Development of LAT1-Selective Nuclear Medicine Therapeutics Using Astatine-211
Abstract
:1. Introduction
2. Results
2.1. Synthesis of 211At Labeled Chemicals
2.2. Uptake Comparison Between Candidate Compounds
2.3. Distribution Differences Between Candidate Compounds In Vivo
2.4. Excretion Differences Between Candidate Compounds In Vivo
2.5. Anti-Tumor Effect in Xenograft Model
3. Discussion
4. Materials and Methods
4.1. Chemical Synthesis
4.2. Nuclide Manufacturing
4.3. Chemical Labeling
4.4. High-Performance Liquid Chromatography and Thin Layer Chromatography
4.5. Cell Culture
4.6. Animal Model
4.6.1. Normal Animal Model
4.6.2. Xenograft Model
4.7. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabiei, M.; Asadi, M.; Yousefnia, H. Astatine-211 Radiopharmaceuticals; Status, Trends, and the Future. Curr. Radiopharm. 2024, 17, 7–13. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, Z.; Li, W.; Zhuo, W.; Cui, T.; Li, Z. Synthesis Principle and Practice with Radioactive Iodines and Astatine: Advances Made So Far. J. Org. Chem. 2024, 89, 11837–11863. [Google Scholar] [CrossRef]
- Vanermen, M.; Ligeour, M.; Oliveira, M.C.; Gestin, J.F.; Elvas, F.; Navarro, L.; Guérard, F. Astatine-211 radiolabelling chemistry: From basics to advanced biological applications. EJNMMI Radiopharm. Chem. 2024, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Chen, X.; Werner, R.A. Navigating new horizons: Prospects of NET-targeted radiopharmaceuticals in precision medicine. Theranostics 2024, 14, 3178–3192. [Google Scholar] [CrossRef]
- Gao, J.; Li, M.; Yin, J.; Liu, M.; Wang, H.; Du, J.; Li, J. The Different Strategies for the Radiolabeling of [211At]-Astatinated Radiopharmaceuticals. Pharmaceutics 2024, 16, 738. [Google Scholar] [CrossRef]
- Tanudji, J.; Kasai, H.; Okada, M.; Ogawa, T.; Aspera, S.M.; Nakanishi, H. (211)At on gold nanoparticles for targeted radionuclide therapy application. Phys. Chem. Chem. Phys. 2024, 26, 12915–12927. [Google Scholar] [CrossRef] [PubMed]
- Uehara, T. Chemical Design of Radiohalogenated Agents Using Neopentyl Structure. Yakugaku Zasshi 2024, 144, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Kleynhans, J.; Ebenhan, T.; Cleeren, F.; Sathekge, M.M. Can current preclinical strategies for radiopharmaceutical development meet the needs of targeted alpha therapy? Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1965–1980. [Google Scholar] [CrossRef]
- Timperanza, C.; Jensen, H.; Bäck, T.; Lindegren, S.; Aneheim, E. Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211. Pharmaceuticals 2023, 16, 595. [Google Scholar] [CrossRef]
- Koay, H.; Fukuda, M.; Kanda, H.; Nakao, M.; Yorita, T. Conceptual design of central region for high-temperature superconducting skeleton cyclotron (HTS-SC). In Proceedings of the Cyclotrons’19, Cape Town, South Africa, 23–27 September 2019; pp. 279–283. [Google Scholar]
