Secreted Phospholipases A2: Drivers of Inflammation and Cancer
Abstract
:1. Introduction
2. Secreted Phospholipases A2
3. sPLA2 and Cancer-Related Inflammation
4. sPLA2 and Cancer
4.1. EMT Driven by Phospholipases
4.2. Angiogenesis
4.3. Induction of the Immune System
5. Use of PLA2 Inhibitors to Control Cancer Progression
Inhibitors of sPLA2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aloulou, A.; Rahier, R.; Arhab, Y.; Noiriel, A. Phospholipases: An Overview. In Lipases and Phospholipases; Springer: New York, NY, USA, 2018; Volume 1835. [Google Scholar] [CrossRef]
- Murakami, M.; Taketomi, Y.; Miki, Y.; Sato, H.; Yamamoto, K.; Lambeau, G. Emerging roles of secreted phospholipase A2 enzymes: The 3rd edition. Biochimie 2014, 107, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Ilies, M.A. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int. J. Mol. Sci. 2023, 24, 1353. [Google Scholar] [CrossRef] [PubMed]
- Cummings, B.S. Phospholipase A2 as targets for anti-cancer drugs. Biochem. Pharmacol. 2007, 74, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Sato, H.; Taketomi, Y. Updating phospholipase A2 biology. Biomolecules 2020, 10, 1457. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Taketomi, Y.; Miki, Y.; Sato, H.; Hirabayashi, T.; Yamamoto, K. Recent progress in phospholipase A2 research: From cells to animals to humans. Prog. Lipid Res. 2011, 50, 152–192. [Google Scholar] [CrossRef]
- Brglez, V.; Lambeau, G.; Petan, T. Secreted phospholipases A2 in cancer: Diverse mechanisms of action. Biochimie 2014, 107, 114–123. [Google Scholar] [CrossRef]
- Dennis, E.A.; Cao, J.; Hsu, Y.H.; Magrioti, V.; Kokotos, G. Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 2011, 111, 6130–6185. [Google Scholar] [CrossRef]
- Ivanušec, A.; Šribar, J.; Križaj, I. Secreted Phospholipases A2—Not just Enzymes: Revisited. Int. J. Biol. Sci. 2022, 18, 873–888. [Google Scholar] [CrossRef]
- Schaloske, R.H.; Dennis, E.A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2006, 1761, 1246–1259. [Google Scholar] [CrossRef]
- Six, D.A.; Dennis, E.A. The expanding superfamily of phospholipase A2 enzymes: Classification and characterization. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2000, 1488, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Ishizaki, J.; Yokota, Y.; Higashino, K.I.; Ono, T.; Ikeda, M.; Fujii, N.; Kawamoto, K.; Hanasaki, K. Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A2s. J. Biol. Chem. 2000, 275, 5785–5793. [Google Scholar] [CrossRef] [PubMed]
- Seilhamer, J.J.; Pruzanski, W.; Vadas, P.; Plant, S.; Miller, J.A.; Kloss, J.; Johnson, L.K. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J. Biol. Chem. 1989, 264, 5335–5338. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Tojo, H.; Shinomura, Y.; Komatsubara, T.; Matsuzawa, Y.; Okamoto, M. Elevation of phospholipase A2 protein in sera of patients with Crohn’s disease and ulcerative colitis. Am. J. Gastroenterol. 1993, 88, 1076–1080. [Google Scholar] [PubMed]
- Lai, C.Y.; Wada, K. Phospholipase A2 from human synovial fluid: Purification and structural homology to the placental enzyme. Biochem. Biophys. Res. Commun. 1988, 157, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Kanda, A.; Ono, T.; Yoshida, N.; Tojo, H.; Okamotto, M. The primary structure of a membrane-associated phospholipase A2 from human spleen. Biochem. Biophys. Res. Commun. 1989, 163, 42–48. [Google Scholar] [CrossRef]
