Structure of Full-Length Src Kinase and Its Key Phosphorylated States: Molecular Dynamics Study
Abstract
:1. Introduction
2. Results
2.1. Selection, Evaluation, and Verification of Starting Structures, MD Approaches, and Force Fields Applicable to Full-Length Src Kinase Modeling
2.2. Convergence of REHT MD Simulations
2.3. Conformational Flexibility of Src Kinase Depends on Its Key Regulatory Phosphorylations
2.4. The Src Kinase Regulatory Phosphorylations Alter Its Domain Organization
2.5. The Structured Domains of Src Kinase Interact with SH4UD Differently in the Presence of Key Regulatory Phosphorylations
2.6. The Src Kinase Regulatory Phosphorylations Determine the Structural Patterns of SH4UD
3. Discussion
4. Materials and Methods
4.1. Structure Preparation
4.2. MD Simulation Parameters
4.3. Convergence Estimations
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roskoski, R. Src Protein-Tyrosine Kinase Structure, Mechanism, and Small Molecule Inhibitors. Pharmacol. Res. 2015, 94, 9–25. [Google Scholar] [CrossRef]
- Dhawan, G.; Combs, C.K. Inhibition of Src Kinase Activity Attenuates Amyloid Associated Microgliosis in a Murine Model of Alzheimer’s Disease. J. Neuroinflammation 2012, 9, 563. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.-X.; Dai, C.-L.; Liu, F.; Iqbal, K. Multi-Targets: An Unconventional Drug Development Strategy for Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 837649. [Google Scholar] [CrossRef] [PubMed]
- Cheong, S.L.; Tiew, J.K.; Fong, Y.H.; Leong, H.W.; Chan, Y.M.; Chan, Z.L.; Kong, E.W.J. Current Pharmacotherapy and Multi-Target Approaches for Alzheimer’s Disease. Pharmaceuticals 2022, 15, 1560. [Google Scholar] [CrossRef] [PubMed]
- Socodato, R.; Portugal, C.C.; Canedo, T.; Rodrigues, A.; Almeida, T.O.; Henriques, J.F.; Vaz, S.H.; Magalhães, J.; Silva, C.M.; Baptista, F.I.; et al. Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Rep. 2020, 31, 107796. [Google Scholar] [CrossRef] [PubMed]
- Portugal, C.C.; Almeida, T.O.; Socodato, R.; Relvas, J.B. Src Family Kinases (SFKs): Critical Regulators of Microglial Homeostatic Functions and Neurodegeneration in Parkinson’s and Alzheimer’s Diseases. FEBS J. 2022, 289, 7760–7775. [Google Scholar] [CrossRef]
- Parsons, S.J.; Parsons, J.T. Src Family Kinases, Key Regulators of Signal Transduction. Oncogene 2004, 23, 7906–7909. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, L.; Wu, R.; Wu, L.; Zhang, B.; Wang, J.-Z.; Liu, R.; Liu, F.; Wang, J.; Wang, X. C-Src Regulates δ-Secretase Activation and Truncated Tau Production by Phosphorylating the E3 Ligase Traf6. J. Biol. Chem. 2023, 299, 105462. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, J.; Cheng, Q. Proto-Oncogene Tyrosine-Protein Kinase SRC (Src) Inhibition in Microglia Relieves Neuroinflammation in Neuropathic Pain Mouse Models. Bioengineered 2021, 12, 11390–11398. [Google Scholar] [CrossRef]
- Salter, M.W.; Kalia, L.V. Src Kinases: A Hub for NMDA Receptor Regulation. Nat. Rev. Neurosci. 2004, 5, 317–328. [Google Scholar] [CrossRef]
- Liu, J.; Liao, Z.; Camden, J.; Griffin, K.D.; Garrad, R.C.; Santiago-Pérez, L.I.; González, F.A.; Seye, C.I.; Weisman, G.A.; Erb, L. Src Homology 3 Binding Sites in the P2Y2 Nucleotide Receptor Interact with Src and Regulate Activities of Src, Proline-Rich Tyrosine Kinase 2, and Growth Factor Receptors. J. Biol. Chem. 2004, 279, 8212–8218. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Ma, D.; Quinn, J.P.; Wang, M. Src Family Kinases Activity Is Required for Transmitting Purinergic P2X7 Receptor Signaling in Cortical Spreading Depression and Neuroinflammation. J. Headache Pain 2021, 22, 146. [Google Scholar] [CrossRef]
