Rhodanine–Piperazine Hybrids as Potential VEGFR, EGFR, and HER2 Targeting Anti-Breast Cancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Silico ADMET Studies
- Class I: fatal if swallowed (LD50 ≤ 5);
- Class II: fatal if swallowed (5 < LD50 ≤ 50);
- Class III: toxic if swallowed (50 < LD50 ≤ 300);
- Class IV: harmful if swallowed (300 < LD50 ≤ 2000);
- Class V: may be harmful if swallowed (2000 < LD50 ≤ 5000);
- Class VI: non-toxic (LD50 > 5000).
2.3. Anti-Breast Cancer Activity
Compound | Values of IC50 (µM) | |||
---|---|---|---|---|
Cell Lines | ||||
MDA-MB-468 | MDA-MB-231 | MCF-7 | T47D | |
5 | 168 | >200 | >200 | >200 |
6 | 54 | 92 | >200 | 186 |
7 | 95 | 157 | >200 | >200 |
8 | >200 | 155 | >200 | >200 |
9 | 63 | >200 | 73 | >200 |
10 | 55 | 105 | 31 | 91 |
11 | 92 | 160 | >200 | >200 |
12 | 37 | 147 | 36 | >200 |
13 | 179 | 145 | 67 | >200 |
14 | >200 | >200 | >200 | >200 |
15 | 47 | 76 | 45 | 189 |
16 | >200 | 179 | >200 | >200 |
17 | 58 | 118 | 169 | >200 |
Gefitinib | 10.00 1 | - | 32.2 3 | - |
Imatinib | - | 5.50 2 | 6.33 4 | 5.14 4 |
2.4. Molecular Docking
2.5. Molecular Dynamics
3. Materials and Methods
3.1. Chemistry
3.1.1. General
3.1.2. General Method for the Synthesis of Rhodanine–Piperazine Hybrids (5–17)
- 5-{[4-(4-Chlorophenyl)piperazin-1-yl]methylidene}-2-thioxo-1,3-thiazolidin-4-one (5)
- Yield 55%, m.p. = 248 °C–249 °C. FT-IR (ν, cm−1): 3078 (CHar); 2958, 2937, 2819 (CHal.); 1668 (C=O); 1226 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.25–3.27 m, 3.65 s (8H, 4 × CH2); 6.97 d, 7.25 d (4H, 4-Cl-C6H4, J = 9.1 Hz); 7.62 s (1H, CH=); and 12.96 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.5, 90.5, 117.8, 123.5, 129.2, 143.9, 149.5, 170.0, 192.5.
- 5-{[4-(4-Nitrophenyl)piperazin-1-yl]methylidene}-2-thioxo-1,3-thiazolidin-4-one (6)
- Yield 49%, m.p. = 278 °C–279 °C. FT-IR (ν, cm−1): 3091 (CHar); 2998, 2903, 2840 (CHal.); 1678 (C=O); 1228 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.63–3.65 m, 3.72 s (8H, 4 × CH2); 7.03 d, 8.08 d (4H, 4-NO2-C6H4, J = 9.6 Hz); 7.66 s (1H, CH=); and 12.97 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 46.2, 90.8, 113.2, 126.2, 137.7, 144.1, 154.4, 169.9, 192.6.
- 5-{[4-(3-Chlorophenyl)piperazin-1-yl]methylidene}-2-thioxo-1,3-thiazolidin-4-one (7)
- Yield 57%, m.p. = 238 °C–239 °C. FT-IR (ν, cm−1): 3061 (CHar); 2996, 2965, 2830 (CHal.); 1660 (C=O); 1227 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.31–3.33 m, 3.65 s (8H, 4 × CH2); 6.82 ddd (J = 0.7, 1.9, 7.9 Hz), 6.92 dd (J = 2.4, 7.9 Hz), 6.98 t (J = 2.2 Hz), 7.23 t (J = 8.0 Hz) (4H, 3-Cl-C6H4); 7.63 s (1H, CH=); and 12.96 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.1, 90.5, 114.5, 115.5, 119.1, 131.0, 134.4, 143.9, 151.9, 170.0, 192.5.
