Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics
Abstract
:1. Introduction
2. Results
2.1. Protein–Protein Network Analyses
2.2. Functional Enrichment Analysis
2.3. Enrichment and Pathway Analysis
3. Discussion
4. Material and Methods
4.1. Inclusion Criteria for Patients with MRONJ
4.2. Sample Processing
4.2.1. Saliva Sampling
4.2.2. Total Protein Concentration Assay
4.2.3. Filter-Aided Sample Preparation
4.3. Mass Spectrometry
4.4. Bioinformatics Analysis
4.4.1. Gene Ontology and Pathway Analysis
4.4.2. Protein–Protein Interaction Network Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, A.; Zhang, Z.; Qiu, X.; Guo, Q. Medication-related osteonecrosis of the jaw (MRONJ): A review of pathogenesis hypothesis and therapy strategies. Arch. Toxicol. 2023, 98, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Querrer, R.; Ferrare, N.; Melo, N.; Stefani, C.M.; dos Reis, P.E.D.; Mesquita, C.R.M.; Borges, G.A.; Leite, A.F.; Figueiredo, P.T. Differences between bisphosphonate-related and denosumab-related osteonecrosis of the jaws: A systematic review. Support. Care Cancer 2020, 29, 2811–2820. [Google Scholar] [CrossRef] [PubMed]
- Nifosì, G.; Nifosì, A.; Nifosì, L. Denosumab-related osteonecrosis of the jaw: A literature review. Dent. Med. Probl. 2017, 54, 423–427. [Google Scholar] [CrossRef]
- Antonuzzo, L.; Lunghi, A.; Petreni, P.; Brugia, M.; Laffi, A.; Giommoni, E.; Mela, M.M.; Mazzoni, F.; Balestri, V.; Di Costanzo, F. Osteonecrosis of the Jaw and Angiogenesis inhibitors: A Revival of a Rare but Serous Side Effect. Curr. Med. Chem. 2017, 24, 3068–3076. [Google Scholar] [CrossRef]
- Ziebart, T.; Halling, F.; Heymann, P.; Neff, A.; Blatt, S.; Jung, J.; Pabst, A.; Righesso, L.; Walter, C. Impact of Soft Tissue Pathophysiology in the Development and Maintenance of Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ). Dent. J. 2016, 4, 36. [Google Scholar] [CrossRef]
- Srivichit, B.; Thonusin, C.; Chattipakorn, N.; Chattipakorn, S.C. Impacts of bisphosphonates on the bone and its surrounding tissues: Mechanistic insights into medication-related osteonecrosis of the jaw. Arch. Toxicol. 2022, 96, 1227–1255. [Google Scholar] [CrossRef]
- McGowan, K.; Acton, C.; Ivanovski, S.; Johnson, N.W.; Ware, R.S. Systemic comorbidities are associated with medication-related osteonecrosis of the jaws: Case–control study. Oral Dis. 2019, 25, 1107–1115. [Google Scholar] [CrossRef]
- Maciel, G.B.M.; Maciel, R.M.; Ferrazzo, K.L.; Danesi, C.C. Etiopathogenesis of medication-related osteonecrosis of the jaws: A review. J. Mol. Med. 2024, 102, 353–364. [Google Scholar] [CrossRef]
- Gao, S.-Y.; Zheng, G.-S.; Wang, L.; Liang, Y.-J.; Zhang, S.-E.; Lao, X.-M.; Li, K.; Liao, G.-Q. Zoledronate suppressed angiogenesis and osteogenesis by inhibiting osteoclasts formation and secretion of PDGF-BB. PLoS ONE 2017, 12, e0179248. [Google Scholar] [CrossRef]
- Chang, C.; Greenspan, A.; Beltran, J.; Gershwin, M.E. Osteonecrosis. Kelley and Firestein’s Textbook of Rheumatology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017; Volume 2, pp. 1764–1787.e5. [Google Scholar] [CrossRef]
- Balachandran, K.; Ramli, R.; Karsani, S.A.; Rahman, M.A. Identification of Potential Biomarkers and Small Molecule Drugs for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ): An Integrated Bioinformatics Study Using Big Data. Int. J. Mol. Sci. 2023, 24, 8635. [Google Scholar] [CrossRef]