- Watabe, T.; Kaneda-Nakashima, K.; Shirakami, Y.; Liu, Y.; Ooe, K.; Teramoto, T.; Toyoshima, A.; Shimosegawa, E.; Nakano, T.; Kanai, Y.; et al. Targeted alpha therapy using astatine (211At)-labeled phenylalanine: A preclinical study in glioma bearing mice. Oncotarget 2020, 11, 1388–1398. [Google Scholar] [CrossRef]
- Kaneda-Nakashima, K.; Zhang, Z.; Shimoyama, Y.; Shimoyama, A.; Kabayama, K.; Watabe, T.; Kanai, Y.; Ooe, K.; Toyoshima, A.; Shirakami, Y.; et al. alpha-Emitting cancer therapy using (211) At-AAMT targeting LAT1. Cancer Sci. 2021, 112, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Kanai, Y.; Segawa, H.; Miyamoto, K.; Uchino, H.; Takeda, E.; Endou, H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem. 1998, 273, 23629–23632. [Google Scholar] [CrossRef]
- Ohshima, Y.; Hanaoka, H.; Tominaga, H.; Kanai, Y.; Kaira, K.; Yamaguchi, A.; Nagamori, S.; Oriuchi, N.; Tsushima, Y.; Endo, K.; et al. Biological Evaluation of 3-[18F] Fluoro-α-Methyl-D-Tyrosine (D-[18F] FAMT) as a Novel Amino Acid Tracer for Positron Emission Tomography. Ann. Nucl. Med. 2013, 27, 314–324. [Google Scholar] [CrossRef]
- Wiriyasermkul, P.; Nagamori, S.; Tominaga, H.; Oriuchi, N.; Kaira, K.; Nakao, H.; Kitashoji, T.; Ohgaki, R.; Tanaka, H.; Endou, H.; et al. Transport of 3-fluoro-L-α-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: A cause of the tumor uptake in PET. J. Nucl. Med. 2012, 53, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, H.; Ohshima, Y.; Yamaguchi, A.; Suzuki, H.; Ishioka, N.S.; Higuchi, T.; Arano, Y.; Tsushima, Y. Novel 18F-Labeled α-Methyl-Phenylalanine Derivative with High Tumor Accumulation and Ideal Pharmacokinetics for Tumor-Specific Imaging. Mol. Pharm. 2019, 16, 3609–3616. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, S.; Nakatani, Y.; Mawatari, A.; Shibata, N.; Hume, W.E.; Hayashinaka, E.; Wada, Y.; Doi, H.; Watanabe, Y. 18F-FIMP: A LAT1-specific PET probe for discrimination between tumor tissue and inflammation. Sci. Rep. 2019, 9, 15718. [Google Scholar] [CrossRef]
- Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015, 106, 279–286. [Google Scholar] [CrossRef]
- Seneviratne, D.; Advani, P.; Trifiletti, D.M.; Chumsri, S.; Beltran, C.J.; Bush, A.F.; Vallow, L.A. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers 2022, 14, 3009. [Google Scholar] [CrossRef]
- Järvinen, J.; Pulkkinen, H.; Rautio, J.; Timonen, J.M. Amino Acid-Based Boron Carriers in Boron Neutron Capture Therapy (BNCT). Pharmaceutics 2023, 5, 2663. [Google Scholar] [CrossRef]
- Hirano, F.; Kondo, N.; Murata, Y.; Sudani, A.; Temma, T. Assessing the effectiveness of fluorinated and α-methylated 3-boronophenylalanine for improved tumor-specific boron delivery in boron neutron capture therapy. Bioorg. Chem. 2024, 142, 106940. [Google Scholar] [CrossRef]