- Gerhard, D.S.; Wagner, L.; Feingold, E.A.; Shenmen, C.M.; Grouse, L.H.; Schuler, G.; Klein, S.L.; Old, S.; Rasooly, R.; Good, P. The status, quality, and expansion of the NIH full-length cDNA project. Genome Res. 2004, 14, 2121–2127. [Google Scholar] [CrossRef]
- Hara, S.; Kudo, I.; Matsuta, K.; Miyamoto, T.; Inoue, K. Amino Human Acid Composition and NH2-Terminal Amino Phospholipase A2 Purified from Rheumatoid Acid Sequence of Synovial Fluid. J. Biochem. 1988, 104, 326–328. [Google Scholar] [CrossRef]
- Diel de Amorim, M.; Bramer, S.A.; Rajamanickam, G.D.; Klein, C.; Card, C. Endometrial and luteal gene expression of putative gene regulators of the equine maternal recognition of pregnancy. Anim. Reprod. Sci. 2022, 245, 107064. [Google Scholar] [CrossRef]
- Peng, Z.; Chang, Y.; Fan, J.; Ji, W.; Su, C. Phospholipase A2 superfamily in cancer. Cancer Lett. 2021, 497, 165–177. [Google Scholar] [CrossRef]
- Ota, T.; Suzuki, Y.; Nishikawa, T.; Otsuki, T.; Sugiyama, T.; Irie, R.; Wakamatsu, A.; Hayashi, K.; Sato, H.; Nagai, K.; et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 2004, 36, 40–45. [Google Scholar] [CrossRef]
- Valentin, E.; Singer, A.G.; Ghomashchi, F.; Lazdunski, M.; Gelb, M.H.; Lambeau, G. Cloning and recombinant expression of human group IIF-secreted phospholipase A2. Biochem. Biophys. Res. Commun. 2000, 279, 223–228. [Google Scholar] [CrossRef]
- Murakami, M.; Kudo, I. Phospholipase A2. J. Biochem. 2002, 131, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Starkl, P.; Marichal, T.; Galli, S.J. PLA2G3 promotes mast cell maturation and function. Nat. Immunol. 2013, 14, 527–529. [Google Scholar] [CrossRef]
- Koganesawa, M.; Yamaguchi, M.; Samuchiwal, S.K.; Balestrieri, B. Lipid profile of activated macrophages and contribution of group v phospholipase A2. Biomolecules 2021, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Meliton, L.N.; Zhu, X.; Brown, M.; Epshtein, Y.; Kawasaki, T.; Letsiou, E.; Dudek, S.M. Degradation of Group V Secretory Phospholipase A2 in Lung Endothelium is Mediated by Autophagy. Microvasc. Res. 2020, 129, 103954. [Google Scholar] [CrossRef] [PubMed]
- Pruzanski, W.; Kopilov, J.; Kuksis, A. Hydrolysis of lipoproteins by sPLA2’s enhances mitogenesis and eicosanoid release from vascular smooth muscle cells: Diverse activity of sPLA2’s IIA, V and X. Prostaglandins Other Lipid Mediat. 2016, 122, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Johansen, B.; Rakkestad, K.; Balboa, M.A.; Dennis, E.A. Expression of cytosolic and secreted forms of phospholipase A2 and cyclooxygenases in human placenta, fetal membranes, and chorionic cell lines. Prostaglandins Other Lipid Mediat. 2000, 60, 119–125. [Google Scholar] [CrossRef]
- Tsai, I.H.; Wang, Y.M.; Chen, Y.H.; Tsai, T.S.; Tu, M.C. Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): Molecular characterization, geographic variations and evidence of multiple ancestries. Biochem. J. 2004, 377, 215–223. [Google Scholar] [CrossRef]
- Nakashima, K.I.; Nobuhisa, I.; Deshimaru, M.; Ogawa, T.; Shimohigashi, Y.; Fukumaki, Y.; Hattori, M.; Sakaki, Y.; Hattori, S.; Ohno, M. Structures of genes encoding TATA box-binding proteins from Trimeresurus gramineus and T. flavoviridis snakes. Gene 1995, 152, 209–213. [Google Scholar] [CrossRef]
- McIntosh, J.M.; Ghomashchi, F.; Gelb, M.H.; Dooley, D.J.; Stoehr, S.J.; Giordani, A.B.; Naisbitt, S.R.; Olivera, B.M. Conodipine-M, a novel phospholipase A2 isolated from the venom of the marine snail Conus magus. J. Biol. Chem. 1995, 270, 3518–3526. [Google Scholar] [CrossRef]
