A Critical Review of Recent Advances in Maize Stress Molecular Biology
Abstract
:1. Introduction
2. Molecular Mechanisms of Maize Stress Resistance
2.1. Analysis of Maize Stress Resistance-Physiological and Biochemical-Mechanisms
2.1.1. Physiological and Biochemical Mechanisms of Maize Stress Resistance Under High-Temperature and Drought Conditions
2.1.2. Maize Stress Resistance Physiological and Biochemical Mechanisms Under Low Temperature
2.1.3. Physiological and Biochemical Mechanisms of Maize Stress Resistance in Heavy Metal-Rich Environments
2.1.4. Physiological and Biochemical Mechanisms of Maize Stress Resistance Under Salt Stress
2.1.5. Physiological and Biochemical Mechanisms of Maize Stress Resistance Under Pathogen Stress
2.2. Research on the Signal Transduction Pathways and Key Genes of Maize Under Stress
2.2.1. Research on Signal Transduction Pathways and Key Genes of Maize Under High-Temperature and Drought Stress
2.2.2. Research on Signal Transduction Pathways and Key Genes of Maize Under Low-Temperature Stress
2.2.3. Research on Signal Transduction Pathways and Key Genes of Maize in Heavy Metal Environments
2.2.4. Research on Signal Transduction Pathways and Key Genes of Maize Under Salt Stress
2.2.5. Research on Signal Transduction Pathways and Key Genes of Maize Under Pathogen Stress
2.3. Metabolic Pathways and Key Genes Related to Maize Stress Resistance
2.4. Application of Genomics and Bioinformatics in Maize Stress Resistance Research
2.5. The Role of Transcription Factors in Maize Stress Resistance
3. Maize Stress-Resistance-Related Genetic Engineering
3.1. Transgenic Breeding and Transgenic Maize Varieties
3.2. New Maize Varieties Assisted by Molecular Biology Techniques
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Yue, H.; Xie, J.; Bu, J.; Li, L.; Xin, X.; Zhao, Y.; Zhang, H.; Yang, L.; Wang, J.H.; et al. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination. Sci. Rep. 2021, 11, 19345. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J.S. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef]
- Gong, F.; Yang, L.; Tai, F.; Hu, X.; Wang, W. Omics of maize stress response for sustainable food production: Opportunities and challenges. OMICS J. Integr. Biol. 2014, 18, 714–732. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Sengupta, S.; Fritschi, F.B.; Azad, R.K.; Nechushtai, R.; Mittler, R. The impact of multifactorial stress combination on plant growth and survival. New Phytol. 2021, 230, 1034–1048. [Google Scholar] [CrossRef]
- Hirayama, T.; Shinozaki, K. Research on plant abiotic stress responses in the post-genome era: Past, present and future. Plant J. 2010, 61, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.K.; Agarwal, P.; Reddy, M.K.; Sopory, S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006, 25, 1263–1274. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, J.K. Abiotic stress signal transduction in plants, Molecular and genetic perspectives. Physiol. Plant. 2001, 112, 152–166. [Google Scholar] [CrossRef]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Cano-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Léon, J.; Naz, A.A.; Ballvora, A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 2021, 72, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, C.; Li, Z.X.; Ran, Q.J.; Xie, G.G.; Wang, B.M.; Fang, F.; Chu, J.F.; Zhang, J.R. ZmbZIP4 Contributes to Stress Resistance in Maize by Regulating ABA Synthesis and Root Development. Plant Physiol. 2018, 178, 753–770. [Google Scholar] [CrossRef] [PubMed]
- Potocka, I.; Szymanowska-Pulka, J. Morphological responses of plant roots to mechanical stress. Ann. Bot. 2018, 122, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Peng, Y.; Zhao, X.; Wu, B.; Chen, F.; Ren, B.; Zhuang, Z.; Gao, Q.H.; Ding, Y.F. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Int. J. Mol. Sci. 2019, 20, 2793. [Google Scholar] [CrossRef] [PubMed]
- Dinneny, J.R. Developmental Responses to Water and Salinity in Root Systems. Annu. Rev. Cell Dev. Biol. 2019, 35, 239–257. [Google Scholar] [CrossRef]
- Rellan-Alvarez, R.; Lobet, G.; Dinneny, J.R. Environmental Control of Root System Biology. Annu. Rev. Plant Biol. 2016, 67, 619–642. [Google Scholar] [CrossRef]
- Bertolino, L.T.; Caine, R.S.; Gray, J.E. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front. Plant Sci. 2019, 10, 225. [Google Scholar] [CrossRef]