- Cieślak, M.; Wojtczak, A. Role of Purinergic Receptors in the Alzheimer’s Disease. Purinergic Signal. 2018, 14, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mucke, L. Alzheimer Mechanisms and Therapeutic Strategies. Cell 2012, 148, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, B.; Reyes-Farias, M.; Pons, M. Targeting the Src N-Terminal Regulatory Element in Cancer. Oncotarget 2023, 14, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, U.R.; Juneja, P.; Zhang, Q.; Gurumoorthy, V.; Borreguero, J.M.; Urban, V.; Cheng, X.; Pingali, S.V.; Smith, J.C.; O’Neill, H.M.; et al. Generation of the Configurational Ensemble of an Intrinsically Disordered Protein from Unbiased Molecular Dynamics Simulation. Proc. Natl. Acad. Sci. USA 2019, 116, 20446–20452. [Google Scholar] [CrossRef] [PubMed]
- Gurumoorthy, V.; Shrestha, U.R.; Zhang, Q.; Pingali, S.V.; Boder, E.T.; Urban, V.S.; Smith, J.C.; Petridis, L.; O’Neill, H. Disordered Domain Shifts the Conformational Ensemble of the Folded Regulatory Domain of the Multidomain Oncoprotein C-Src. Biomacromolecules 2023, 24, 714–723. [Google Scholar] [CrossRef]
- Ruiz-Saenz, A.; Zahedi, F.; Peterson, E.; Yoo, A.; Dreyer, C.A.; Spassov, D.S.; Oses-Prieto, J.; Burlingame, A.; Moasser, M.M. Proteomic Analysis of Src Family Kinase Phosphorylation States in Cancer Cells Suggests Deregulation of the Unique Domain. Mol. Cancer Res. 2021, 19, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Kathiriya, J.J.; Pathak, R.R.; Clayman, E.; Xue, B.; Uversky, V.N.; Davé, V. Presence and Utility of Intrinsically Disordered Regions in Kinases. Mol BioSyst 2014, 10, 2876–2888. [Google Scholar] [CrossRef]
- Aponte, E.; Lafitte, M.; Sirvent, A.; Simon, V.; Barbery, M.; Fourgous, E.; Boublik, Y.; Maffei, M.; Armand, F.; Hamelin, R.; et al. Regulation of Src Tumor Activity by Its N-Terminal Intrinsically Disordered Region. Oncogene 2022, 41, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Saurabh, S.; Nadendla, K.; Purohit, S.S.; Sivakumar, P.M.; Cetinel, S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS Omega 2023, 8, 9729–9747. [Google Scholar] [CrossRef] [PubMed]
- Santofimia-Castaño, P.; Rizzuti, B.; Xia, Y.; Abian, O.; Peng, L.; Velázquez-Campoy, A.; Iovanna, J.L.; Neira, J.L. Designing and Repurposing Drugs to Target Intrinsically Disordered Proteins for Cancer Treatment: Using NUPR1 as a Paradigm. Mol. Cell. Oncol. 2019, 6, e1612678. [Google Scholar] [CrossRef] [PubMed]
- Boczek, E.E.; Luo, Q.; Dehling, M.; Röpke, M.; Mader, S.L.; Seidl, A.; Kaila, V.R.I.; Buchner, J. Autophosphorylation Activates C-Src Kinase through Global Structural Rearrangements. J. Biol. Chem. 2019, 294, 13186–13197. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Appadurai, R.; Nagesh, J.; Srivastava, A. High Resolution Ensemble Description of Metamorphic and Intrinsically Disordered Proteins Using an Efficient Hybrid Parallel Tempering Scheme. Nat. Commun. 2021, 12, 958. [Google Scholar] [CrossRef]
- Tolstova, A.P.; Makarov, A.A.; Adzhubei, A.A. Structure Comparison of Beta Amyloid Peptide Aβ 1–42 Isoforms. Molecular Dynamics Modeling. J. Chem. Inf. Model. 2024, 64, 918–932. [Google Scholar] [CrossRef]
- Cowan-Jacob, S.W.; Fendrich, G.; Manley, P.W.; Jahnke, W.; Fabbro, D.; Liebetanz, J.; Meyer, T. The Crystal Structure of a C-Src Complex in an Active Conformation Suggests Possible Steps in c-Src Activation. Structure 2005, 13, 861–871. [Google Scholar] [CrossRef]
- Shrestha, U.R.; Smith, J.C.; Petridis, L. Full Structural Ensembles of Intrinsically Disordered Proteins from Unbiased Molecular Dynamics Simulations. Commun. Biol. 2021, 4, 243. [Google Scholar] [CrossRef]
- Faraldo-Gómez, J.D.; Roux, B. Characterization of Conformational Equilibria through Hamiltonian and Temperature Replica-exchange Simulations: Assessing Entropic and Environmental Effects. J. Comput. Chem. 2007, 28, 1634–1647. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W.; Sander, C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-bonded and Geometrical Features. Biopolymers 1983, 22, 2577–2637. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Doshi, A.; Lei, M.; Eck, M.J.; Harrison, S.C. Crystal Structures of C-Src Reveal Features of Its Autoinhibitory Mechanism. Mol. Cell 1999, 3, 629–638. [Google Scholar] [CrossRef]