- Fujimura, A.; Yasui, S.; Igawa, K.; Ueda, A.; Watanabe, K.; Hanafusa, T.; Ichikawa, Y.; Yoshihashi, S.; Tsuchida, K.; Kamiya, A.; et al. In Vitro Studies to Define the Cell-Surface and Intracellular Targets of Polyarginine-Conjugated Sodium Borocaptate as a Potential Delivery Agent for Boron Neutron Capture Therapy. Cells 2020, 9, 2149. [Google Scholar] [CrossRef]
- Chen, S.; Jin, C.; Ohgaki, R.; Xu, M.; Okanishi, H.; Kanai, Y. Structure–activity characteristics of phenylalanine analogs selectively transported by L-type amino acid transporter 1 (LAT1). Sci. Rep. 2024, 14, 4651. [Google Scholar] [CrossRef] [PubMed]
- Shirakami, Y.; Watabe, T.; Obata, H.; Kaneda, K.; Ooe, K.; Liu, Y.; Teramoto, T.; Toyoshima, A.; Shinohara, A.; Shimosegawa, E.; et al. Synthesis of [211At]4-astato-L-phenylalanine by dihydroxyboryl-astatine substitution reaction in aqueous solution. Sci. Rep. 2021, 11, 12982. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Kaneda-Nakashima, K.; Ohgaki, R.; Xu, M.; Okanishi, H.; Endou, H.; Nagamori, S.; Kanai, Y. Inhibition of cancer-type amino acid transporter LAT1 suppresses B16-F10 melanoma metastasis in mouse models. Sci. Rep. 2023, 13, 13943. [Google Scholar] [CrossRef] [PubMed]
- Kaneda-Nakashima, K.; Zhang, Z.; Nagata, K.; Shirasaki, K.; Kikunaga, H.; Yamamura, T.; Ooe, K.; Warabe, T.; Toyoshima, A.; Yoshimura, T.; et al. Dispersion of Alpha-Nuclides during Animal Experiments. Radiat. Saf. Manag. 2021, 20, 29–38. [Google Scholar] [CrossRef]
- Watabe, T.; Kaneda-Nakashima, K.; Liu, Y.; Shirakami, Y.; Ooe, K.; Toyoshima, A.; Shimosegawa, E.; Fukuda, M.; Shinohara, A.; Hatazawa, J. Enhancement of 211At uptake via the sodium iodide symporter by the addition of ascorbic acid in targeted α-therapy of thyroid cancer. J. Nucl. Med. 2019, 60, 1301–1307. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, W.; Ren, C.; Ji, H.; Wang, D.; Liu, Y.; Li, F.; Du, Y.; Liu, Y.; Huo, L. Biodistribution and radiation dosimetry of D-isomer of 4-borono-2-[18F] fluoro-phenylalanine: A comparative PET/CT study with L-isomer in healthy human volunteers. Nucl. Med. Biol. 2021, 94–95, 32–37. [Google Scholar] [CrossRef]
- Tang, T.; Gill, H.S.; Ogasawara, A.; Tinianow, J.N.; Vanderbilt, A.N.; Williams, S.P.; Hatzivassiliou, G.; White, S.; Sandoval, W.; DeMent, K.; et al. Preparation and evaluation of L- and D-5-[18F] fluorotryptophan as PET imaging probes for indoleamine and tryptophan 2,3-dioxygenases. Nucl. Med. Biol. 2017, 51, 10–17. [Google Scholar] [CrossRef]