- Avramova, V.; Abdelgawad, H.; Zhang, Z.F.; Fotschki, B.; Casadevall, R.; Vergauwen, L.; Knapen, D.; Taleisnik, E.; Guisez, Y.; Asard, H.; et al. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone. Plant Physiol. 2015, 169, 1382–1396. [Google Scholar] [CrossRef]
- Ding, S.C.; Cai, Z.Z.; Du, H.W.; Wang, H.W. Genome-Wide Analysis of TCP Family Genes in Zea mays L. Identified a Role for ZmTCP42 in Drought Tolerance. Int. J. Mol. Sci. 2019, 20, 2762. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Liu, H.; Wu, X.L.; Wang, W. Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC Plant Biol. 2020, 20, 315. [Google Scholar] [CrossRef]
- Xue, D.W.; Zhang, X.Q.; Lu, X.L.; Che, G.; Chen, Z.H. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance. Front. Plant Sci. 2017, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Du, Y.C.; He, C.; Dietrich, C.R.; Li, J.K.; Ma, X.L.; Wang, R.; Liu, Q.; Liu, S.Z.; Wang, G.Y.; et al. The Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J. Exp. Bot. 2019, 70, 3089–3099. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef]
- Devries, M.; Goggi, A.S.; Moore, K.J. Determining Seed Performance of Frost-Damaged Maize Seed Lots. Crop Sci. 2007, 47, 2089–2097. [Google Scholar] [CrossRef]
- Chen, L.; Cao, B.; Han, N.; Tao, Y.; Zhou, S.F.; Li, W.C.; Fu, F.L. Phospholipase D family and its expression in response to abiotic stress in maize. Plant Growth Reg. 2017, 81, 197–207. [Google Scholar] [CrossRef]
- Yang, B. Influence on cell membrane permeability and chloroplast membrane phospholipid under cold stress in maize. Guizhou Agric. Sci. 1996, 1, 54–55. [Google Scholar]
- Chen, W.P.; Li, P.H. Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells. Plant Cell Environ. 2002, 25, 955–962. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 2007, 26, 2027–2038. [Google Scholar] [CrossRef]
- Dubey, S.; Shri, M.; Gupta, A.; Rani, V.; Chakrabarty, D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ. Chem. Lett. 2018, 16, 1169–1192. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, H.Q.; Chen, J.; Chang, J.D.; Zhao, F.J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant Biol. 2023, 65, 570–593. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, Y.; Wu, M.; Liang, E.; Li, Y.; Zhang, D.; Yin, Z.; Ren, X.; Dai, Y.; Deng, D. Ability to Remove Na+ and Retain K + Correlates with Salt Tolerance in Two Maize Inbred Lines Seedlings. Front. Plant Sci. 2016, 7, 1716. [Google Scholar] [CrossRef] [PubMed]
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.; Schroeder, J.I. Plant Salt-Tolerance Mechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, D.H.; Redestig, H.; Krämer, U.; Udvardi, M.K.; Kopka, J. Metabolome-Ionome-Biomass Interactions: What Can we Learn About Salt Stress by Multiparallel Phenotyping? Plant Signal. Behav. 2008, 3, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.L.; McDowell, J.M. Two modes of pathogen recognition by plants. Proc. Natl. Acad. Sci. USA 2006, 103, 8575–8576. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.; Zhou, Q.; Dai, T.B.; Jiang, D. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review. Sci. Agric. Sin. 2021, 54, 2287–2301. [Google Scholar]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Xie, C.; Yang, L.; Jia, G.; Yan, K.; Zhang, S.; Yang, G.; Wu, C.; Gai, Y.; Zheng, C.; Huang, J. Maize Heat Up-regulated Gene 1 plays vital roles in heat stress tolerance. J. Exp. Bot. 2022, 73, 6417–6433. [Google Scholar] [CrossRef]
- Waadt, R. Phytohormone signaling mechanisms and genetic methods for their modulation and detection. Curr. Opin. Plant Biol. 2020, 57, 31–40. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef]
- Umezawa, T.; Okamoto, M.; Kushiro, T.; Nambara, E.; Oono, Y.; Seki, M.; Kobayashi, M.; Koshiba, T.; Kamiya, Y.; Shinozaki, K. CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J. 2006, 46, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Du, F.P.; Wang, Y.X.; Wang, J.; Li, Y.B.; Zhang, Y.; Zhao, X.Q.; Xu, J.L.; Li, Z.K.; Zhao, T.Y.; Wang, W.S.; et al. The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance. J. Integr. Plant Biol. 2023, 65, 1859–1873. [Google Scholar] [CrossRef]
- McAdam, S.A.M.; Brodribb, T.J. Mesophyll Cells Are the Main Site of Abscisic Acid Biosynthesis in Water-Stressed Leaves. Plant Physiol. 2018, 177, 911–917. [Google Scholar] [CrossRef]