- Lorenzo-Pouso, A.I.; Bravo, S.B.; Carballo, J.; Chantada-Vázquez, M.d.P.; Bagán, J.; Bagán, L.; Chamorro-Petronacci, C.M.; Conde-Amboage, M.; López-López, R.; García-García, A.; et al. Quantitative proteomics in medication-related osteonecrosis of the jaw: A proof-of-concept study. Oral Dis. 2022, 29, 2117–2129. [Google Scholar] [CrossRef] [PubMed]
- Laputková, G.; Talian, I.; Schwartzová, V. Medication-Related Osteonecrosis of the Jaw: A Systematic Review and a Bioinformatic Analysis. Int. J. Mol. Sci. 2023, 24, 16745. [Google Scholar] [CrossRef] [PubMed]
- Thumbigere-Math, V.; Michalowicz, B.; de Jong, E.; Griffin, T.; Basi, D.; Hughes, P.; Tsai, M.; Swenson, K.; Rockwell, L.; Gopalakrishnan, R. Salivary proteomics in bisphosphonate-related osteonecrosis of the jaw. Oral Dis. 2013, 21, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Eo, M.Y.; Cho, Y.J.; Kim, Y.S.; Lee, S.K. Wound healing protein profiles in the postoperative exudate of bisphosphonate-related osteonecrosis of mandible. Eur. Arch. Otorhinolaryngol. 2017, 274, 3485–3495. [Google Scholar] [CrossRef]
- Kim, S.; Mun, S.; Shin, W.; Han, K.; Kim, M.-Y. Identification of Potentially Pathogenic Variants Associated with Recurrence in Medication-Related Osteonecrosis of the Jaw (MRONJ) Patients Using Whole-Exome Sequencing. J. Clin. Med. 2022, 11, 2145. [Google Scholar] [CrossRef]
- Kim, K.M.; Rhee, Y.; Kwon, Y.-D.; Kwon, T.-G.; Lee, J.K.; Kim, D.-Y. Medication Related Osteonecrosis of the Jaw: 2015 Position Statement of the Korean Society for Bone and Mineral Research and the Korean Association of Oral and Maxillofacial Surgeons. J. Bone Metab. 2015, 22, 151–165. [Google Scholar] [CrossRef]
- Kim, J.; Yeon, A.; Parker, S.J.; Shahid, M.; Thiombane, A.; Cho, E.; You, S.; Emam, H.; Kim, D.-G.; Kim, M. Alendronate-induced Perturbation of the Bone Proteome and Microenvironmental Pathophysiology. Int. J. Med. Sci. 2021, 18, 3261–3270. [Google Scholar] [CrossRef]
- Song, M.; Bai, H.; Zhang, P.; Zhou, X.; Ying, B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int. J. Oral Sci. 2023, 15, 2. [Google Scholar] [CrossRef]
- Hofmann, E.; Eggers, B.; Heim, N.; Kramer, F.-J.; Nokhbehsaim, M.; Götz, W. Bevacizumab and sunitinib mediate osteogenic and pro-inflammatory molecular changes in primary human alveolar osteoblasts in vitro. Odontology 2022, 110, 634–647. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Li, Y.; Song, L. Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids Health Dis. 2022, 21, 5. [Google Scholar] [CrossRef]
- Seeman, E. Pathogenesis of bone fragility in women and men. Lancet 2002, 359, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Yu, X. Lipid metabolism disorders and bone dysfunction-interrelated and mutually regulated (Review). Mol. Med. Rep. 2015, 12, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.; Wu, T.; Zhu, S.; Wang, X.; Zhang, Y.; Wang, X.; Yang, L.; He, C. Regulation of cholesterol homeostasis in osteoporosis mechanisms and therapeutics. Clin. Sci. 2023, 137, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, W.; Zou, Z.; Li, Y.; Kang, F.; Li, J.; Dong, S. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism. Genes Dis. 2023, 11, 101122. [Google Scholar] [CrossRef]
- Alekos, N.S.; Moorer, M.C.; Riddle, R.C. Dual Effects of Lipid Metabolism on Osteoblast Function. Front. Endocrinol. 2020, 11, 578194. [Google Scholar] [CrossRef]