- 5-{[4-(3-Fluorophenyl)piperazin-1-yl]methylidene}-2-thioxo-1,3-thiazolidin-4-one (8)
- Yield 48%, m.p. = 248 °C–251 °C. FT-IR (ν, cm−1): 3069 (CHar); 2979, 2830, 2750 (CHal.); 1671 (C=O); 1235 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.31–3.33 m, 3.65 s (8H, 4 × CH2); 6.57–6.60 m, 6.76–6.79 m, 7.24 q (J = 7.9 Hz) (4H, 3-F-C6H4); 7.64 s (1H, CH=); and 12.96 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.1, 90.6, 102.7 d (J = 25.0 Hz), 105.8 d (J = 21.4 Hz), 111.7, 131.0 d (J = 9.7 Hz), 143.9, 152.4 d (J = 9.9 Hz), 162.9, 164.5, 170.0, 192.5.
- 5-{[4-(3-Fluoromethylphenyl)piperazin-1-yl]methylidene}-2-thioxo-1,3-thiazolidin-4-one (9)
- Yield 53%, m.p. = 251°C–252 °C. FT-IR (ν, cm−1): 3042 (CHar); 2917, 2849, 2727 (CHal.); 1679 (C=O); 1224 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.36–3.40 m, 3.67 s (8H, 4 × CH2); 7.11 d (J = 7.6 Hz), 7.21 s, 7.25 dd (J = 2.4, 8.4 Hz), 7.44 t (J = 8.0 Hz) (4H, 3-CF3-C6H4); 7.64 s (1H, CH=); and 12.96 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.0, 90.6, 111.9 d (J = 13.8 Hz), 115.7 d (J = 10.0 Hz), 119.6, 123.9, 125.8, 130.6, 143.9, 150.9, 170.0, 192.5.
- 5-{[4-(3,4-Dichlorophenyl)piperazin-1-yl]methylidene}-2-thioxo-1,3-thiazolidin-4-one (10)
- Yield 62%, m.p. = 278 °C–279 °C. FT-IR (ν, cm−1): 3063 (CHar); 2974, 2913, 2837 (CHal.); 1663 (C=O); 1223 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.33–3.35 m, 3.64 s (8H, 4 × CH2); 6.95 dd (J = 2.9, 9.0 Hz), 7.17 d (J = 2.9 Hz), 7.42 d (J = 9.0 Hz) (3H, 3,4-diCl-C6H3); 7.63 s (1H, CH=); and 12.94 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 47.9, 90.6, 116.1, 117.1, 120.6, 131.1, 132.1, 143.9, 150.3, 170.1, 192.5.
- 5-{[4-(3-Methoxyphenyl)piperazin-1-yl]methylidene}-2-thioxo-1,3-thiazolidin-4-one (11)
- Yield 56%, m.p. = 198 °C–200 °C. FT-IR (ν, cm−1): 3041 (CHar); 2996, 2957, 2838 (CHal.); 1668 (C=O); 1229 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.25–3.27 m, 3.65 s (8H, 4 × CH2); 3.72 s (3H, OCH3); 6.41 dd (J = 2.3, 8.1 Hz), 6.49 t (J = 2.3 Hz), 6.55 dd (J = 2.0, 8.0 Hz), 7,13 t (J = 8.2 Hz) (4H, 3-OCH3-C6H4); 7.63 s (1H, CH=); and 12.96 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.7, 55.4, 90.4, 102.5, 105.4, 108.9, 130.3, 143.9, 152.0, 160.7, 170.1, 192.5.
- 5-({4-[Bis(4-fluorophenyl)methyl]piperazin-1-yl}methylidene)-2-thioxo-1,3-thiazolidin-4-one (12)
- Yield 55%, m.p. = 260 °C–263 °C. FT-IR (ν, cm−1): 3067 (CHar); 2999, 2958, 2850, 2800 (CHal.); 1670 (C=O); 1215 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 2.36–2.38 m, 3.53 s (8H, 4 × CH2); 4.48 s (1H, CH); 7.15 t (J = 8.9 Hz), 7.44 dd (J = 5.6, 8.7 Hz) (8H, 2 × 4-F-C6H4); 7.48 s (1H, CH=); and 12.91 s (1H, NH). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 51.4, 72.6, 90.3, 115.9 d (J = 21.2 Hz), 129.9 d (J = 8.0 Hz), 138.5, 143.7, 160.8, 162.5, 170.0, 192.5.