- Naka, S.; Ooe, K.; Shirakami, Y.; Kurimoto, K.; Sakai, T.; Takahashi, K.; Toyoshima, A.; Wang, Y.; Haba, H.; Kato, H.; et al. Production of [211At] NaAt solution under GMP compliance for investigator-initiated clinical trial. EJNMMI Radiopharm. Chem. 2024, 9, 29. [Google Scholar] [CrossRef]
- Wang, Y.; Sato, N.; Komori, Y.; Yokokita, T.; Mori, D.; Usuda, S.; Haba, H. Present status of 211At production at the RIKEN AVF cyclotron. In III-3. Radiochemistry & Nuclear Chemistry; RIKEN Accelerator Progress Report; RIKEN Nishina Center for Accelerator-Based Science: Saitama, Japan, 2019; Volume 53, p. 192. [Google Scholar]
- Khunweeraphong, N.; Nagamori, S.; Wiriyasermkul, P.; Nishinaka, Y.; Wongthai, P.; Ohgaki, R.; Tanaka, H.; Tominaga, H.; Sakurai, H.; Kanai, Y. Establishment of stable cell lines with high expression of heterodimers of human 4F2hc and human amino acid transporter LAT1 or LAT2 and delineation of their differential interaction with α-alkyl moieties. J. Pharmacol. Sci. 2012, 119, 368–380. [Google Scholar] [CrossRef]
- Watanabe, T.; Sanada, Y.; Hattori, Y.; Suzuki, M. Correlation between the expression of LAT1 in cancer cells and the potential efficacy of boron neutron capture therapy. J. Radiat. Res. 2023, 64, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tulipan, A.J.; Salberg, U.B.; Hole, K.H.; Vlatkovic, L.; Aarnes, E.K.; Revheim, M.E.; Lyng, H.; Seierstad, T. Amino acid transporter expression and 18F-FACBC uptake at PET in primary prostate cancer. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 250–259. [Google Scholar]
- Rivera, C.N.; Watne, R.M.; Brown, Z.A.; Mitchell, S.A.; Wommack, A.J.; Vaughan, R.A. Effect of AMPK activation and glucose availability on myotube LAT1 expression and BCAA utilization. Amino Acids 2023, 55, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, S.; Nielsen, C.U. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024, 16, 197. [Google Scholar] [CrossRef]
- Vettermann, F.J.; Diekmann, C.; Weidner, L.; Unterrainer, M.; Suchorska, B.; Ruf, V.; Dorostkar, M.; Wenter, V.; Herms, J.; Tonn, J.C.; et al. L-type amino acid transporter (LAT) 1 expression in 18F-FET-negative gliomas. EJNMMI Res. 2021, 11, 124. [Google Scholar] [CrossRef]
- Saito, Y.; Soga, T. Amino acid transporters as emerging therapeutic targets in cancer. Cancer Sci. 2021, 112, 2958–2965. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Ecker, G.F. Insights into the Structure, Function, and Ligand Discovery of the Large Neutral Amino Acid Transporter 1, LAT1. Int. J. Mol. Sci. 2018, 19, 1278. [Google Scholar] [CrossRef]
- Hayashi, K.; Anzai, N. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World J. Gastrointest. Oncol. 2017, 9, 21–29. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Li, D.; Fu, L.; Zhang, X.; Bao, Y.; Zheng, L. Review of the Correlation of LAT1 with Diseases: Mechanism and Treatment. Front. Chem. 2020, 8, 564809. [Google Scholar] [CrossRef]