- Song, W.M.; Sun, M.M.; Jiang, M.Y. Functional analysis of the interaction between SAPK and OsRboh in abscisic acid-induced H2O2 production in rice. J. Nanjing Agric. Univ. 2018, 41, 321–329. [Google Scholar]
- Zhou, Y.K.; Liao, Q.T.; Ding, X.F.; Jia, Q.J.; Ding, Z.Q. Advances in Brassinolide Regulation of Plant Growth and Development and Stress Resistance. Hans J. Agric. Sci. 2020, 10, 407–418. [Google Scholar]
- Yu, Y.W.; Huang, R.F. Ethylene and Plant Resistance to Adversity. J. Agric. Sci. Technol. 2013, 15, 70–75. [Google Scholar]
- Li, M.S.; Yan, X.F. Jasmonic acid signaling in plants and its biological functions in relation to environment. Acta Ecol. Sin. 2014, 34, 6779–6788. [Google Scholar]
- Gao, J.; Tong, S.Q.; Zhong, J.; Gong, X.; Wu, Y.J. Cloning of a HD-ZIP Transcription Factor Gene HD20 and A Preliminary Study on Function of Fiber Differentiation in Tobacco. Biotechnol. Bull. 2018, 34, 84–89. [Google Scholar]
- Zhao, X.; Guo, Q.; Chen, Q.Q.; Li, B.L.; Zhang, D.Q. Isolation, Expression and Single Nucleotide Polymorphisms Analysis of Heat Shock Transcription Factor HsfA1d in Populus. Sci. Silvae Sin. 2011, 47, 82–90. [Google Scholar]
- You, H.L.; Yuan, Y.H.; Li, C.J.; Zhang, L.Y. Cloning and Expression Analysis of MYB Homologous Gene PwMYB20 from Picea wilsonii. Sci. Silvae Sin. 2017, 53, 23–32. [Google Scholar]
- Fujita, Y. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 2009, 50, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, T.; Sugiyama, N.; Takahashi, F.; Anderson, J.C.; Ishihama, Y.; Peck, S.C.; Shinozaki, K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Plant Biol. 2013, 270, rs8. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.C.; Xue, L.; Batelli, G.; Lee, S.; Hou, Y.J.; Van Oosten, M.J.; Zhang, H.M.; Tao, W.A.; Zhu, J.K. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. USA 2013, 110, 11205–11210. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Fu, F.L.; Yu, H.Q.; Hu, T.; Zhang, Y.Y.; Tao, Y.; Zhu, J.K.; Zhao, Y.; Li, W.C. Interaction network of core ABA signaling components in maize. Plant Mol. Biol. 2018, 96, 245–263. [Google Scholar] [CrossRef]
- Xiang, Y.; Sun, X.; Gao, S.; Qin, F.; Dai, M. Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol. Plant. 2017, 10, 456–469. [Google Scholar] [CrossRef]
- Antoni, R.; Gonzalez-Guzman, M.; Rodriguez, L.; Rodrigues, A.; Pizzio, G.A.; Rodriguez, P.L. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol. 2012, 158, 970–980. [Google Scholar] [CrossRef]
- Gao, H.; Cui, J.; Liu, S.; Wang, S.; Lian, Y.; Bai, Y.; Zhu, T.; Wu, H.; Wang, Y.; Yang, S.; et al. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol. Plant. 2022, 15, 1558–1574. [Google Scholar] [CrossRef]
- Chen, X.; Ding, Y.; Yang, Y.; Song, C.; Wang, B.; Yang, S.; Guo, Y.; Gong, Z. Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 2021, 63, 53–78. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, Y.; Wang, Y.; Liu, F.; Li, Z.; Qi, J.; Wang, Y.; Zhang, J.; Yang, S.; Wang, Y.; et al. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytol. 2023, 237, 1728–1744. [Google Scholar] [CrossRef]
- Guo, M.; Rupe, M.A.; Wei, J.; Winkler, C.; Goncalves-Butruille, M.; Weers, B.P.; Cerwick, S.F.; Dieter, J.A.; Duncan, K.E.; Howard, R.J.; et al. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J. Exp. Bot. 2014, 65, 249–260. [Google Scholar] [CrossRef]
- Habben, J.E.; Bao, X.; Bate, N.J.; DeBruin, J.L.; Dolan, D.; Hasegawa, D.; Helentjaris, T.G.; Lafitte, R.H.; Lovan, N.; Mo, H.; et al. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol. J. 2014, 12, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Habben, J.E.; Archibald, R.L.; Drummond, B.J.; Chamberlin, M.A.; Williams, R.W.; Lafitte, H.R.; Weers, B.P. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiol. 2015, 169, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gao, H.; Wang, H.; Lafitte, H.R.; Archibald, R.L.; Yang, M.; Hakimi, S.M.; Mo, H.; Habben, J.E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2017, 15, 207–216. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, Y.; Yang, S. Molecular regulation of plant responses to environmental temperatures. Mol. Plant 2020, 13, 544–564. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Norén, L.; Kindgren, P.; Stachula, P.; Rühl, M.; Eriksson, M.M.; Hurry, V.; Strand, Å. Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth. Plant Physiol. 2016, 171, 1392–1406. [Google Scholar] [PubMed]