- 5-{[4-(4-Chlorophenyl)piperazin-1-yl]methylidene}-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (13)
- Yield 50%, m.p. = 252 °C–253 °C. FT-IR (ν, cm−1): 3048 (CHar); 3003, 2904, 2825 (CHal.); 1683 (C=O); 1224 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.30–3.32 m, 3.75 s (8H, 4 × CH2); 6.99 d, 7.27 d (4H, 4-Cl-C6H4, J = 9.0 Hz); 7.25 d, 7.47 t, 7.52 t (5H, C6H5, J = 7.2 Hz); and 7.83 s (1H, CH=). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.6, 87.9, 117.8, 123.5, 129.2, 129.3, 129.4, 129.6, 136.7, 144.8, 149.5, 167.8, 190.6.
- 5-{[4-(3-Chlorophenyl)piperazin-1-yl]methylidene}-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (14)
- Yield 65%, m.p. = 242 °C–243 °C. FT-IR (ν, cm−1): 3024 (CHar); 2996, 2924, 2843 (CHal.); 1674 (C=O); 1227 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.37 t, 3.74 t (8H, 4 × CH2, J = 5.2 Hz); 6.84 dd (J = 1.9, 7.8 Hz), 6.94 dd (J = 2.4, 8.3 Hz), 7.01 t (J = 2.2 Hz), 7.45–7.49 m (4H, 3Cl-C6H4); 7.23–7.27 m, 7.51–7.54 m (5H, C6H5); and 7.83 s (1H, CH=). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.5, 88.0, 114.5, 115.5, 119.2, 129.2, 129.4, 129.6, 131.1, 134.4, 136.7, 144.9, 151.8, 167.8, 190.7.
- 5-({4-[Bis(4-fluorophenyl)methyl]piperazin-1-yl}methylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (15)
- Yield 57%, m.p. = 257 °C–260 °C. FT-IR (ν, cm−1): 3041 (CHar); 3000, 2914, 2813 (CHal.); 1675 (C=O); 1219 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 2.41 s, 3.63 s (8H, 4 × CH2); 4.51 s (1H, CH); 7.16 t (J = 8.8 Hz), 7.21–7.24 m, 7.38–7.60 m (13H, 2 × 4-F-C6H4 and C6H5); and 7.68 s (1H, CH=). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 51.5, 72.6, 87.7, 115.9 d (J = 21.1 Hz), 129.3 d (J = 20.3 Hz), 129.6, 130.0 d (J = 8.0 Hz), 136.7, 138.5, 144.7, 160.9, 162.5, 167.8, 190.7.
- 5-{[4-(3-Fluorophenyl)piperazin-1-yl]methylidene}-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (16)
- Yield 51%, m.p. = 237 °C–238 °C. FT-IR (ν, cm−1): 3009 (CHar); 2996, 2918, 2842 (CHal.); 1675 (C=O); 1231 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.37 t, 3.74 t (8H, 4 × CH2, J = 5.1 Hz); 6.60 td (J = 1.9, 7.3, 7.8 Hz), 6.76–6.83 m, 7.19–7.30 m, 7.41–7.45 m (9H, 3-F-C6H4 and C6H5); and 7.84 s (1H, CH=). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.2, 88.0, 102.7 d (J = 25.4 Hz), 105.8 d (J = 21.4 Hz), 129.2, 129.4, 129.6, 131.0 d (J = 10.3 Hz), 136.7, 144.9, 152.3 d (J = 10.6 Hz), 163.0, 164.6, 167.2, 190.6.