- Häfliger, P.; Charles, R.P. The L-Type Amino Acid Transporter LAT1—An Emerging Target in Cancer. Int. J. Mol. Sci. 2019, 20, 2428. [Google Scholar] [CrossRef]
- Janpipatkul, K.; Suksen, K.; Borwornpinyo, S.; Jearawiriyapaisarn, N.; Hongeng, S.; Piyachaturawat, P.; Chairoungdua, A. Downregulation of LAT1 expression suppresses cholangiocarcinoma cell invasion and migration. Cell Signal. 2014, 26, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, K.; Sakamoto, S.; Ando, K.; Maimaiti, M.; Takeshita, N.; Okunushi, K.; Reien, Y.; Imamura, Y.; Sazuka, T.; Nakamura, K.; et al. Characterization of the expression of LAT1 as a prognostic indicator and a therapeutic target in renal cell carcinoma. Sci. Rep. 2019, 9, 16776. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.D.; van Geldermalsen, M.; Otte, N.J.; Anderson, L.A.; Lum, T.; Vellozzi, M.A.; Zhang, B.K.; Thoeng, A.; Wang, Q.; Rasko, J.E.; et al. LAT1 is a putative therapeutic target in endometrioid endometrial carcinoma. Int. J. Cancer 2016, 139, 2529–2539. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Rodriguez, M.; Zhao, G.; Yao, T.W.; Fischer, W.N.; Jandeleit, B.; Koller, K.; Nicolaides, T. A Novel Blood-Brain Barrier-Permeable Chemotherapeutic Agent for the Treatment of Glioblastoma. Cureus 2021, 13, e17595. [Google Scholar] [CrossRef] [PubMed]
- Storey, B.T.; Fugere, C.; Lesieur-Brooks, A.; Vaslet, C.; Thompson, N.L. Adenoviral modulation of the tumor-associated system L amino acid transporter, LAT1, alters amino acid transport, cell growth and 4F2/CD98 expression with cell-type specific effects in cultured hepatic cells. Int. J. Cancer 2005, 117, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, N.; Sohda, M.; Ide, M.; Shimoda, Y.; Ubukata, Y.; Kuriyama, K.; Hara, K.; Sano, A.; Sakai, M.; Yokobori, T.; et al. High L-Type Amino Acid Transporter 1 Levels Are Associated with Chemotherapeutic Resistance in Gastric Cancer Patients. Oncology 2021, 99, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Kirchleitner, S.V.; Zhao, D.; Li, M.; Tonn, J.C.; Glass, R.; Kälin, R.E. Glioblastoma Exhibits Inter-Individual Heterogeneity of TSPO and LAT1 Expression in Neoplastic and Parenchymal Cells. Int. J. Mol. Sci. 2020, 21, 612. [Google Scholar] [CrossRef]
- Ohshima, Y.; Sudo, H.; Watanabe, S.; Nagatsu, K.; Tsuji, A.B.; Sakashita, T.; Ito, Y.M.; Yoshinaga, K.; Higashi, T.; Ishioka, N.S. Antitumor effects of radionuclide treatment using α-emitting meta-211At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 999–1010. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, L.; Hu, K.; Hanyu, M.; Zhang, Y.; Fujinaga, M.; Minegishi, K.; Ohkubo, T.; Nagatsu, K.; Jiang, C.; et al. A 211At-labelled mGluR1 inhibitor induces cancer senescence to elicit long-lasting anti-tumor efficacy. Cell Rep. Med. 2023, 4, 100960. [Google Scholar] [CrossRef]