- Lin, Z.; Li, Y.; Wang, Y.B.; Liu, X.L.; Ma, L.; Zhang, Z.J.; Mu, C.; Zhang, Y.; Peng, L.; Xie, S.J.; et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat. Commun. 2021, 12, 2456. [Google Scholar] [CrossRef]
- Ding, Y.L.; Li, H.; Zhang, X.Y.; Xie, Q.; Gong, Z.Z.; Yang, S.H. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell 2015, 32, 278. [Google Scholar] [CrossRef]
- Hu, B.B.; Deng, F.L.; Chen, G.; Chen, X.; Gao, W.; Long, L.; Xia, J.X.; Chen, Z.H. Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Front. Plant Sci. 2020, 11, 909. [Google Scholar] [CrossRef]
- Meng, Y.Z.; Li, M.Y.; Guo, Z.T.; Chen, J.F.; Wu, J.Y.; Xia, Z. The transcription factor ZmbHLH105 confers cadmium tolerance by promoting abscisic acid biosynthesis in maize. J. Hazard. Mater. 2024, 480, 135826. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Wu, X.; Wu, W.; Zhang, Y.; Zhan, P.; Meng, X.; Hu, G.; Yang, S.; Lin, H. ZmHMA3, a Member of the Heavy-Metal Transporting ATPase Family, Regulates Cd and Zn Tolerance in Maize. Int. J. Mol. Sci. 2023, 24, 13496. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.J.; Li, T.Z.; Feng, Y.Y.; Wang, X.H.; Gao, B.W. Cloning and expression analysis of allene oxide cyclase gene from Aquilaria sinensis. Acta Pharm. Sin. 2018, 53, 467–475. [Google Scholar]
- Cramer, G.R.; Quarrie, S.A. Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct. Plant Biol. 2002, 29, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.P.; Ji, J.; Wang, G.; Jin, C.; Xie, C.; Du, X.L.; Guan, C.F.; Zhang, L.; Li, C. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress. China Biotechnol. 2016, 36, 31–37. [Google Scholar]
- Morgan, P.W.; Drew, M.C. Ethylene and plant responses to stress. Physiol. Plant 1997, 100, 620–630. [Google Scholar] [CrossRef]
- Cao, W.H.; Liu, J.; He, X.J.; Mu, R.L.; Zhou, H.L.; Chen, S.Y.; Zhang, J.S. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 2007, 143, 707–719. [Google Scholar] [CrossRef]
- Peng, J.Y.; Li, Z.H.; Wen, X.; Li, W.Y.; Shi, H.; Yang, L.S.; Zhu, H.Q.; Guo, H.W. Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis. PLoS Genet. 2014, 10, e1004664. [Google Scholar] [CrossRef]
- Luo, X.; Wang, B.C.; Gao, S.; Zhang, F.; Terzaghi, W.; Dai, M.Q. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. J. Integr. Plant Biol. 2019, 61, 658–674. [Google Scholar] [CrossRef]
- Ryu, H.; Cho, Y.G. Plant hormones in salt stress tolerance. J. Plant Biol. 2015, 58, 147–155. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Guo, J.B. Systemic Acquired Resistance and Signal Transduction in Plant. Sci. Agric. Sin. 2003, 36, 781–787. [Google Scholar]
- Zavaliev, R.; Dong, X.N. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Mol. Cell 2024, 84, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Zhen, J.B.; Liu, D.; Ouyang, Y.F.; Chi, J. Advances of the Mechanism and Function of Disease Resistance Regulated by NPR1 in Plants. China Cotton 2020, 47, 1–6. [Google Scholar]
- Cao, F.Y.; Yoshioka, K.; Desveaux, D. The roles of ABA in plant–pathogen interactions. J. Plant Res. 2011, 124, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, D.J.; Deng, Z. Advances in Research of Transcriptional Regulatory Network in Response to Cold Stress in Plants. Sci. Agric. Sin. 2014, 47, 3523–3533. [Google Scholar]
- Jiang, H.F.; Shi, Y.T.; Liu, J.Y.; Li, Z.; Fu, D.Y.; Wu, S.F.; Li, M.Z.; Yang, Z.J.; Shi, Y.L.; Lai, J.S.; et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat. Plants 2022, 8, 1176–1190. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.M.; Schumaker, K.S.; Zhu, J.K. Cell signaling during cold, drought, and salt stress. Plant Cell. 2002, 14 (Suppl. S1), 165–183. [Google Scholar] [CrossRef]
- Jnaka, C.; Ökrészb, L.; Bögrec, L.; Hirt, H. Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 2002, 5, 415–424. [Google Scholar] [CrossRef]
- Lu, T.C.; Meng, L.B.; Yang, C.P.; Liu, G.F.; Liu, G.J.; Ma, W.; Wang, B.C. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta 2008, 228, 1029–1041. [Google Scholar] [CrossRef]
- Wrzaczek, M.; Hirt, H. Plant MAP kinase pathways: How many and what for? Biol. Cell 2001, 93, 81–87. [Google Scholar] [CrossRef]
- Gohar, T.; Payal, A.; Murray, G.; Anil, K. MAPK machinery in plants. Plant Signal. Behav. 2010, 5, 1370–1378. [Google Scholar]
- Liu, Y.; Zhang, D.; Wang, L.; Li, D.Q. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol. Biol. Report. 2013, 31, 1446–1460. [Google Scholar] [CrossRef]
