Imidacloprid | Estrogenic activity at high concentrations | [129] |
Glyphosate | Inhibition of aromatase activity (up to 30%) | [129] |
Metiokarb | Estrogenic activity at high concentrations | [130] |
Metaloestrogens | ||
Cadmium | Estrogenic activity | [131] |
Aluminium | Interference with estrogen binding to the receptor and estrogen-dependent reporter gene expression | [98] |
Phenols | ||
Bisphenol A | Primarily estrogenic and anti-androgenic effect, Anti-estrogenic and androgenic effect also described, Similar hormonal activity | [108] |
Bisphenol F | ||
Bisphenol S | ||
Bisphenol AF | ||
Mycoestrogenes | ||
Zearalenone | Estrogenic and anti-androgenic effect | [123,124,132] |
Ochratoxin A | No direct effect on estrogen receptors, Disruption of steroid synthesis, Exact mechanism unknown | [126] |
Xenoestrogen | Source | Health | References |
---|---|---|---|
Cd | Sources of Pollution from Industrial and Agricultural Practices:
| Increased risk of breast, bladder, renal, and ovarian cancer | [73,85,89,180,181] |
Al | Food: legumes, nuts, oilseeds, spices. Cosmetics: antiperspirants | Stimulate breast cancer development | [94,98,182] |
Isoflavones: genistein, glycytin, biochanin A, formononetin, | Food: legumes (Fabaceae family), soy products, chickpeas, nuts, red and white clover, alfalfa | Profound stimulatory effects on prostate cancer cell proliferation. In contrast to lowering the risk of breast cancer | [34,159,166,183] |
Resveratrol | Food: grapes, wine | Prevention of cardiovascular diseases. Potential use in cancer prevention and therapy | [4,46,47] |
Bisphenol-A | Food containers and packaging: plastic plates, cups, microwave dishes, reusable bottles Building materials and miscellaneous products: CD-ROMs, sunglasses, medical equipment, dental materials, thermal paper, varnishes, adhesives, carpets, plastic, pipes, wastewater, dust | BPA increases mutation frequency in BRCA1 carriers, and high concentration can lead to breast cancer. | [103,114,144] |
Zearalenone | Food: grains: corn, wheat, rice, soybeans, oats | Reproductive disorder, hepatotoxicity, nephrotoxicity. Promotion of carcinogenic process of breast, prostate, esophageal, and liver cancer. | [123,124] |
Ochratoxin A | Food: cereals, wheat, oats, grapes, coffee, tea, wine, meat. | Nephrotoxicity, according to IARC group 2B (possibly cancerogenic effects) | [125,126,127,184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gachowska, M.; Dąbrowska, A.; Wilczyński, B.; Kuźnicki, J.; Sauer, N.; Szlasa, W.; Kobierzycki, C.; Łapińska, Z.; Kulbacka, J. The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development. Int. J. Mol. Sci. 2024, 25, 12363. https://doi.org/10.3390/ijms252212363
Gachowska M, Dąbrowska A, Wilczyński B, Kuźnicki J, Sauer N, Szlasa W, Kobierzycki C, Łapińska Z, Kulbacka J. The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development. International Journal of Molecular Sciences. 2024; 25(22):12363. https://doi.org/10.3390/ijms252212363
Chicago/Turabian StyleGachowska, Martyna, Alicja Dąbrowska, Bartosz Wilczyński, Jacek Kuźnicki, Natalia Sauer, Wojciech Szlasa, Christopher Kobierzycki, Zofia Łapińska, and Julita Kulbacka. 2024. "The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development" International Journal of Molecular Sciences 25, no. 22: 12363. https://doi.org/10.3390/ijms252212363
APA StyleGachowska, M., Dąbrowska, A., Wilczyński, B., Kuźnicki, J., Sauer, N., Szlasa, W., Kobierzycki, C., Łapińska, Z., & Kulbacka, J. (2024). The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development. International Journal of Molecular Sciences, 25(22), 12363. https://doi.org/10.3390/ijms252212363