- Feng, Y.; Meshaw, R.; Zhao, X.G.; Jannetti, S.; Vaidyanathan, G.; Zalutsky, M.R. Effective Treatment of Human Breast Carcinoma Xenografts with Single-Dose 211At-Labeled Anti-HER2 Single-Domain Antibody Fragment. J. Nucl. Med. 2023, 64, 124–130. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Release of patients after therapy with unsealed radionuclides. Ann. ICRP 2004, 34, 1–79. [Google Scholar]
- International Atomic Energy Agency (IAEA). Release of Patients After Radionuclide Therapy; Safety Reports Series; IAEA: Vienna, Austria, 2009; no. 63. [Google Scholar]
OH | O-Me | |
---|---|---|
Brain | 0.68 ± 0.16 | 0.13 ± 0.04 |
Thyroid | 11.65 ± 4.36 | 9.37 ± 3.33 |
Salivary glands | 0.42 ± 0.17 | 13.65 ± 5.31 |
Heart | 2.29 ± 1.20 | 1.29 ± 0.42 |
Lung | 1.90 ± 0.55 | 4.43 ± 1.76 |
Liver | 1.02 ± 0.60 | 0.92 ± 0.15 |
Stomach | 1.84 ± 0.81 | 8.89 ± 2.65 |
Small intestine | 0.09 ± 0.01 | 1.49 ± 0.29 |
Colon | 1.03 ± 0.34 | 1.69 ± 0.15 |
Kidney | 0.07 ± 0.02 | 1.67 ± 0.49 |
Pancreas | 2.39 ± 2.03 | 0.59 ± 0.17 |
Spleen | 0.72 ± 0.22 | 3.12 ± 2.06 |
Testis | 0.57 ± 0.44 | 1.18 ± 0.25 |
Blood | 0.04 ± 0.02 | 0.88 ± 0.23 |
Bladder | 1.01 ± 0.10 | 0.55 ± 0.13 |
Bone | 4.29 ± 3.90 | 0.75 ± 0.18 |
Tumor | 0.71 ± 0.46 | 1.86 ± 0.39 |
Cecum | 6.60 ± 2.78 | 2.09 ± 0.41 |
1 | Hour | 3 | Hour | |
---|---|---|---|---|
D-Isomer | L-Isomer | D-Isomer | L-Isomer | |
Brain | 0.15 ± 0.01 | 0.32 ± 0.02 | 0.04 ± 0.00 | 0.10 ± 0.02 |
Thyroid | 8.06 ± 3.56 | 13.12 ± 1.72 | 0.42 ± 0.20 | 0.65 ± 0.16 |
Salivary glands | 4.67 ± 1.03 | 7.16 ± 1.54 | 0.96 ± 0.16 | 1.77 ± 0.19 |
Heart | 3.20 ± 1.26 | 2.01 ± 0.15 | 0.43 ± 0.20 | 0.34 ± 0.02 |
Lung | 2.84 ± 1.11 | 6.42 ± 1.52 | 0.69 ± 0.28 | 1.34 ± 0.32 |
Liver | 0.58 ± 0.11 | 1.11 ± 0.10 | 1.34 ± 0.47 | 2.57 ± 0.17 |
Stomach | 6.34 ± 2.74 | 13.65 ± 2.40 | 8.08 ± 3.50 | 16.96 ± 1.89 |
Small intestine | 2.66 ± 1.23 | 1.82 ± 0.08 | 5.33 ± 2.18 | 3.91 ± 0.20 |
Colon | 2.54 ± 1.55 | 0.93 ± 0.13 | 0.95 ± 0.59 | 0.80 ± 0.12 |
Kidney | 1.48 ± 0.39 | 2.47 ± 0.24 | 0.73 ± 0.15 | 1.11 ± 0.15 |
Pancreas | 2.38 ± 1.36 | 1.52 ± 0.17 | 0.42 ± 0.28 | 0.19 ± 0.04 |
Spleen | 2.92 ± 1.49 | 5.01 ± 1.42 | 0.42 ± 0.14 | 0.80 ± 0.19 |
Testis | 1.84 ± 0.23 | 2.31 ± 0.04 | 0.31 ± 0.02 | 0.52 ± 0.06 |
Blood | 1.90 ± 0.57 | 1.57 ± 0.10 | 0.38 ± 0.16 | 1.17 ± 0.24 |
Bladder | 10.62 ± 8.22 | 7.10 ± 1.15 | 0.19 ± 0.11 | 0.10 ± 0.01 |
Bone | 0.93 ± 0.35 | 1.33 ± 0.16 | 0.28 ± 0.11 | 0.53 ± 1.31 |
Thymus | 1.89 ± 0.90 | 2.03 ± 0.50 | 0.18 ± 0.06 | 0.14 ± 0.03 |
Cecum | 0.47 ± 0.19 | 0.85 ± 0.04 | 0.50 ± 0.23 | 0.95 ± 0.11 |
1 | Hour | 3 | Hour | |
---|---|---|---|---|
D-Isomer | L-Isomer | D-Isomer | L-Isomer | |