- Sun, W.; Chen, H.; Wang, J.; Sun, H.W.; Yang, S.K.; Sang, Y.L.; Lu, X.B.; Xu, X.H. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction. Funct. Integr. Genom. 2015, 15, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Hayford, R.K.; Haley, O.C.; Cannon, E.K.; Portwood II, J.L.; Gardiner, J.M.; Andorf, C.M.; Woodhouse, M.R. Functional annotation and meta-analysis of maize transcriptomes reveal genes involved in biotic and abiotic stress. BMC Genom. 2024, 25, 533. [Google Scholar] [CrossRef] [PubMed]
- Kakumanu, A.; Ambavaram, M.M.R.; Klumas, C.; Krishnan, A.; Batlang, U.; Myers, E.; Grene, R.; Pereira, A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 2012, 160, 846–867. [Google Scholar] [CrossRef] [PubMed]
- Min, H.W.; Chen, C.X.; Wei, S.W.; Shang, X.L.; Sun, M.Y.; Xia, R.; Liu, X.G.; Hao, D.Y.; Chen, H.B.; Xie, Q. Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Front. Plant Sci. 2016, 7, 1080. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, Z.P.; Li, D.L.; Cai, M.H.; Liang, Z.; Chen, Q.Q.; Du, X.M.; Wang, J.H.; Gu, R.L.; Li, L. Transcriptome Analysis Revealed the Potential Molecular Mechanism of Anthocyanidins’ Improved Salt Tolerance in Maize Seedlings. Plants 2023, 12, 2793. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Ren, Y.; Liu, J.; Liang, W.G.; Zhang, Y.Y.; Shen, F.Y.; Ling, J.; Zhang, C.Y. New Genes Identified as Modulating Salt Tolerance in Maize Seedlings Using the Combination of Transcriptome Analysis and BSA. Plants 2023, 12, 1331. [Google Scholar] [CrossRef]
- Meng, L.B.; Chen, Y.B.; Lu, T.C.; Wang, Y.F.; Qian, C.R.; Yu, Y.; Ge, X.L.; Li, X.H.; Wang, B.C. A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Mol. Biol. Rep. 2014, 41, 3431–3443. [Google Scholar] [CrossRef]
- Sobkowiak, A.; Jończyk, M.; Jarochowska, E.; Biecek, P.; Trzcinska-Danielewicz, J.; Leipner, J.; Fronk, J.; Sowiński, P. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. Plant Mol. Biol. 2014, 85, 317–331. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, J.; Cao, J.; Cai, Q.; Li, X.; Sun, Y.; Li, S.; Li, Y.; Hu, G.; Cao, S.; et al. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels. Genomics 2021, 113, 782–794. [Google Scholar] [CrossRef]
- Zeng, R.; Li, Z.; Shi, Y.; Fu, D.; Yin, P.; Cheng, J.; Jiang, C.; Yang, S. Natural variation in a type-A response regulator confers maize chilling tolerance. Nat. Commun. 2021, 12, 4713. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.D.; Makumbi, D.; Magorokosho, C.; Nair, S.; Borem, A.; Ribaut, J.M.; BänzigerBa, M.; Prasanna, B.M.; Crossa, J.; Babu, R. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 2013, 126, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Peng, Y.L.; Zhang, J.W.; Fang, P.; Wu, B.Y. Identification of QTLs and Meta-QTLs for Seven Agronomic Traits in Multiple Maize Populations under Well-Watered and Water-Stressed Conditions. Crop Sci. 2018, 58, 507–520. [Google Scholar] [CrossRef]
- Fracheboud, Y.; Jompuk, C.; Ribaut, J.M.; Stamp, P.; Leipner, J. Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol. Biol. 2004, 56, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Hund, A.; Fracheboud, Y.; Soldati, A.; Frascaroli, E.; Salvi, S.; Stamp, P. QTL controlling root and shoot traits of maize seedlings under cold stress. Theor. Appl. Genet. 2004, 109, 618–629. [Google Scholar] [CrossRef]
- Fracheboud, Y.; Ribaut, J.M.; Vargas, M.; Messmer, R.; Stamp, P. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J. Exp. Bot. 2002, 53, 1967–1977. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Butrón, A.; Moa, R.; Möller, E.M.; Röber, F.K.; Knaak, C.; Ernst, K.; Westhoff, P.; Geiger, H.H. Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L.). Mol. Breed. 2014, 33, 363–371. [Google Scholar] [CrossRef]
- Presterl, T.; Ouzunova, M.; Schmidt, W.; Möller, E.M.; Röber, F.K.; Knaak, C.; Ernst, K.; Westhoff, P.; Geiger, H.H. Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor. Appl. Genet. 2007, 114, 1059–1070. [Google Scholar] [CrossRef]
- Septiani, P.; Lanubile, A.; Stagnati, L.; Busconi, M.; Nelissen, H.; Enrico Pè, M.; Dell’Acqua, M.; Marocco, A. Unravelling the genetic basis of fusarium seedling rot resistance in the magic maize population: Novel targets for breeding. Sci. Rep. 2019, 9, 5665. [Google Scholar] [CrossRef]