- 5-{[4-(3-Methoxyphenyl)piperazin-1-yl]methylidene}-3-phenyl-2-thioxo-1,3-thiazolidin-4-one (17)
- Yield 46%, m.p. = 197 °C–199 °C. FT-IR (ν, cm−1): 3069 (CHar); 2998, 2955, 2899, 2826 (CHal.); 1682 (C=O); 1222 (C=S). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 3.30–3.31 m (4H, 2 × CH2); 3.73–3.75 m (7H, 2 × CH2 and OCH3); 6.42 dd (J = 2.3, 8.1 Hz), 6.50 t (J = 2.3 Hz), 6.56 dd (J = 2.3, 8.3 Hz), 7.15 t (J = 8.2 Hz) (4H, 3-OCH3-C6H4); 7.23–7.28 m, 7.45–7.55 m (5H, C6H5); and 7.83 s (1H, CH=). 13C NMR (150 MHz, DMSO-d6) δ (ppm): 48.8, 55.4, 87.9, 102.5, 105.4, 108.9, 129.2, 129.4, 129.6, 130.3, 136.7, 144.8, 152.0, 160.7, 167.8, 190.6.
3.2. ADMET Studies
3.3. Cell Lines and Culture Conditions
3.4. Cytotoxic Activity
3.5. Molecular Docking
3.6. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Singh, D.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- WHO Breast Cancer. Fact Sheets, WHO, Geneva. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 12 October 2024).
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Recondo, G.; Facchinetti, F.; Olaussen, K.A.; Besse, B.; Friboulet, L. Making the first move in EGFR-driven or ALK-driven NSCLC: First-generation or next-generation TKI? Nat. Rev. Clin. Oncol. 2018, 15, 694–708. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 2008, 105, 2070–2075. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cang, S.; Liu, D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J. Hematol. Oncol. 2016, 9, 34. [Google Scholar] [CrossRef]
- Gutierrez, C.; Schiff, R. HER2: Biology, Detection, and Clinical Implications. Arch. Pathol. Lab. Med. 2011, 135, 55–62. [Google Scholar] [CrossRef]
- Rubin, I.; Yarden, Y. The basic biology of HER2. Ann. Oncol. 2001, 12 (Suppl. S1), S3–S8. [Google Scholar] [CrossRef]
- Hsu, J.L.; Hung, M.-C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 2016, 35, 575–588. [Google Scholar] [CrossRef]
- Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin. Drug Discov. 2017, 12, 1233–1252. [Google Scholar] [CrossRef]
- Tomašić, T.; Peterlin Mašič, L. Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation. Expert Opin. Drug Discov. 2012, 7, 549–560. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Babapoor, A.; Amani, A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1132–1148. [Google Scholar] [CrossRef] [PubMed]
- El-Miligy, M.M.M.; Hazzaa, A.A.; El-Messmary, H.; Nassra, R.A.; El-Hawash, S.A.M. New hybrid molecules combining benzothiophene or benzofuran with rhodanine as dual COX-1/2 and 5-LOX inhibitors: Synthesis, biological evaluation and docking study. Bioorg. Chem. 2017, 72, 102–115. [Google Scholar] [CrossRef]
- Shepeta, Y.L.; Lozynskyi, A.V.; Tomkiv, Z.V.; Grellier, P.; Lesyk, R.B. Synthesis and evaluation of biological activity of rhodanine-pyrazoline hybrid molecules with 2-(2,6-dichlorophenylamino)-phenylacetamide fragment. Biopolym. Cell 2020, 36, 133–145. [Google Scholar] [CrossRef]
- Khodair, A.I.; Awad, M.K.; Gesson, J.P.; Elshaier, Y.A.M.M. New N-ribosides and N-mannosides of rhodanine derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling studies. Carbohydr. Res. 2020, 487, 107894. [Google Scholar] [CrossRef] [PubMed]