- Cuesta-Hernández, H.N.; Contreras, J.; Soriano-Maldonado, P.; Sánchez-Wandelmer, J.; Yeung, W.; Martín-Hurtado, A.; Muñoz, I.G.; Kannan, N.; Llimargas, M.; Muñoz, J.; et al. An Allosteric Switch between the Activation Loop and a C-Terminal Palindromic Phospho-Motif Controls c-Src Function. Nat. Commun. 2023, 14, 6548. [Google Scholar] [CrossRef] [PubMed]
- Kato, G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int. J. Mol. Sci. 2022, 23, 2241. [Google Scholar] [CrossRef] [PubMed]
- Amata, I.; Maffei, M.; Pons, M. Phosphorylation of Unique Domains of Src Family Kinases. Front. Genet. 2014, 5, 181. [Google Scholar] [CrossRef]
- Mertins, P.; Yang, F.; Liu, T.; Mani, D.R.; Petyuk, V.A.; Gillette, M.A.; Clauser, K.R.; Qiao, J.W.; Gritsenko, M.A.; Moore, R.J.; et al. Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Mol. Cell. Proteom. 2014, 13, 1690–1704. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.; Arbesú, M.; Le Roux, A.-L.; Amata, I.; Roche, S.; Pons, M. The SH3 Domain Acts as a Scaffold for the N-Terminal Intrinsically Disordered Regions of c-Src. Structure 2015, 23, 893–902. [Google Scholar] [CrossRef]
- Pérez, Y.; Gairí, M.; Pons, M.; Bernadó, P. Structural Characterization of the Natively Unfolded N-Terminal Domain of Human c-Src Kinase: Insights into the Role of Phosphorylation of the Unique Domain. J. Mol. Biol. 2009, 391, 136–148. [Google Scholar] [CrossRef]
- Watson, L.J.; Alexander, K.M.; Mohan, M.L.; Bowman, A.L.; Mangmool, S.; Xiao, K.; Naga Prasad, S.V.; Rockman, H.A. Phosphorylation of Src by Phosphoinositide 3-Kinase Regulates Beta-Adrenergic Receptor-Mediated EGFR Transactivation. Cell. Signal. 2016, 28, 1580–1592. [Google Scholar] [CrossRef] [PubMed]
- Amata, I.; Maffei, M.; Igea, A.; Gay, M.; Vilaseca, M.; Nebreda, A.R.; Pons, M. Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy. ChemBioChem 2013, 14, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- Spassov, D.S.; Ruiz-Saenz, A.; Piple, A.; Moasser, M.M. A Dimerization Function in the Intrinsically Disordered N-Terminal Region of Src. Cell Rep. 2018, 25, 449–463.e4. [Google Scholar] [CrossRef]
- Mohammad, I.-L.; Carvajal, J.; Fernández, A.; Taulés, M.; Fourgous, E.; Boublik, Y.; Le Roux, A.-L.; Roche, S.; Pons, M. Lipid-Mediated Dimerization of Membrane-Anchored c-Src Is Driven by a Cluster of Lysine Residues in the N-Terminal SH4 Domain 2022. bioRxiv 2022. [CrossRef]
- Hennequin, L.F.; Allen, J.; Breed, J.; Curwen, J.; Fennell, M.; Green, T.P.; Lambert-van Der Brempt, C.; Morgentin, R.; Norman, R.A.; Olivier, A.; et al. N-(5-Chloro-1,3-Benzodioxol-4-Yl)-7-[2-(4-Methylpiperazin-1-Yl)Ethoxy]-5-(Tetrahydro-2H-Pyran-4-Yloxy)Quinazolin-4-Amine, a Novel, Highly Selective, Orally Available, Dual-Specific c-Src/Abl Kinase Inhibitor. J. Med. Chem. 2006, 49, 6465–6488. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strelkova, M.A.; Tolstova, A.P.; Mitkevich, V.A.; Petrushanko, I.Y.; Makarov, A.A. Structure of Full-Length Src Kinase and Its Key Phosphorylated States: Molecular Dynamics Study. Int. J. Mol. Sci. 2024, 25, 12391. https://doi.org/10.3390/ijms252212391
Strelkova MA, Tolstova AP, Mitkevich VA, Petrushanko IY, Makarov AA. Structure of Full-Length Src Kinase and Its Key Phosphorylated States: Molecular Dynamics Study. International Journal of Molecular Sciences. 2024; 25(22):12391. https://doi.org/10.3390/ijms252212391
Chicago/Turabian StyleStrelkova, Maria A., Anna P. Tolstova, Vladimir A. Mitkevich, Irina Yu. Petrushanko, and Alexander A. Makarov. 2024. "Structure of Full-Length Src Kinase and Its Key Phosphorylated States: Molecular Dynamics Study" International Journal of Molecular Sciences 25, no. 22: 12391. https://doi.org/10.3390/ijms252212391
APA StyleStrelkova, M. A., Tolstova, A. P., Mitkevich, V. A., Petrushanko, I. Y., & Makarov, A. A. (2024). Structure of Full-Length Src Kinase and Its Key Phosphorylated States: Molecular Dynamics Study. International Journal of Molecular Sciences, 25(22), 12391. https://doi.org/10.3390/ijms252212391