- Yuan, L.; Li, W.; Wang, X.; Yang, G.; Yu, H.; Sun, S. The relationship between genetic polymorphisms in apolipoprotein E (ApoE) gene and osteonecrosis of the femoral head induced by steroid in Chinese Han population. Genes Genom. 2017, 40, 225–231. [Google Scholar] [CrossRef]
- Li, K.; Ching, D.; Luk, F.S.; Raffai, R.L. Apolipoprotein E enhances MicroRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. Circ. Res. 2015, 117, e1–e11. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, N.; Zhang, Y.; Xiao, M.; Li, L.; Ning, Z.; Liu, M.; Jin, H. Associations between apolipoprotein B and bone mineral density: A population-based study. BMC Musculoskelet. Disord. 2023, 24, 861. [Google Scholar] [CrossRef]
- Eklund, K.K.; Niemi, K.; Kovanen, P.T. Immune Functions of Serum Amyloid A. Crit. Rev. Immunol. 2012, 32, 335–348. [Google Scholar] [CrossRef]
- He, R.L.; Zhou, J.; Hanson, C.Z.; Chen, J.; Cheng, N.; Ye, R.D. Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood 2009, 113, 429–437. [Google Scholar] [CrossRef]
- Vaisar, T.; Tang, C.; Babenko, I.; Hutchins, P.; Wimberger, J.; Suffredini, A.F.; Heinecke, J.W. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J. Lipid Res. 2015, 56, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Ma, Y.; Wang, Q.; Gao, Y.; Li, G.; Jiang, C.; Gao, Y.; Feng, Y. Serum Amyloid A Correlates With the Osteonecrosis of Femoral Head by Affecting Bone Metabolism. Front. Pharmacol. 2021, 12, 767243. [Google Scholar] [CrossRef] [PubMed]
- Jumeau, C.; Awad, F.; Assrawi, E.; Cobret, L.; Duquesnoy, P.; Giurgea, I.; Valeyre, D.; Grateau, G.; Amselem, S.; Bernaudin, J.-F.; et al. Expression of SAA1, SAA2 and SAA4 genes in human primary monocytes and monocyte-derived macrophages. PLoS ONE 2019, 14, e0217005. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Ohtani, K.; Hidaka, Y.; Amano, Y.; Matsuda, Y.; Mori, K.; Hwang, I.; Inoue, N.; Wakamiya, N. Three pentraxins C-reactive protein, serum amyloid p component and pentraxin 3 mediate complement activation using Collectin CL-P1. Biochim. et Biophys. Acta (BBA) Gen. Subj. 2017, 1861, 1–14. [Google Scholar] [CrossRef]
- Yang, G.; Singh, S.; McDonough, C.W.; Lamba, J.K.; Hamadeh, I.; Holliday, L.S.; Wang, D.; Katz, J.; Lakatos, P.A.; Balla, B.; et al. Genome-wide Association Study Identified Chromosome 8 Locus Associated with Medication-Related Osteonecrosis of the Jaw. Clin. Pharmacol. Ther. 2021, 110, 1558–1569. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, S.-H.; Kim, C.H.; Min, B.J.; Kim, G.J.; Lim, Y.; Kim, H.-S.; Ahn, K.-M.; Kim, J.H. Identifying genetic variants underlying medication-induced osteonecrosis of the jaw in cancer and osteoporosis: A case control study. J. Transl. Med. 2019, 17, 381. [Google Scholar] [CrossRef]
- Kastritis, E.; Melea, P.; Bagratuni, T.; Melakopoulos, I.; Gavriatopoulou, M.; Roussou, M.; Migkou, M.; Eleutherakis-Papaiakovou, E.; Terpos, E.; Dimopoulos, M.A. Genetic factors related with early onset of osteonecrosis of the jaw in patients with multiple myeloma under zoledronic acid therapy. Leuk. Lymphoma 2017, 58, 2304–2309. [Google Scholar] [CrossRef]
- Huang, W. Investigating the Role of Bisphosphonates on Bone Cells and the Potential of Ionic Therapy to Restore Bone Regeneration in Osteonecrosis of the Jaw. Ph.D. Thesis, University College London, London, UK, 2024. [Google Scholar]