- Stawoska, I.; Tejchman, W.; Mazuryk, O.; Lyčka, A.; Nowak-Sliwinska, P.; Żesławska, E.; Nitek, W.; Kania, A. Spectral Characteristic and Preliminary Anticancer Activity in vitro of Selected Rhodanine-3-carboxylic Acids Derivatives. J. Heterocycl. Chem. 2017, 54, 2889–2897. [Google Scholar] [CrossRef]
- Szczepański, J.; Tuszewska, H.; Trotsko, N. Anticancer Profile of Rhodanines: Structure–Activity Relationship (SAR) and Molecular Targets—A Review. Molecules 2022, 27, 3750. [Google Scholar] [CrossRef]
- Francis, T.; Dixit, S.R.; Kumar, B.R.P. Discovery of Rhodanine and Thiazolidinediones as Novel Scaffolds for EGFR Inhibition: Design, Synthesis, Analysis and CoMSIA Studies. Polycycl. Aromat. Compd. 2022, 42, 2483–2499. [Google Scholar] [CrossRef]
- Li, S.N.; Xu, Y.Y.; Gao, J.Y.; Yin, H.R.; Zhang, S.L.; Li, H.Q. Combination of 4-anilinoquinazoline and rhodanine as novel epidermal growth factor receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. 2015, 23, 3221–3227. [Google Scholar] [CrossRef]
- Ghorab, M.M.; Soliman, A.M.; El-Adl, K.; Hanafy, N.S. New quinazoline sulfonamide derivatives as potential anticancer agents: Identifying a promising hit with dual EGFR/VEGFR-2 inhibitory and radiosensitizing activity. Bioorg. Chem. 2023, 140, 106791. [Google Scholar] [CrossRef]
- Finn, R.S.; Dering, J.; Conklin, D.; Kalous, O.; Cohen, D.J.; Desai, A.J.; Ginther, C.; Atefi, M.; Chen, I.; Fourst, C.; et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009, 11, R77. [Google Scholar] [CrossRef]
- “Updated Data from Phase 3 Trial of Ibrance (Palbociclib) Plus Letrozole in HR+, HER2- Metastatic Breast Cancer Confirm Improvement in Progression-Free Survival” (Press Release). Pfizer. Archived from the original on 22 June 2021. Available online: https://www.pfizer.com/news/press-release/press-release-detail/updated_data_from_phase_3_trial_of_ibrance_palbociclib_plus_letrozole_in_er_her2_metastatic_breast_cancer_confirm_improvement_in_progression_free_survival (accessed on 12 October 2024).
- Grishchuk, A.P.; Baranov, S.N. Synthesis of thiocyanic acid. Zh. Prikl. Khimii 1959, 32, 2601–2602. [Google Scholar]
- Nitsche, C.; Klein, C.D. Aqueous microwave-assisted one-pot synthesis of N-substituted rhodanines. Tetrahedron Lett. 2012, 53, 5197–5201. [Google Scholar] [CrossRef]
- Lo, C.P.; Croxall, W.J. 5-Alkoxymethylenerhodanines and their reactions with rhodanines. J. Am. Chem. Soc. 1954, 76, 4166–4169. [Google Scholar] [CrossRef]
- Mazurkiewicz, R.; Rajca, A.; Salwińska, E.; Skibiński, A.; Suwiński, J.; Zieliński, W. Metody Spektroskopowe i ich Zastosowanie do Identyfikacji związków Organicznych (Spectroscopic Methods and Their Application to the Identification of Organic Compounds); Scientific and Technical Publishing House: Warsaw, Poland, 2000; p. 660. (In Polish) [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimetal and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge–based approach in designing combinatorial or medicinal chemistry libraries for drug discovery.1. A quantitative and quantitative characterization of know drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- ProTox-3.0-Prediction of TOXicity of Chemicals. Available online: https://tox.charite.de/protox3/?site=compound_input (accessed on 24 September 2024).