Brain | 0.15 ± 0.01 | 0.46 ± 0.00 | 0.10 ± 0.03 | 0.29 ± 0.01 |
Thyroid | 0.14 ± 0.04 | 0.20 ± 0.02 | 0.14 ± 0.06 | 0.23 ± 0.04 |
Salivary glands | 0.30 ± 0.10 | 0.58 ± 0.05 | 0.33 ± 0.13 | 0.78 ± 0.18 |
Heart | 0.53 ± 0.08 | 0.86 ± 0.04 | 0.37 ± 0.03 | 0.76 ± 0.07 |
Lung | 2.24 ± 0.89 | 5.16 ± 0.11 | 1.27 ± 0.40 | 5.10 ± 0.42 |
Liver | 3.09 ± 0.39 | 4.92 ± 0.24 | 2.60 ± 0.07 | 4.62 ± 0.20 |
Stomach | 1.43 ± 0.94 | 1.32 ± 0.06 | 1.29 ± 0.77 | 1.31 ± 0.32 |
Small intestine | 2.05 ± 0.81 | 3.40 ± 0.36 | 1.48 ± 0.37 | 2.50 ± 0.42 |
Colon | 0.85 ± 0.49 | 1.14 ± 0.27 | 0.40 ± 0.25 | 0.68 ± 0.23 |
Kidney | 1.40 ± 0.56 | 3.56 ± 0.09 | 1.54 ± 0.86 | 2.29 ± 0.07 |
Pancreas | 0.61 ± 0.44 | 0.58 ± 0.01 | 0.48 ± 0.35 | 0.36 ± 0.10 |
Spleen | 1.70 ± 0.74 | 4.34 ± 0.79 | 1.81 ± 1.19 | 3.97 ± 0.59 |
Testis | 1.05 ± 0.77 | 0.55 ± 0.02 | 1.64 ± 1.26 | 0.55 ± 0.11 |
Blood | 3.52 ± 1.89 | 7.85 ± 1.17 | 1.92 ± 1.16 | 10.38 ± 2.28 |
Bladder | 1.76 ± 1.64 | 0.06 ± 0.00 | 1.04 ± 0.97 | 0.09 ± 0.01 |
Bone | 0.30 ± 0.12 | 0.68 ± 1.27 | 0.26 ± 0.12 | 0.51 ± 1.35 |
Tumor | 3.25 ± 1.39 | 7.83 ± 0.30 | 3.84 ± 2.10 | 10.29 ± 0.88 |
Cecum | 2.35 ± 1.73 | 0.46 ± 0.05 | 1.32 ± 0.96 | 0.43 ± 0.16 |
ICR | Mice | Nude | Mice | ||
---|---|---|---|---|---|
1 h | 3 h | 1 h | 3 h | ||
Brain | 0.37 ± 0.07 | 0.13 ± 0.05 | Brain | 0.65 ± 0.11 | 0.36 ± 0.10 |
Thyroid | 8.98 ± 4.12 | 20.22 ± 6.28 | Thyroid | 24.50 ± 4.40 | 31.26 ± 11.36 |
Salivary glands | 7.08 ± 2.00 | 15.05 ± 7.81 | Salivary glands | 13.69 ± 2.13 | 19.70 ± 2.93 |
Heart | 6.14 ± 3.75 | 1.87 ± 0.80 | Heart | 4.41 ± 0.46 | 5.15 ± 0.95 |
Lung | 4.47 ± 1.34 | 4.93 ± 1.95 | Lung | 9.69 ± 1.20 | 10.67 ± 1.28 |
Liver | 1.41 ± 0.33 | 1.06 ± 0.21 | Liver | 2.54 ± 0.28 | 1.93 ± 0.23 |
Stomach | 19.50 ± 5.82 | 38.74 ± 10.11 | Stomach | 33.25 ± 8.36 | 18.47 ± 2.59 |
Small intestine | 12.85 ± 7.35 | 3.21 ± 0.88 | Small intestine | 4.80 ± 0.63 | 3.23 ± 0.22 |
Colon | 8.32 ± 4.87 | 1.75 ± 0.49 | Colon | 3.80 ± 0.50 | 3.63 ± 0.34 |
Kidney | 4.70 ± 1.68 | 1.56 ± 0.13 | Kidney | 6.23 ± 0.94 | 3.74 ± 0.78 |
Pancreas | 7.31 ± 4.45 | 1.20 ± 0.40 | Pancreas | 4.56 ± 0.82 | 2.01 ± 0.20 |
Spleen | 2.90 ± 0.95 | 2.09 ± 1.08 | Spleen | 10.32 ± 4.17 | 13.31 ± 2.43 |
Testis | 2.36 ± 0.28 | 1.20 ± 0.36 | Testis | 3.29 ± 0.07 | 3.32 ± 0.33 |
Blood | 2.03 ± 0.61 | 0.87 ± 0.27 | Blood | 3.63 ± 0.43 | 2.23 ± 0.06 |
Bladder | 53.22 ± 43.79 | 21.28 ± 15.54 | Bladder | 15.41 ± 4.39 | 12.03 ± 3.42 |
Bone | 0.71 ± 0.32 | 1.00 ± 0.18 | Bone | 1.92 ± 0.21 | 1.41 ± 0.16 |
Thymus | 1.14 ± 0.68 | 0.26 ± 0.17 | Tumor | 5.64 ± 0.91 | 5.24 ± 1.39 |
Cecum | 0.68 ± 0.25 | 1.67 ± 0.24 | Cecum | 2.36 ± 0.52 | 2.80 ± 0.56 |
ICR | Mice | Nude | Mice | ||
---|---|---|---|---|---|
1 h | 3 h | 10 min | 1 h | ||