- Sato, H.; Isogai, Y.; Masuda, S.; Taketomi, Y.; Miki, Y.; Kamei, D.; Hara, S.; Kobayashi, T.; Ishikawa, Y.; Ishii, T.; et al. Physiological roles of group X-secreted phospholipase A2 in reproduction, gastrointestinal phospholipid digestion, and neuronal function. J. Biol. Chem. 2011, 286, 11632–11648. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Kudo, I. Cellular arachidonate-releasing functions of various phospholipase A2s. Adv. Exp. Med. Biol. 2003, 525, 87–92. [Google Scholar] [PubMed]
- Gelb, M.H.; Valentin, E.; Ghomashchi, F.; Lazdunski, M.; Lambeau, G. Cloning and Recombinant Expression of a Structurally Novel Human Secreted Phospholipase A2. J. Biol. Chem. 2000, 275, 39823–39826. [Google Scholar] [CrossRef] [PubMed]
- Rouault, M.; Bollinger, J.G.; Lazdunski, M.; Gelb, M.H.; Lambeau, G. Novel mammalian group XII secreted phospholipase A2 lacking enzymatic activity. Biochemistry 2003, 42, 11494–11503. [Google Scholar] [CrossRef] [PubMed]
- Boyanovsky, B.B.; Webb, N.R. Biology of secretory phospholipase A2. Cardiovasc. Drugs Ther. 2009, 23, 61–72. [Google Scholar] [CrossRef]
- Mariani, M.E.; Fidelio, G.D. Secretory phospholipases A2 in plants. Front. Plant Sci. 2019, 10, 861. [Google Scholar] [CrossRef]
- Hiu, J.J.; Yap, M.K.K. Cytotoxicity of snake venom enzymatic toxins: Phospholipase A2 and L-amino acid oxidase. Biochem. Soc. Trans. 2020, 48, 719–731. [Google Scholar] [CrossRef]
- Creelman, R.A.; Mullet, J.E. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 1995, 92, 4114–4119. [Google Scholar] [CrossRef]
- Mansfeld, J. Plant phospholipases A2: Perspectives on biotechnological applications. Biotechnol. Lett. 2009, 31, 1373–1380. [Google Scholar] [CrossRef]
- Tischfield, J.A.; Xia, Y.R.; Shih, D.M.; Klisak, I.; Chen, J.; Engle, S.J.; Siakotos, A.N.; Winstead, M.V.; Seilhamer, J.J.; Allamand, V.; et al. Low-molecular-weight, calcium-dependent phospholipase A2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics 1996, 32, 328–333. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, B.; Arm, J.P. Group V sPLA2: Classical and novel functions. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2006, 1761, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, A.M.; Balboa, M.A.; Balsinde, J. Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2019, 1864, 772–783. [Google Scholar] [CrossRef]
- Bezzine, S.; Koduri, R.S.; Valentin, E.; Murakami, M.; Kudo, I.; Ghomashchi, F.; Sadilek, M.; Lambeau, G.; Gelb, M.H. Exogenously added human group X secreted phospholipase A2 but not the group UB, IIA, and V enzymes efficiently release arachidonic acid from adherent mammalian cells. J. Biol. Chem. 2000, 275, 3179–3191. [Google Scholar] [CrossRef] [PubMed]
- Dufour, M.; Faes, S.; Dormond-Meuwly, A.; Demartines, N.; Dormond, O. PGE2-induced colon cancer growth is mediated by mTORC1. Biochem. Biophys. Res. Commun. 2014, 451, 587–591. [Google Scholar] [CrossRef]
- Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 2012, 125, 5591–5596. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Vendramini-Costa, D.B.; Carvalho, J.E. Molecular Link Mechanisms between Inflammation and Cancer. Curr. Pharm. Des. 2012, 18, 3831–3852. [Google Scholar] [CrossRef]
- Miki, Y.; Kidoguchi, Y.; Sato, M.; Taketomi, Y.; Taya, C.; Muramatsu, K.; Gelb, M.H.; Yamamoto, K.; Murakami, M. Dual roles of group IID phospholipase A2 in inflammation and cancer. J. Biol. Chem. 2016, 291, 15588–15601. [Google Scholar] [CrossRef]
- Harizi, H.; Corcuff, J.B.; Gualde, N. Arachidonic-acid-derived eicosanoids: Roles in biology and immunopathology. Trends Mol. Med. 2008, 14, 461–469. [Google Scholar] [CrossRef]