- Rashid, Z.; Babu, V.; Sharma, S.; Singh, P.; Nair, S. Identification and validation of a key genomic region on chromosome 6 for resistance to Fusarium stalk rot in tropical maize. Theor. Appl. Genet. 2022, 135, 4549–4563. [Google Scholar] [CrossRef]
- Mu, C.; Gao, J.Y.; Zhou, Z.J.; Wang, Z.; Sun, X.D.; Zhang, X.C.; Dong, H.F.; Han, Y.N.; Li, X.P.; Wu, Y.B.; et al. Genetic analysis of cob resistance to F. verticillioides: Another step towards the protection of maize from ear rot. Theor. Appl. Genet. 2018, 132, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.; Zhou, Z.J.; Mu, C.; Zhang, X.C.; Gao, J.Y.; Liang, Y.K.; Chen, J.F.; Wu, Y.B.; Li, X.P.; Wang, X.W.; et al. Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Sci. Rep. 2017, 7, 46446. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Wang, H.W.; Liu, S.X.; Ferjani, A.; Li, J.S.; Yan, J.B.; Yang, X.H.; Qin, F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 2016, 48, 1233–1241. [Google Scholar] [CrossRef]
- Guo, J.; Li, C.H.; Zhang, X.Q.; Li, Y.X.; Zhang, D.F.; Shi, Y.S.; Song, Y.C.; Li, Y.; Yang, D.G.; Wang, T.Y. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci. 2020, 292, 110380. [Google Scholar] [CrossRef] [PubMed]
- Strigens, A.; Freitag, N.M.; Gilbert, X.; Grieder, C.; Riedelsheimer, C.; Schrag, T.A.; Messmer, R.; Melchinger, A.E. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant. Cell Environ. 2013, 36, 1871–1887. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.Y.; Xu, Q.Y.; Wang, D.D.; Di, H.; Huang, J.; Yang, X.W.; Wang, Z.F.; Zhang, L.; Dong, L.; et al. Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNAseq approaches. BMC Plant Biol. 2020, 20, 333. [Google Scholar] [CrossRef]
- Li, C.X.; Jia, Y.; Zhou, R.Y.; Liu, L.W.; Cao, M.N.; Zhou, Y.; Wang, Z.H.; Di, H. GWAS and RNA-seq analysis uncover candidate genes associated with alkaline stress tolerance in maize (Zea mays L.) seedlings. Front. Plant Sci. 2022, 13, 963874. [Google Scholar] [CrossRef]
- Wang, G.Y. Functional Characterization of Maize Transcription Factor ZmWRKY64 in Heavy Metal Cadmium Stress; Guizhou Normal University: Guiyang, China, 2023. [Google Scholar]
- Wei, S.; Xia, R.; Chen, C.; Shang, X.; Ge, F.; Wei, H.; Chen, H.; Wu, Y.; Xie, Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnol. J. 2021, 19, 2069–2081. [Google Scholar] [CrossRef]
- Timmermans, M.C.; Hudson, A.; Becraft, P.W.; Nelson, T. ROUGH SHEATH2: A Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 1999, 284, 151–153. [Google Scholar]
- Fu, J.Y.; Pei, W.Z.; He, L.Q.; Ma, B.; Tang, C.; Zhu, L.; Wang, L.P.; Zhong, Y.Y.; Chen, G.; Wang, Q.; et al. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genet. 2023, 19, e1011052. [Google Scholar] [CrossRef]
- Jiang, G.L. Molecular Marker-Assisted Breeding: A Plant Breeder’s Review. Advances in Plant Breeding Strategies: Breeding. Biotechnol. Mol. Tools 2015, 15, 431–472. [Google Scholar]
- Wang, C.X.; Li, W.Z.; Kessenich, C.R.; Petrick, J.S.; Rydel, T.J.; Sturman, E.J.; Lee, T.C.; Glenn, K.C.; Edrington, T.C. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul. Toxicol. Pharmacol. 2018, 99, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.H.; Ren, Z.O.; Xiao, J.H.; Wang, X.Q.; Yang, H.Z. Research progress of maize insect resistance. Chin. Agric. Sci. Bull. 2019, 35, 145–149. [Google Scholar]
- Lv, X.; Wang, H.; Zeng, X.; Yang, X.Y.; Weng, J.F.; Qiu, H.; Guo, Y.B.; Wang, Z.H.; Li, X.H. Research and application of transgenic bt com for insect resistance. Crops 2013, 2, 7–12. [Google Scholar]
- Li, Y.; Wang, T.Y. Germplasm enhancement in maize: Advances and prospects. J. Maize Sci. 2018, 26, 1–15. [Google Scholar]
- Wang, C.X.; Burzio, L.A.; Koch, M.S.; Silvanovich, A.; Bell, E. Purification, characterization and safety assessment of the introduced cold shock protein B in DroughtGard™ maize. Regul. Toxicol. Pharmacol. 2015, 71, 164–173. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Zou, J.J. Opportunities and Challenges for the Industrial Application of Transgenic Insect-resistant and Herbicide-tolerant Maize in China. Curr. Biotechnol. 2023, 13, 157–165. [Google Scholar]