- Berglund, L.; Björling, E.; Oksvold, P.; Fagerberg, L.; Asplund, A.; Szigyarto, C.A.; Persson, A.; Ottosson, J.; Wernérus, H.; Nilsson, P.; et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol. Cell Proteom. 2008, 7, 2019–2027. [Google Scholar] [CrossRef]
- El Guerrab, A.; Bamdad, M.; Kwiatkowski, F.; Bignon, Y.-J.; Penault-Llorca, F.; Aubel, C. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget 2016, 7, 73618–73637. [Google Scholar] [CrossRef] [PubMed]
- Kadivar, A.; Noordin, M.I.; Aditya, A.; Kamalidehghan, B.; Davoudi, E.T.; Sedghi, R.; Javar, H.A. Antiproliferative effects of imatinib mesylate on ZR-15-1 and MDA-MB-231 cell lines via PDGFR-ꞵ, PDGF-BB, c-Kit and SCF expression. Int. J. Mol. Med. 2018, 42, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.G.R.; Solomon, V.R.; Hemavathy, N.; Jeyakanthan, J.; Kumar, D.; Mahesh, J. Design, synthesis, in silico, and pharmacological evaluation of novel quinoline derivatives containing substituted piperazine moieties as potential anti-breast cancer agents. Results Chem. 2024, 7, 101359. [Google Scholar] [CrossRef]
- Kadivar, A.; Kamalidehghan, B.; Javar, H.A.; Karimi, B.; Sedghi, R.; Noordin, M.I. Antiproliferation effect of imatinib mesylate on MCF7, T-47D tumorigenic and MCF 10A nontumorigenic breast cell lines via PDGFR-ꞵ, PDGF-BB, c-Kit and SCF genes. Drug Des. Dev. Ther. 2017, 11, 469–481. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Jiang, H.; Li, Y.; Dong, C.; Chen, H.; Zhang, K.; Du, Z. Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors. MedChemComm 2018, 9, 1194–1205. [Google Scholar] [CrossRef]
- Buzun, K.; Kryshchyshyn-Dylevych, A.; Senkiv, J.; Roman, O.; Gzella, A.; Bielawski, K.; Bielawska, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 5-[2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-thiazolidinones. Molecules 2021, 26, 3057. [Google Scholar] [CrossRef] [PubMed]
- El-Adl, K.; Sakr, H.; Nasser, M.; Alswah, M.; Shoman, F.M.A. 5-(4-Methoxybenzylidene)thiazolidine-2,4-dione-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch. Pharm. 2020, 353, e2000079. [Google Scholar] [CrossRef]
- Hanafy, N.S.; Aziz, N.A.A.M.; El-Hddad, S.S.A.; Abdelgawad, M.A.; Ghoneim, M.M.; Dawood, A.F.; Mohamady, S.; El-Adl, K.; Ahmed, S. Design, synthesis, and docking of novel thiazolidine-2,4-dione multitarget scaffold as new approach for cancer treatment. Arch. Pharm. 2023, 356, e2300137. [Google Scholar] [CrossRef]
- Tronina, T.; Bartmańska, A.; Popłoński, J.; Rychlicka, M.; Sordon, S.; Filip-Psurska, B.; Milczarek, M.; Wietrzyk, J.; Huszcza, E. Prenylated flavonoids with selective toxicity against human cancers. Int. J. Mol. Sci. 2023, 24, 7408. [Google Scholar] [CrossRef]
- Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; et al. Design and Synthesis of Novel Human Epidermal Growth Factor Receptor 2 (HER2)/Epidermal Growth Factor Receptor (EGFR) Dual Inhibitors Bearing a Pyrrolo[3,2-d]pyrimidine Scaffold. J. Med. Chem. 2011, 54, 8030–8050. [Google Scholar] [CrossRef]