- Gómez-Valenzuela, F.; Escobar, E.; Pérez-Tomás, R.; Montecinos, V.P. The Inflammatory Profile of the Tumor Microenvironment, Orchestrated by Cyclooxygenase-2, Promotes Epithelial-Mesenchymal Transition. Front. Oncol. 2021, 11, 686792. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, K.; Kuwata, H.; Yoshihara, K.; Masuda, S.; Shimbara, S.; Oh-Ishi, S.; Murakami, M.; Kudo, I. Induction of distinct sets of secretory phospholipase A2 in rodents during inflammation. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2003, 1635, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Weinrauch, Y.; Abad, C.; Liang, N.S.; Lowry, S.F.; Weiss, J. Mobilization of potent plasma bactericidal activity during systemic bacterial challenge: Role of group IIa phospholipase A2. J. Clin. Investig. 1998, 102, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Dore, E.; Boilard, E. Roles of secreted phospholipase A 2 group IIA in inflammation and host defense. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2019, 1864, 789–802. [Google Scholar] [CrossRef]
- Miki, Y.; Taketomi, Y.; Kidoguchi, Y.; Yamamoto, K.; Muramatsu, K.; Nishito, Y.; Park, J.; Hosomi, K.; Mizuguchi, K.; Kunisawa, J.; et al. Group IIA secreted phospholipase A2 controls skin carcinogenesis and psoriasis by shaping the gut microbiota. JCI Insight 2022, 7, e152611. [Google Scholar] [CrossRef]
- Murase, R.; Taketomi, Y.; Miki, Y.; Nishito, Y.; Saito, M.; Fukami, K.; Yamamoto, K.; Murakami, M. Group III phospholipase A2 promotes colitis and colorectal cancer. Sci. Rep. 2017, 7, 12261. [Google Scholar] [CrossRef]
- Lin, S.; Wang, D.; Iyer, S.; Ghaleb, A.M.; Shim, H.; Yang, V.W.; Chun, J.; Yun, C.C. The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 2009, 136, 1711–1720. [Google Scholar] [CrossRef]
- Stančić, A.; Jandl, K.; Hasenöhrl, C.; Reichmann, F.; Marsche, G.; Schuligoi, R.; Heinemann, A.; Storr, M.; Schicho, R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol. Motil. 2015, 27, 1432–1445. [Google Scholar] [CrossRef]
- Balboa, M.A.; Shirai, Y.; Gaietta, G.; Ellisman, M.H.; Balsinde, J.; Dennis, E.A. Localization of Group V Phospholipase A2 in Caveolin-enriched Granules in Activated P388D1, Macrophage-like Cells. J. Biol. Chem. 2003, 278, 48059–48065. [Google Scholar] [CrossRef]
- Boilard, E.; Lai, Y.; Larabee, K.; Balestrieri, B.; Ghomashchi, F.; Fujioka, D.; Gobezie, R.; Coblyn, J.S.; Weinblatt, M.E.; Massarotti, E.M.; et al. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis. EMBO Mol. Med. 2010, 2, 172–187. [Google Scholar] [CrossRef]
- Henderson, W.R.; Chi, E.Y.; Bollinger, J.G.; Tien, Y.T.; Ye, X.; Castelli, L.; Rubtsov, Y.P.; Singer, A.G.; Chiang, G.K.S.; Nevalainen, T.; et al. Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J. Exp. Med. 2007, 204, 865–877. [Google Scholar] [CrossRef]
- Kudo, K.; Miki, Y.; Carreras, J.; Nakayama, S.; Nakamoto, Y.; Ito, M.; Nagashima, E.; Yamamoto, K.; Higuchi, H.; Morita, S.y.; et al. Secreted phospholipase A2 modifies extracellular vesicles and accelerates B cell lymphoma. Cell Metab. 2022, 34, 615–633.e8. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Schewe, M.; Franken, P.F.; Sacchetti, A.; Schmitt, M.; Joosten, R.; Böttcher, R.; van Royen, M.E.; Jeammet, L.; Payré, C.; Scott, P.M.; et al. Secreted Phospholipases A2 Are Intestinal Stem Cell Niche Factors with Distinct Roles in Homeostasis, Inflammation, and Cancer. Cell Stem Cell 2016, 19, 38–51. [Google Scholar] [CrossRef]