- Fleming, I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat. 2006, 82, 60–67. [Google Scholar] [CrossRef]
- Capdevila, J.H.; Falck, J.R.; Harris, R.C. Cytochrome P450 and arachidonic acid bioactivation: Molecular and functional properties of the arachidonate monooxygenase. J. Lipid Res. 2000, 41, 163–181. [Google Scholar] [CrossRef]
- Tontonoz, P.; Nagy, L.; Alvarez, J.G.A.; Thomazy, V.; Evans, R.M. PPARγ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL. Cell 1998, 93, 241–252. [Google Scholar] [CrossRef]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef] [PubMed]
- Werner, L.M.; Criss, A.K. Diverse Functions of C4b-Binding Protein in Health and Disease. J. Immunol. 2023, 211, 1443–1449. [Google Scholar] [CrossRef]
- Xie, H.-G.; Jiang, L.-P.; Tai, T.; Ji, J.-Z.; Mi, Q.-Y. The Complement System and C4b-Binding Protein: A Focus on the Promise of C4BPα as a Biomarker to Predict Clopidogrel Resistance. Mol. Diagn. Ther. 2024, 28, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wu, J.; Poulet, B.; Liang, J.; Bai, C.; Dang, X.; Wang, K.; Fan, L.; Liu, R. Proteomics analysis of hip articular cartilage identifies differentially expressed proteins associated with osteonecrosis of the femoral head. Osteoarthr. Cartil. 2021, 29, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wu, J.; Qin, Y.; Liang, J.; Qian, H.; Song, J.; Qu, C.; Liu, R. Identification of N-glycoproteins of hip cartilage in patients with osteonecrosis of femoral head using quantitative glycoproteomics. Int. J. Biol. Macromol. 2021, 187, 892–902. [Google Scholar] [CrossRef]
- Shao, W.; Wang, P.; Lv, X.; Wang, B.; Gong, S.; Feng, Y. Unraveling the Role of Endothelial Dysfunction in Osteonecrosis of the Femoral Head: A Pathway to New Therapies. Biomedicines 2024, 12, 664. [Google Scholar] [CrossRef]
- Baek, S.-H.; Kim, K.-H.; Lee, W.K.; Hong, W.; Won, H.; Kim, S.-Y. Abnormal Lipid Profiles in Nontraumatic Osteonecrosis of the Femoral Head. J. Bone Jt. Surg. 2022, 104, 19–24. [Google Scholar] [CrossRef]
- Liu, K.; Wang, K.; Wang, L.; Zhou, Z. Changes of lipid and bone metabolism in broilers with spontaneous femoral head necrosis. Poult. Sci. 2020, 100, 100808. [Google Scholar] [CrossRef]
- van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2018, 16, 166–179. [Google Scholar] [CrossRef]
- Pan, Y.; Deng, L.; Wang, H.; He, K.; Xia, Q. Histidine-rich glycoprotein (HRGP): Pleiotropic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Genes Dis. 2020, 9, 381–392. [Google Scholar] [CrossRef]
- Grover, S.P.; Mackman, N. Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Front. Cardiovasc. Med. 2022, 9, 878199. [Google Scholar] [CrossRef] [PubMed]
- Ouerhani, A.; Chiappetta, G.; Souiai, O.; Mahjoubi, H.; Vinh, J. Investigation of serum proteome homeostasis during radiation therapy by a quantitative proteomics approach. Biosci. Rep. 2019, 39, BSR20182319. [Google Scholar] [CrossRef] [PubMed]
- Tollefsen, D.M. Heparin Cofactor II Modulates the Response to Vascular Injury. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Baglin, T.P.; Carrell, R.W.; Church, F.C.; Esmon, C.T.; Huntington, J.A. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc. Natl. Acad. Sci. USA 2002, 99, 11079–11084. [Google Scholar] [CrossRef]
- Church, F.C.; Pratt, C.W.; Hoffman, M. Leukocyte chemoattractant peptides from the serpin heparin cofactor II. J. Biol. Chem. 1991, 266, 704–709. [Google Scholar] [CrossRef]