- Aertgeerts, K.; Skene, R.; Yano, J.; Sang, B.C.; Zou, H.; Snell, G.; Jennings, A.; Iwamoto, K.; Habuka, N.; Hirokawa, A.; et al. Structural Analysis of the Mechanism of Inhibition and Allosteric Activation of the Kinase Domain of HER2 Protein. J. Biol. Chem. 2011, 286, 18756–18765. [Google Scholar] [CrossRef] [PubMed]
- Grabe, T.; Jeyakumar, K.; Niggenaber, J.; Schulz, T.; Koska, S.; Kleinbölting, S.; Beck, M.E.; Müller, M.P.; Rauh, D. Addressing the Osimertinib Resistance Mutation EGFR-L858R/C797S with Reversible Aminopyrimidines. ACS Med. Chem. Lett. 2023, 14, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Matsunaga, S.; Tang, J.; Maeda, Y.; Nakano, M.; Philippe, R.J.; Shibahara, M.; Liu, W.; Sato, H.; Wang, L.; et al. Novel 4-amino-furo[2,3-d]pyrimidines as Tie-2 and VEGFR2 dual inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 2203–2207. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An Alternative Method for the Evaluation of Docking Performance: RSR vs RMSD. J. Chem. Inf. Model. 2008, 48, 1411–1422. [Google Scholar] [CrossRef]
- Rawluk, J.; Waller, C.F. Gefitinib. Recent Results Cancer Res. 2018, 211, 235–246. [Google Scholar] [CrossRef]
- Buchdunger, E.; O’Reilly, T.; Wood, J. Pharmacology of imatinib (STI571). Eur. J. Cancer 2002, 38 (Suppl. S5), S28–S36. [Google Scholar] [CrossRef]
- Pawar, S.S.; Rohane, S.H. Review on Discovery Studio: An important Tool for Molecular Docking. Asian J. Res. Chem. 2021, 14, 1–3. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
Compound | Lipinski’s Rule of Five | ||||
---|---|---|---|---|---|
HBA | HBD | M [g/mol] | LogP (MLOGP) | Violation | |
5 | 1 | 1 | 339.86 | 1.49 | 0 |
6 | 3 | 1 | 350.42 | 0.00 | 0 |
7 | 1 | 1 | 339.86 | 1.49 | 0 |
8 | 2 | 1 | 323.41 | 1.36 | 0 |
9 | 4 | 1 | 373.42 | 1.86 | 0 |
10 | 1 | 1 | 374.31 | 2.01 | 0 |
11 | 2 | 1 | 335.44 | 0.66 | 0 |
12 | 4 | 1 | 431.52 | 2.89 | 0 |
13 | 1 | 0 | 415.96 | 2.94 | 0 |
14 | 1 | 0 | 415.96 | 2.94 | 0 |
15 | 4 | 0 | 507.62 | 4.17 | 2 |
16 | 2 | 0 | 399.50 | 2.83 | 0 |
17 | 2 | 0 | 411.54 | 2.11 | 0 |
Compound | Pharmacokinetics and Water Solubility | Water Solubility | ||
---|---|---|---|---|
GI Absorption | BBB Permeation | P-gp Substrate | ||
5 | High | No | No | Moderately soluble |
6 | High | No | No | Soluble |
7 | High | No | No | Moderately soluble |
8 | High | No | No | Soluble |
9 | High | No | No | Moderately soluble |
10 | High | No | No | Moderately soluble |
11 | High | No | No | Soluble |
12 | High | No | No | Moderately soluble |
13 | High | No | No | Moderately soluble |
14 | High | No | No | Moderately soluble |
15 | High | No | Yes | Poorly soluble |
16 | High | No | No | Moderately soluble |
17 | High | No | No | Moderately soluble |
Compound | Acute Oral Toxicity LD50, mg/kg | Organ Toxicity | Carcinogenicity Prediction/ Probability | Mutagenicity Prediction/ Probability | |||
---|---|---|---|---|---|---|---|
Hepatotoxicity Prediction/ Probability | Neurotoxicity Prediction/ Probability | Nephrotoxicity Prediction/ Probability | Cardiotoxicity Prediction/ Probability | ||||
5 | 1233 | i*/0.63 | a**/0.70 | i/0.70 | i/0.83 | i/0.56 | i/0.64 |