- Ganesan, K.; Ivanova, T.; Wu, Y.; Rajasegaran, V.; Wu, J.; Ming, H.L.; Yu, K.; Sun, Y.R.; Hyun, C.C.; Ylstra, B.; et al. Inhibition of gastric cancer invasion and metastasis by PLA2G2A, a novel β-catenin/TCF target gene. Cancer Res. 2008, 68, 4277–4286. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Gandhi, C.R.; Gao, Z.H. Involvement of cytosolic phospholipase A 2 alpha signalling pathway in spontaneous and transforming growth factor-beta-induced activation of rat hepatic stellate cells. Liver Int. 2011, 31, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Menschikowski, M.; Hagelgans, A.; Schuler, U.; Froeschke, S.; Rosner, A.; Siegert, G. Plasma levels of phospholipase A2-IIA in patients with different types of malignancies: Prognosis and association with inflammatory and coagulation biomarkers. Pathol. Oncol. Res. 2013, 19, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Cheranov, S.Y.; Karpurapu, M.; Wang, D.; Zhang, B.; Venema, R.C.; Rao, G.N. An essential role for SRC-activated STAT-3 in 14, 15-EET-induced VEGF expression and angiogenesis. Blood 2008, 111, 5581–5591. [Google Scholar] [CrossRef]
- Mauchley, D.; Meng, X.; Johnson, T.; Fullerton, D.A.; Weyant, M.J. Modulation of growth in human esophageal adenocarcinoma cells by group IIa secretory phospholipase A2. J. Thorac. Cardiovasc. Surg. 2010, 139, 591–599. [Google Scholar] [CrossRef]
- Wang, Y.; McNiven, M.A. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. J. Cell Biol. 2012, 196, 375–385. [Google Scholar] [CrossRef]
- Cormier, R.T.; Hong, K.H.; Halberg, R.B.; Hawkins, T.L.; Richardson, P.; Mulherkar, R.; Dove, W.F.; Landera, E.S. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Methods Mol. Biol. 2018, 15, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xu, E.; Liu, H.; Wan, L.; Lai, M. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol. Res. Pract. 2015, 211, 557–569. [Google Scholar] [CrossRef] [PubMed]
- McAllister, S.S.; Weinberg, R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 2014, 16, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-Y.; Fattet, L.; Yang, J. Molecular Pathways: Linking Tumor Microenvironment to Epithelial–Mesenchymal Transition in Metastasis. Clin. Cancer Res. 2015, 21, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martínez, R.; Cruz-Gil, S.; de Cedrón, M.G.; Álvarez-Fernández, M.; Vargas, T.; Molina, S.; García, B.; Herranz, J.; Moreno-Rubio, J.; Reglero, G.; et al. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget 2015, 6, 38719–38736. [Google Scholar] [CrossRef]
- Vafaeinik, F.; Kum, H.J.; Jin, S.Y.; Min, D.S.; Song, S.H.; Ha, H.K.; Kim, C.D.; Bae, S.S. Regulation of Epithelial-Mesenchymal Transition of A549 Cells by Prostaglandin D2. Cell. Physiol. Biochem. 2022, 56, 89–104. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Guan, X.X.; Song, Z.H.; Jiang, H.L.; Liu, Y.B.; Chen, P.; Duan, J.X.; Zhou, Y. COX-2/sEH Dual Inhibitor PTUPB Attenuates Epithelial-Mesenchymal Transformation of Alveolar Epithelial Cells via Nrf2-Mediated Inhibition of TGF- β 1/Smad Signaling. Oxidative Med. Cell. Longev. 2022, 2022, 5759626. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ in Cancer. Cell 2008, 134, 215–230. [Google Scholar] [CrossRef]
- Fedele, M.; Sgarra, R.; Battista, S.; Cerchia, L.; Manfioletti, G. The Epithelial–Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int. J. Mol. Sci. 2022, 23, 800. [Google Scholar] [CrossRef]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef]
- Mirzaei, S.; Saghari, S.; Bassiri, F.; Raesi, R.; Zarrabi, A.; Hushmandi, K.; Sethi, G.; Tergaonkar, V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial–mesenchymal transition. J. Cell. Physiol. 2022, 237, 2770–2795. [Google Scholar] [CrossRef] [PubMed]