- Zhao, P.; Cui, R.; Xu, P.; Wu, J.; Mao, J.L.; Chen, Y.; Zhou, C.Z.; Yu, L.H.; Xiang, C.B. ATHB17 enhances stress tolerance by coordinating photosynthesis associated nuclear gene and ATSIG5 expression in response to abiotic stress. Sci. Rep. 2017, 7, 45492. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Tends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Barrangou, R. Cas9 targeting and CRISPR revolution. Science 2014, 344, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.N.; Yu, Y.T.; Li, G.K.; Xie, L.H.; Guo, X.B.; Li, J.S.; Li, Y.L.; Hu, J.G. Genome-wide association study of vitamin E in sweet corn kernels. Crop J. 2020, 8, 341–350. [Google Scholar] [CrossRef]
- Yan, J.; Kandianis, C.B.; Harjes, C.E.; Bai, L.; Kim, E.H.; Yang, X.; Skinner, D.J.; Fu, Z.; Mitchell, S.; Li, Q.; et al. Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat. Genet. 2010, 42, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S. Progress in genetic improvement of maize nutritional quality—From genomics to molecular breeding. In Proceedings of the 2017 Annual Conference of the Chinese Crop Society, The Crop Science Society of China, Hebei, China, 18–20 October 2017; pp. 2–3. [Google Scholar]
- Chen, W.K.; Chen, L.; Zhang, X.; Yang, N.; Guo, J.H.; Wang, M.; Ji, S.H.; Zhao, X.Y.; Yin, P.F.; Cai, L.C.; et al. Convergent selection of aWD40 protein that enhances grain yield in maize and rice. Science 2022, 375, eabg7985. [Google Scholar] [CrossRef]
- Jiang, Y.L.; An, X.L.; Li, Z.W.; Yan, T.W.; Zhu, T.T.; Xie, K.; Liu, S.S.; Hou, Q.C.; Zhao, L.; Wu, S.W.; et al. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnol. J. 2021, 19, 1769–1784. [Google Scholar] [CrossRef]
Family | Family | Family | Family |
---|---|---|---|
AP2 | Dof | LBD | RAV |
ARF | E2F | LFY | S1Fa-like |
ARR-B | EIL | LSD | SBP |
B3 | ERF | MIKC | SRS |
BBR | FAR1 | M-type | STAT |
BES1 | G2-like | MYB | TALE |
bHLH | GATA | MYB-related | TCP |
bzip | GeBP | NAC | Trihelix |
C2H2 | GRAS | NF-X1 | VOZ |
C3H | GRF | NF-YA | Whirly |
CAMTA | HB-others | NF-YB | WOX |
CO-like | HD-ZIP | NF-YC | WRKY |
CPP | HRT-like | Nin-like | YABBA |
DBB | HSF | PHD | ZF-HD |
Trait | Transformed Name | Research Institute or Company | Target Gene | Year of Approval |
---|---|---|---|---|
Resistant to Lepidopteran pests | MON801 | Monsanto (Creve Coeur, MO, USA) | cry1Ab | 1995 |
MON809 | Monsanto (Creve Coeur, MO, USA) | cry1Ab | 1996 | |
MON810 | Monsanto (Creve Coeur, MO, USA) | cry1Ab | 1996 | |
MON802 | Monsanto (Creve Coeur, MO, USA) | cry1Ab | 1997 | |
MON89034 | Monsanto (Creve Coeur, MO, USA) | cry1A.105, cry2Ab | 2008 | |
MIR162 | Syngenta Group (Basel, Switzerland) | vip3Aa20 | 2009 | |
ND207 | China Agricultural University, China National Tree Seed Group Corporation Limited (Beijing, China) | mcry1Ab, mcry2Ab | 2021 | |
RF8 | RFGENE, Zhejiang University (Hangzhou, China) | cry1Ab, cry2Ab | 2021 | |
MON 95379 | - | Cry1Ab, Cry1b.868, Cry1be, Cry1ca, Cry1da_7 | 2023 | |
Resistant to Coleopteran pests | MON863 | Monsanto (Creve Coeur, MO, USA) | cry3Bb1 | 2002 |
MIR604 | Syngenta Group (Basel, Switzerland) | mcry3A | 2007 | |
5307 | Syngenta Group (Basel, Switzerland) | ecry3.1Ab | 2013 | |
MON 95275 | - | Mpp75Aa1.1, Vpb4Da21, DvSnf7.1 | 2023 | |
Herbicide-tolerant | DLL25 (B16) | Monsanto (Creve Coeur, MO, USA) | bar | 1995 |
T14 | Bayer (Berlin, Germany) | pat | 1995 | |
T25 | Bayer (Berlin, Germany) | pat | 1995 | |
GA21 | Monsanto (Creve Coeur, MO, USA) | mepsps | 1997 | |
NK603 | Monsanto (Creve Coeur, MO, USA) | cp4-epsps | 2000 | |
98140 | DowDuPont (Wilmington, DE, USA) | zm-hra, gat4621 | 2009 | |
DAS40278-9 | Dow Agrosciences China Ltd. (Beijing, China) | aad-1 | 2012 | |
MON87427 | Monsanto (Creve Coeur, MO, USA) | cp4-epsps | 2012 | |
VCO01981-5 | Genective (Weldon, IL, USA) | epspsgrg23ace5 | 2013 | |
MZHG0JG | Syngenta Group (Basel, Switzerland) | 2mepsps, pat | 2015 | |
MON87419 | Monsanto (Creve Coeur, MO, USA) | dmo, pat | 2016 | |
MON87429 | Monsanto (Creve Coeur, MO, USA) | cp4-epsps, dmo, pat, ft_t | 2020 | |
DBN9858 | Da Bei Nong Group (Beijing, China) | EPSPS, pat | 2022 | |
nCX-1 | RFGENE (Hangzhou, China) | CdP450, cp4epsps | 2022 | |
GA21 | China National Seed Group Co., Ltd. (Beijing, China) | mepsps | 2022 | |
DP-2Ø2216-6 | Corteva (Indianapolis, IN, USA) | pat | 2024 | |
DP202216 × NK603 × DAS40278 | Bayer (Berlin, Germany) | - | 2024 | |
DP-2Ø2216-6 × MON-ØØ6Ø3-6 × DAS-4Ø278-9 | Corteva (Indianapolis, IN, USA) | pat, epsps, aad-1 | 2024 | |
Drought-resistant | MON87460 | Monsanto (Creve Coeur, MO, USA) | cspB | 2011 |
Male sterility | MS3 | Bayer (Berlin, Germany) | barnase | 1996 |
MS6 | Bayer(Berlin, Germany) | barnase | 1999 | |