- He, L.; Vicente, C.P.; Westrick, R.J.; Eitzman, D.T.; Tollefsen, D.M. Heparin cofactor II inhibits arterial thrombosis after endothelial injury. J. Clin. Investig. 2002, 109, 213–219. [Google Scholar] [CrossRef]
- Singh, P.; Kemper, C. Complement, complosome, and complotype: A perspective. Eur. J. Immunol. 2023, 53, e2250042. [Google Scholar] [CrossRef]
- Xie, C.B.; Jane-Wit, D.; Pober, J.S. Complement Membrane Attack Complex. Am. J. Pathol. 2020, 190, 1138–1150. [Google Scholar] [CrossRef]
- Ewald, F.; Wuesthoff, F.; Koehnke, R.; Friedrich, R.E.; Gosau, M.; Smeets, R.; Rohde, H.; Assaf, A.T. Retrospective analysis of bacterial colonization of necrotic bone and antibiotic resistance in 98 patients with medication-related osteonecrosis of the jaw (MRONJ). Clin. Oral Investig. 2020, 25, 2801–2809. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, Z.; Xue, L.; Wang, D.; Tan, Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front. Immunol. 2022, 13, 1064245. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, L.; Ren, W.; Li, S.; Zheng, J.; Li, S.; Jiang, C.; Yang, S.; Zhi, K. The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Front. Immunol. 2021, 12, 606043. [Google Scholar] [CrossRef] [PubMed]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.; Vuong, H.; Kim, S.; Lenon, A.; Ho, K.; Hsiao, E.; Sung, E.; Kim, R. Indigenous Microbiota Protects against Inflammation-Induced Osteonecrosis. J. Dent. Res. 2020, 99, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Qi, B.; Luo, H.; Tang, Z.; Ren, J.; Shi, H.; Li, C.; Xu, Y. Exploring the genetic association between immune cells and susceptibility to osteonecrosis using large-scale population data. Heliyon 2024, 10, e34547. [Google Scholar] [CrossRef]
- Tsukasaki, M.; Takayanagi, H. Osteoimmunology: Evolving concepts in bone–immune interactions in health and disease. Nat. Rev. Immunol. 2019, 19, 626–642. [Google Scholar] [CrossRef]
- Phipps, M.C.; Huang, Y.; Yamaguchi, R.; Kamiya, N.; Adapala, N.S.; Tang, L.; Kim, H.K.W. In vivo monitoring of activated macrophages and neutrophils in response to ischemic osteonecrosis in a mouse model. J. Orthop. Res. 2015, 34, 307–313. [Google Scholar] [CrossRef]
- He, J.; Zhou, Q.; Jia, X.; Zhou, P.; Chen, L. Immune-related expression profiles of bisphosphonates-related osteonecrosis of the jaw in multiple myeloma. Pharmazie 2021, 76, 159–164. [Google Scholar] [CrossRef]
- Schiodt, M.; Otto, S.; Fedele, S.; Bedogni, A.; Nicolatou-Galitis, O.; Guggenberger, R.; Herlofson, B.B.; Ristow, O.; Kofod, T. Workshop of European task force on medication-related osteonecrosis of the jaw—Current challenges. Oral Dis. 2019, 25, 1815–1821. [Google Scholar] [CrossRef]
- Ruggiero, S.L.; Dodson, T.B.; Fantasia, J.; Goodday, R.; Aghaloo, T.; Mehrotra, B.; O’Ryan, F. American Association of Oral and Maxillofacial Surgeons Position Paper on Medication-Related Osteonecrosis of the Jaw—2014 Update. J. Oral Maxillofac. Surg. 2014, 72, 1938–1956. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Maere, S.; Heymans, K.; Kuiper, M. BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 2005, 21, 3448–3449. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Feng, X.; Stein, L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010, 11, R53. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [PubMed]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2018, 18, 623–632. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