- Poligone, B.; Baldwin, A.S. Positive and negative regulation of NF-κB by COX-2. Roles of different prostaglandins. J. Biol. Chem. 2001, 276, 38658–38664. [Google Scholar] [CrossRef] [PubMed]
- Dinicola, S.; Masiello, M.G.; Proietti, S.; Coluccia, P.; Fabrizi, G.; Catizone, A.; Ricci, G.; de Toma, G.; Bizzarri, M.; Cucina, A. Nicotine increases colon cancer cell migration and invasion through epithelial to mesenchymal transition (EMT): COX-2 involvement. J. Cell. Physiol. 2018, 233, 4935–4948. [Google Scholar] [CrossRef] [PubMed]
- Alghisi, G.; Rüegg, C. Vascular integrins in tumor angiogenesis: Mediators and therapeutic targets. Endothel. J. Endothel. Cell Res. 2006, 13, 113–135. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Wang, Z. Identification of genetic mechanisms underlying lipid metabolism-mediated tumor immunity in head and neck squamous cell carcinoma. BMC Med. Genom. 2023, 16, 110. [Google Scholar] [CrossRef]
- Halpern, A.L.; Kohtz, P.D.; Rove, J.Y.; Ao, L.; Meng, X.; Fullerton, D.A.; Weyant, M.J. Inhibition of secretory phospholipase A2 IIa attenuates prostaglandin E2-induced invasiveness in lung adenocarcinoma. Mol. Cell. Biochem. 2019, 456, 145–156. [Google Scholar] [CrossRef]
- Pal, S.; Sharma, A.; Mathew, S.P.; Jaganathan, B.G. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Front. Immunol. 2022, 13, 955476. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, K.; Zhou, Y.; Cao, Z.; Xu, C.; Zhou, L.; Wu, G.; Peng, C.; Lai, S.; Wu, X. PLA2G2D fosters angiogenesis in non-small cell lung cancer through aerobic glycolysis. Growth Factors 2024, 42, 74–83. [Google Scholar] [CrossRef]
- Hyde, C.A.C.; Missailidis, S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int. Immunopharmacol. 2009, 9, 701–715. [Google Scholar] [CrossRef]
- Vecchi, L.; Araújo, T.G.; de Vasconcelos Azevedo, F.V.P.; Mota, S.T.S.; de Melo Rodrigues Ávila, V.; Ribeiro, M.A.; Goulart, L.R. Phospholipase A2 drives tumorigenesis and cancer aggressiveness through its interaction with annexin a1. Cells 2021, 10, 1472. [Google Scholar] [CrossRef] [PubMed]
- Tsujii, M.; Kawano, S.; Tsuji, S.; Sawaoka, H.; Hori, M.; Dubois, R.N. Cyclooxygenase Regulates Angiogenesis Induced by Colon Cancer Cells). Cell 1998, 93, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Koshida, K.; Keller, E.T.; Takahashi, Y.; Yoshimito, T.; Namiki, M.; Mizokami, A. Cyclooxygenase-2 promotes prostate cancer progression. Prostate 2002, 53, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Pidgeon, G.P.; Lysaght, J.; Krishnamoorthy, S.; Reynolds, J.V.; O’Byrne, K.; Nie, D.; Honn, K.V. Lipoxygenase metabolism: Roles in tumor progression and survival. Cancer Metastasis Rev. 2007, 26, 503–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cao, H.; Rao, G.N. Fibroblast growth factor-2 is a downstream mediator of phosphatidylinositol 3-kinase-Akt signaling in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. J. Biol. Chem. 2006, 281, 905–914. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, W.; Cheng, X.; Yeung, J.; Ahumada, V.; Norris, P.C.; Pearson, M.J.; Yang, X.; Chen, L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Sci. Immunol. 2024, 9, eadh2334. [Google Scholar] [CrossRef]
- Ge, W.; Yue, M.; Lin, R.; Zhou, T.; Xu, H.; Wang, Y.; Mao, T.; Li, S.; Wu, X.; Zhang, X.; et al. PLA2G2A+ cancer-associated fibroblasts mediate pancreatic cancer immune escape via impeding antitumor immune response of CD8+ cytotoxic T cells. Cancer Lett. 2023, 558, 216095. [Google Scholar] [CrossRef]