DP32138-1 | DowDuPont (Beijing, China) | ms45, zm-aa1 | 2011 | |
Quality improvement | LY038 | Monsanto (Creve Coeur, MO, USA) | cordapA | 2006 |
3272 | Syngenta Group (Basel, Switzerland) | amy797E | 2008 | |
BVLA430101 | Origin Agritech (Beijing, China) | phyA2 | 2009 | |
PY203 | Agrivida (Woburn, MA, USA) | phy02, pmi | 2021 | |
MON94804 | Bayer (Berlin, Germany) | GA20ox_SUP | 2024 | |
DP910521 | - | - | 2024 | |
Yield increase | MON87403 | Monsanto (Creve Coeur, MO, USA) | athb17 | 2015 |
Resistant to Lepidopteran pests and herbicides | Bt176 | Syngenta Group (Basel, Switzerland) | cry1Ab, bar | 1995 |
Bt11 | Syngenta Group (Basel, Switzerland) | cry1Ab, pat | 1996 | |
DBT418 | Monsanto (Creve Coeur, MO, USA) | cry1Ac, bar, pinI | 1997 | |
CBH351 | Bayer (Berlin, Germany) | cry9C, bar | 1998 | |
TC1507 | Dow Agrosciences China Ltd., DowDuPont (Beijing, China) | pat, cry1Fa2 | 2001 | |
TC6275 | Dow Agrosciences China Ltd. (Beijing, China) | bar, mocry1F | 2004 | |
EH913 | Helix (San Diego, CA, USA) | cry1Da_7 | 2024 | |
DP910521 | Corteva (Indianapolis, IN, USA) | cry1B.34, PAT | 2024 | |
DP-91Ø521-2 | Corteva (Indianapolis, IN, USA) | Cry1B.34, PMI, PAT | 2024 | |
Resistant to Coleopteran pests and herbicides | 59122 | Dow Agrosciences China Ltd., DowDuPont (Beijing, China) | cry34Ab1, cry35Ab1, pat | 2005 |
MON88017 | Monsanto (Creve Coeur, MO, USA) | cry3Bb1, cp4-epsps | 2005 | |
MON87411 | Monsanto (Creve Coeur, MO, USA) | cry3Bb1, cp4-epsps, dvsnf7 | 2015 | |
MZIR098 | Syngenta Group (Basel, Switzerland) | ecry3.1Ab, mcry3A, pat | 2016 | |
YN-E3272-5 × SYN-BTØ11-1 × SYN-IR162-4 × MON-ØØØ21-9 | - | cry1Ab, EPSPS, pat | 2023 | |
SYN-E3272-5 | - | amy797E | 2023 | |
DP23211 | Corteva (Indianapolis, IN, USA) | pat, pmi | 2024 | |
Resistant to both Lepidopteran and Coleopteran pests, and herbicides | 4114 | DowDuPont (Wilmington, DE, USA) | cry1F, cry34Ab1, cry35Ab1, pat | 2013 |
RF125 | RFGENE, Zhejiang University (Hangzhou, China) | cry1Ab/cry2Aj, g10evo-epsps | 2019 | |
DBN9936 | Da Bei Nong Group (Beijing, China) | cry1Ab, epsps | 2019 | |
DBN9501 | Da Bei Nong Group (Beijing, China) | vip3Aa19, pat | 2020 | |
DBN3601T(DBN9936 × DBN9501) | Da Bei Nong Group (Beijing, China) | cry1Ab, epsps, vip3Aa19, pat | 2021 | |
1507 × MIR162 × MON810 × NK603 | - | - | 2021 | |
DP-ØØ4114-3 | - | cry1F, cry34Ab, cry35Ab1, pat | 2022 | |
Bt11 × GA21 | China National Seed Group Co. Ltd. (Beijing, China) | cry1Ab, pat, mepsps | 2022 | |
Bt11 × MIR162 × GA21 | China National Seed Group Co. Ltd. (Beijing, China) | cry1Ab, pat, vip3Aa20, mepsps | 2022 | |
3272 × Bt11 × MIR162 × MIR604 × TC1507 × 5307 × GA2 | - | - | 2023 | |
Male sterility and herbicide tolerance | 676 | DowDuPont (Wilmington, DE, USA) | pat, dam | 1998 |
678 | DowDuPont (Wilmington, DE, USA) | pat, dam | 1998 | |
680 | DowDuPont (Wilmington, DE, USA) | pat, dam | 1998 | |
Herbicide tolerance and yield increase | DP202216 | Dow Agrosciences China Ltd. (Nantung, China) | zmm28, mo-pat | 2020 |
Resistant to Maize rootworm | MON95275 | Bayer (Berlin, Germany) | Mpp75Aa1.1, Vpb4Da2, Dvsnf7.1 | 2024 |
Resistant to Maize rootworm and herbicides | DP915635 | Corteva (Indianapolis, IN, USA) | pat, IPD079Ea, pmi | 2024 |
Insect-resistant and drought-resistant | SAMMAZ 72T | - | - | 2024 |
SAMMAZ 73T | - | - | 2024 | |
SAMMAZ 74T | - | - | 2024 | |
SAMMAZ 75T | - | - | 2024 | |
Insect-resistant, drought-resistant, and herbicide-tolerant | MON87427 × MON87460 × MON89034 × 1507 × MON87411 × 59122 | - | - | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Zhang, J.; Clarke, N. A Critical Review of Recent Advances in Maize Stress Molecular Biology. Int. J. Mol. Sci. 2024, 25, 12383. https://doi.org/10.3390/ijms252212383
Meng L, Zhang J, Clarke N. A Critical Review of Recent Advances in Maize Stress Molecular Biology. International Journal of Molecular Sciences. 2024; 25(22):12383. https://doi.org/10.3390/ijms252212383
Chicago/Turabian StyleMeng, Lingbo, Jian Zhang, and Nicholas Clarke. 2024. "A Critical Review of Recent Advances in Maize Stress Molecular Biology" International Journal of Molecular Sciences 25, no. 22: 12383. https://doi.org/10.3390/ijms252212383
APA StyleMeng, L., Zhang, J., & Clarke, N. (2024). A Critical Review of Recent Advances in Maize Stress Molecular Biology. International Journal of Molecular Sciences, 25(22), 12383. https://doi.org/10.3390/ijms252212383