6 | 1233 | i/0.61 | i/0.69 | i/0.61 | i/0.74 | a/0.66 | a/0.82 |
7 | 1233 | i/0.63 | a/0.70 | i/0.70 | i/0.83 | i/0.56 | i/0.64 |
8 | 1233 | i/0.63 | a/0.68 | i/0.71 | i/0.82 | i/0.57 | i/0.65 |
9 | 1233 | i/0.65 | a/0.66 | i/0.73 | i/0.83 | i/0.56 | i/0.63 |
10 | 1233 | i/0.67 | a/0.71 | i/0.71 | i/0.82 | i/0.58 | i/0.65 |
11 | 1233 | i/0.65 | a/0.65 | i/0.62 | i/0.71 | i/0.54 | i/0.65 |
12 | 1024 | i/0.67 | a/0.73 | i/0.73 | i/0.82 | i/0.59 | i/0.67 |
13 | 1125 | i/0.65 | a/0.75 | i/0.72 | i/0.82 | i/0.57 | i/0.67 |
14 | 1125 | i/0.65 | a/0.75 | i/0.72 | i/0.82 | i/0.57 | i/0.67 |
15 | 1125 | i/0.66 | a/0.73 | i/0.73 | i/0.82 | i/0.58 | i/0.68 |
16 | 1125 | i/0.66 | a/0.73 | i/0.73 | i/0.82 | i/0.58 | i/0.68 |
17 | 1125 | i/0.68 | a/0.70 | i/0.64 | i/0.67 | i/0.54 | i/0.64 |
Compound | Selectivity index (SI) | |||
---|---|---|---|---|
SIMDA-MB-468 | SIMDA-MB-231 | SIMCF-7 | SIT47D | |
5 | 1.19 | 1 | 1 | 1 |
6 | 3.7 | 2.17 | 1 | 1.08 |
7 | 2.1 | 1.27 | 1 | 1 |
8 | 1 | 1.29 | 1 | 1 |
9 | 3.17 | 1 | 2.74 | 1 |
10 | 3.63 | 1.90 | 6.45 | 2.2 |
11 | 2.17 | 1.25 | 1 | 1 |
12 | 5.41 | 1.36 | 5.56 | 1 |
13 | 1.12 | 1.38 | 2.99 | 1 |
14 | 1 | 1 | 1 | 1 |
15 | 4.26 | 2.63 | 4.44 | 1.06 |
16 | 1 | 1.12 | 1 | 1 |
17 | 3.45 | 1.69 | 1.18 | 1 |
Compounds | EGFR (PDB 7ZYQ) | VEGFR (PDB 1YWN) | HER2 (PDB 3RCD) |
---|---|---|---|
5 | −6.9 | −6.7 | −7.1 |
6 | −7.1 | −6.5 | −7.6 |
7 | −7.2 | −6.8 | −8.3 |
8 | −6.9 | −6.8 | −8.2 |
9 | −7.5 | −7.2 | −8.8 |
10 | −6.9 | −6.9 | −7.9 |
11 | −7.0 | −6.6 | −8.0 |
12 | −8.2 | −8.2 | −8.9 |
13 | −7.6 | −7.0 | −8.5 |
14 | −8.4 | −7.6 | −9.0 |
15 | −8.4 | −9.0 | −9.9 |
16 | −7.6 | −7.4 | −9.1 |
17 | −8.3 | −7.3 | −8.9 |
CHEMBL5270693 | −11.3 | −8.1 | −9.1 |
Gefitinib | −7.8 | − | −8.3 |
Imatinib | −9.2 | − | −10.5 |
GW768505A | - | −11.7 | - |
Tak-285 | −9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepański, J.; Khylyuk, D.; Korga-Plewko, A.; Michalczuk, M.; Mańdziuk, S.; Iwan, M.; Trotsko, N. Rhodanine–Piperazine Hybrids as Potential VEGFR, EGFR, and HER2 Targeting Anti-Breast Cancer Agents. Int. J. Mol. Sci. 2024, 25, 12401. https://doi.org/10.3390/ijms252212401
Szczepański J, Khylyuk D, Korga-Plewko A, Michalczuk M, Mańdziuk S, Iwan M, Trotsko N. Rhodanine–Piperazine Hybrids as Potential VEGFR, EGFR, and HER2 Targeting Anti-Breast Cancer Agents. International Journal of Molecular Sciences. 2024; 25(22):12401. https://doi.org/10.3390/ijms252212401
Chicago/Turabian StyleSzczepański, Jacek, Dmytro Khylyuk, Agnieszka Korga-Plewko, Mariola Michalczuk, Sławomir Mańdziuk, Magdalena Iwan, and Nazar Trotsko. 2024. "Rhodanine–Piperazine Hybrids as Potential VEGFR, EGFR, and HER2 Targeting Anti-Breast Cancer Agents" International Journal of Molecular Sciences 25, no. 22: 12401. https://doi.org/10.3390/ijms252212401
APA StyleSzczepański, J., Khylyuk, D., Korga-Plewko, A., Michalczuk, M., Mańdziuk, S., Iwan, M., & Trotsko, N. (2024). Rhodanine–Piperazine Hybrids as Potential VEGFR, EGFR, and HER2 Targeting Anti-Breast Cancer Agents. International Journal of Molecular Sciences, 25(22), 12401. https://doi.org/10.3390/ijms252212401