Brain | 0.25 ± 0.02 | 0.16 ± 0.01 | Brain | 1.01 ± 0.04 | 0.79 ± 0.13 |
Thyroid | 23.08 ± 3.56 | 24.75 ± 3.77 | Thyroid | 9.74 ± 0.39 | 16.44 ± 1.16 |
Salivary glands | 14.23 ± 3.16 | 11.39 ± 0.33 | Salivary glands | 11.89 ± 0.06 | 20.98 ± 3.26 |
Heart | 3.14 ± 0.20 | 2.16 ± 0.18 | Heart | 9.66 ± 0.87 | 5.39 ± 1.06 |
Lung | 6.54 ± 0.34 | 5.09 ± 0.43 | Lung | 18.16 ± 1.88 | 14.15 ± 1.78 |
Liver | 1.18 ± 0.08 | 0.82 ± 0.14 | Liver | 3.67 ± 0.41 | 2.41 ± 0.24 |
Stomach | 13.55 ± 2.66 | 32.05 ± 3.31 | Stomach | 7.31 ± 0.30 | 20.60 ± 1.34 |
Small intestine | 1.83 ± 0.23 | 1.92 ± 0.12 | Small intestine | 6.80 ± 0.63 | 5.08 ± 0.53 |
Colon | 1.35 ± 0.07 | 1.29 ± 0.25 | Colon | 4.56 ± 0.31 | 3.27 ± 0.46 |
Kidney | 2.25 ± 0.19 | 1.93 ± 0.29 | Kidney | 10.29 ± 0.97 | 5.76 ± 0.67 |
Pancreas | 2.55 ± 0.60 | 1.60 ± 0.31 | Pancreas | 10.85 ± 1.53 | 3.54 ± 0.49 |
Spleen | 4.11 ± 0.11 | 3.56 ± 0.54 | Spleen | 11.84 ± 1.91 | 17.42 ± 6.48 |
Testis | 3.66 ± 0.14 | 2.34 ± 0.42 | Testis | 3.54 ± 0.28 | 3.56 ± 0.41 |
Blood | 1.77 ± 0.15 | 1.30 ± 0.12 | Blood | 4.33 ± 0.45 | 3.09 ± 0.25 |
Bladder | 20.82 ± 5.36 | 5.37 ± 0.73 | Bladder | 18.24 ± 4.50 | 18.00 ± 0.97 |
Bone | 1.79 ± 0.12 | 1.32 ± 0.12 | Bone | 3.50 ± 0.13 | 2.03 ± 0.45 |
Thymus | 2.03 ± 0.28 | 1.76 ± 0.25 | Tumor | 5.91 ± 0.27 | 9.45 ± 0.82 |
Cecum | 1.49 ± 0.14 | 1.13 ± 0.25 | Cecum | 3.35 ± 0.30 | 3.07 ± 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneda-Nakashima, K.; Shirakami, Y.; Hisada, K.; Feng, S.; Kadonaga, Y.; Ooe, K.; Watabe, T.; Manabe, Y.; Shimoyama, A.; Murakami, M.; et al. Development of LAT1-Selective Nuclear Medicine Therapeutics Using Astatine-211. Int. J. Mol. Sci. 2024, 25, 12386. https://doi.org/10.3390/ijms252212386
Kaneda-Nakashima K, Shirakami Y, Hisada K, Feng S, Kadonaga Y, Ooe K, Watabe T, Manabe Y, Shimoyama A, Murakami M, et al. Development of LAT1-Selective Nuclear Medicine Therapeutics Using Astatine-211. International Journal of Molecular Sciences. 2024; 25(22):12386. https://doi.org/10.3390/ijms252212386
Chicago/Turabian StyleKaneda-Nakashima, Kazuko, Yoshifumi Shirakami, Kentaro Hisada, Sifan Feng, Yuichiro Kadonaga, Kazuhiro Ooe, Tadashi Watabe, Yoshiyuki Manabe, Atsushi Shimoyama, Masashi Murakami, and et al. 2024. "Development of LAT1-Selective Nuclear Medicine Therapeutics Using Astatine-211" International Journal of Molecular Sciences 25, no. 22: 12386. https://doi.org/10.3390/ijms252212386
APA StyleKaneda-Nakashima, K., Shirakami, Y., Hisada, K., Feng, S., Kadonaga, Y., Ooe, K., Watabe, T., Manabe, Y., Shimoyama, A., Murakami, M., Toyoshima, A., Haba, H., Kanai, Y., & Fukase, K. (2024). Development of LAT1-Selective Nuclear Medicine Therapeutics Using Astatine-211. International Journal of Molecular Sciences, 25(22), 12386. https://doi.org/10.3390/ijms252212386