Gene | Protein Description | Fold Change | p-Value |
---|---|---|---|
Up-regulated | |||
APOC3 | Apolipoprotein C-III | 2.96144 | 7.97 × 10−5 |
FGG | Fibrinogen gamma chain. isoform CRA_a | 3.14454 | 6.70 × 10−6 |
HBA2 | Alpha-globin chain | 3.15801 | 0.000754 |
IGHV1-2 | IGHV1-2 protein | 3.24092 | 0.007659 |
HBA2 | Mutant hemoglobin subunit alpha 2 | 3.24610 | 0.001417 |
HBB | Beta-globin (fragment) | 3.37295 | 0.000802 |
F5-20 | F5-20 | 3.40177 | 0.00041 |
HRG | Histidine-rich glycoprotein | 3.65924 | 0.000192 |
HBB | Hemoglobin beta chain | 3.67987 | 0.000186 |
VHCH1 | Immunoblobulin G1 Fab heavy chain variable region | 3.96384 | 6.65 × 10−6 |
Down-regulated | |||
GSTT2B | Glutathione S-transferase theta-2B | −2.50635 | 0.040709 |
IgH | Ig heavy chain variable region | −2.55639 | 0.000329 |
SCGB2A1 | Mammaglobin-B | −2.72738 | 0.003005 |
SCGB1D1 | Secretoglobin family 1D member 1 | −2.80591 | 0.001932 |
LAMTOR5 | Ragulator complex protein LAMTOR5 | −2.82623 | 0.010758 |
IGLC7 | Immunoglobulin lambda constant 7 | −2.93236 | 0.000184 |
GMDS | GDP-mannose 4.6 dehydratase | −3.01159 | 0.018747 |
U7 | U7 | −3.07097 | 0.001064 |
HP | Haptoglobin | −3.62593 | 1.96 × 10−6 |
ANXA4 | Annexin A4 | −4.10780 | 2.23 × 10−9 |
Sex | Men | Women |
---|---|---|
Oncological diagnosis | metastatic prostate cancer/2 | metastatic breast cancer/6 multiple myeloma/1 |
Non-oncological diagnoses | osteoporosis/1 | |
Count | 2 | 8 |
Patient N | Diagnosis | Medication | Treatment/Weeks Duration (Months) | Administration Method |
---|---|---|---|---|
1 | metastatic prostate cancer | zoledronic acid (Zometa) | 24 | intravenously |
2 | metastatic prostate cancer | ibandronic acid (Ossica) | 12 | intravenously |
3 | breast cancer | zoledronic acid (Aclasta) | 60 | intravenously |
4 | breast cancer | pamidronic acid (Pamifos) | 72 | intravenously |
5 | breast cancer | ibandronic acid (STADA) | 17 | intravenously |
6 | breast cancer | pamidronic acid (Pamifos) | 54 | intravenously |
7 | breast cancer | zoledronic acid (Sandoz) | 42 | intravenously |
8 | breast cancer | zoledronic acid (Osporil) | 30 | intravenously |
9 | multiple myeloma | zoledronic acid (Zomikos) | 10 | intravenously |
10 | osteoporosis | zoledronic acid (Aclasta) | 36 | intravenously |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwartzová, V.; Laputková, G.; Talian, I.; Marcin, M.; Schwartzová, Z.; Glaba, D. Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics. Int. J. Mol. Sci. 2024, 25, 12405. https://doi.org/10.3390/ijms252212405
Schwartzová V, Laputková G, Talian I, Marcin M, Schwartzová Z, Glaba D. Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics. International Journal of Molecular Sciences. 2024; 25(22):12405. https://doi.org/10.3390/ijms252212405
Chicago/Turabian StyleSchwartzová, Vladimíra, Galina Laputková, Ivan Talian, Miroslav Marcin, Zuzana Schwartzová, and Dominik Glaba. 2024. "Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics" International Journal of Molecular Sciences 25, no. 22: 12405. https://doi.org/10.3390/ijms252212405
APA StyleSchwartzová, V., Laputková, G., Talian, I., Marcin, M., Schwartzová, Z., & Glaba, D. (2024). Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics. International Journal of Molecular Sciences, 25(22), 12405. https://doi.org/10.3390/ijms252212405