- Samuchiwal, S.K.; Balestrieri, B. Harmful and protective roles of group V phospholipase A2: Current perspectives and future directions. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2019, 1864, 819–826. [Google Scholar] [CrossRef]
- Bu, H.; Zhang, S.; Li, P.; Liu, Z.; Liu, Y.; Li, Z.; Liu, X.; Wang, Z.; Feng, L.; Qu, L. Secreted phospholipase PLA2G2E contributes to regulation of T cell immune response against influenza virus infection. J. Virol. 2024, 98, e0019824. [Google Scholar] [CrossRef]
- Wang, D.; DuBois, R. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [Google Scholar] [CrossRef]
- Lennartz, M.R. Phospholipases and phagocytosis: The role of phospholipid-derived second messengers in phagocytosis. Int. J. Biochem. Cell Biol. 1999, 31, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Granata, F.; Petraroli, A.; Boilard, E.; Bezzine, S.; Bollinger, J.; Del Vecchio, L.; Gelb, M.H.; Lambeau, G.; Marone, G.; Triggiani, M. Activation of Cytokine Production by Secreted Phospholipase A2 in Human Lung Macrophages Expressing the M-Type Receptor. J. Immunol. 2005, 174, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Schevitz, R.W.; Bach, N.J.; Carlson, D.G.; Chirgadze, N.Y.; Clawson, D.K.; Dillard, R.D.; Draheim, S.E.; Hartley, L.W.; Jones, N.D.; Mihelich, E.D.; et al. Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2. Nat. Struct. Biol. 1995, 2, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Albulescu, L.O.; Still, K.B.M.; Slagboom, J.; Zhao, Y.; Jiang, Z.; Somsen, G.W.; Vonk, F.J.; Casewell, N.R.; Kool, J. Varespladib inhibits the phospholipase A2 and coagulopathic activities of venom components from hemotoxic snakes. Biomedicines 2020, 8, 165. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.T.; Wilensky, R.L. Darapladib. Expert Opin. Investig. Drugs 2010, 19, 161–168. [Google Scholar] [CrossRef]
- Teshirogi, I.; Matsutani, S.; Shirahase, K.; Fujii, Y.; Yoshida, T.; Tanaka, K.; Ohtani, M. Synthesis and phospholipase A2 inhibitory activity of thielocin B3 derivatives. J. Med. Chem. 1996, 39, 5183–5191. [Google Scholar] [CrossRef]
- Nakayama, H.; Ishihara, K.; Akiba, S.; Uenishi, J. Synthesis of N-[2-(2,4-difluorophenoxy)trifluoromethyl-3-pyridyl]- sulfonamides and their inhibitory activities against secretory phospholipase A2. Chem. Pharm. Bull. 2011, 59, 1069–1072. [Google Scholar] [CrossRef]
- Alsayed, S.S.R.; Suri, A.; Bailey, A.W.; Lane, S.; Werry, E.L.; Huang, C.C.; Yu, L.F.; Kassiou, M.; Sredni, S.T.; Gunosewoyo, H. Synthesis and antitumour evaluation of indole-2-carboxamides against paediatric brain cancer cells. RSC Med. Chem. 2021, 12, 1910–1925. [Google Scholar] [CrossRef]
- Wang, C.; Dai, S.; Zhao, X.; Zhang, Y.; Gong, L.; Fu, K.; Ma, C.; Peng, C.; Li, Y. Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomed. Pharmacother. 2023, 163, 114882. [Google Scholar] [CrossRef]
- Yu, L.; Xie, X.; Cao, X.; Chen, J.; Chen, G.; Chen, Y.; Li, G.; Qin, J.; Peng, F.; Peng, C. The anticancer potential of maslinic acid and its derivatives: A review. Drug Des. Dev. Ther. 2021, 15, 3863–3879. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Li, Y.; Tang, Y.T.; Ma, X.D.; Tang, Z.Y. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed. Pharmacother. 2022, 145, 112397. [Google Scholar] [CrossRef] [PubMed]
- Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int. J. Mol. Sci. 2020, 21, 5920. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, S.N.C.; Lopes, D.S.; Alves, P.T.; Azevedo, F.V.P.V.; Vecchi, L.; Goulart, L.R.; Rodrigues, T.C.S.; Santos, A.L.Q.; Brites, V.L.D.C.; Teixeira, T.L.; et al. Antitumoral effects of γcdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci. Rep. 2017, 7, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Chovatiya, G.L.; Sunkara, R.R.; Roy, S.; Godbole, S.R.; Waghmare, S.K. Context-dependent effect of sPLA2-IIA induced proliferation on murine hair follicle stem cells and human epithelial cancer. EBioMedicine 2019, 48, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Kastelein, J.J.P.; Schwartz, G.G.; Bash, D.; Rosenson, R.S.; Cavender, M.A.; Brennan, D.M.; Koenig, W.; Jukema, J.W.; Nambi, V.; et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: The VISTA-16 randomized clinical trial. JAMA 2014, 311, 252–262. [Google Scholar] [CrossRef]
- Oh, M.; Jang, S.Y.; Lee, J.Y.; Kim, J.W.; Jung, Y.; Kim, J.; Seo, J.; Han, T.S.; Jang, E.; Son, H.Y.; et al. The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat. Commun. 2023, 14, 5728. [Google Scholar] [CrossRef]
- Matsumoto, K.; Tanaka, K.; Matsutani, S.; Sakazaki, R.; Hinoo, H.; Uotani, N.; Tanimoto, T.; Kawamura, Y.; Nakamoto, S.; Yoshida, T. Isolation and Biological Activity of Thielocins: Novel Phospholipase A2 Inhibitors Produced by Thielavia terricola RF-143. J. Antibiot. 1995, 48, 106–112. [Google Scholar] [CrossRef]
- Ohsawa, K.; Yoshida, M.; Izumikawa, M.; Takagi, M.; Shin-ya, K.; Goshima, N.; Hirokawa, T.; Natsume, T.; Doi, T. Synthesis and biological evaluation of thielocin B1 analogues as protein-protein interaction inhibitors of PAC3 homodimer. Bioorgan. Med. Chem. 2018, 26, 6023–6034. [Google Scholar] [CrossRef]
- Hashimoto, J.; Watanabe, T.; Seki, T.; Karasawa, S.; Izumikawa, M.; Seki, T.; Iemura, S.I.; Natsume, T.; Nomura, N.; Goshima, N.; et al. Novel in vitro protein fragment complementation assay applicable to high-throughput screening in a 1536-well format. J. Biomol. Screen. 2009, 14, 970–979. [Google Scholar] [CrossRef]
- Winkler, J.D.; Bolognese, B.J.; Roshak, A.K.; Sung, C.M.; Marshall, L.A. Evidence that 85 kDa phospholipase A2 is not linked to CoA-independent transacylase-mediated production of platelet-activating factor in human monocytes. Biochim. Biophys. Acta-Lipids Lipid Metab. 1997, 1346, 173–184. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Gazzah, A.; Lassen, U.; Stein, A.; Wen, P.Y.; Dietrich, S.; de Jonge, M.J.A.; Blay, J.Y.; et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat. Med. 2023, 29, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-C.; Kim, J.; Bae, J.-S. Anti-inflammatory effects of dabrafenib in vitro and in vivo. Can. J. Physiol. Pharmacol. 2017, 95, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Knerr, L.; Giordanetto, F.; Nordberg, P.; Pettersen, D.; Selmi, N.; Beisel, H.G.; De La Motte, H.; Olsson, T.; Perkins, T.D.J.; Herslöf, M.; et al. Discovery of a Series of Indole-2 Carboxamides as Selective Secreted Phospholipase A2 Type X (sPLA2-X) Inhibitors. ACS Med. Chem. Lett. 2018, 9, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, A.; Kokotou, M.G.; Vasilakaki, S.; Kokotos, G. Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipases A2. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2019, 1864, 1681. [Google Scholar] [CrossRef]
- Santos-Filho, N.A.; Santos, C.T. Alpha-type phospholipase A2 inhibitors from snake blood. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 12. [Google Scholar] [CrossRef]
sPLA2 | First Source | Tissue | Molecular Weight (kDa) | Aa | Signal Peptide (Aa) | UniProtKB Source | Refs. |
---|---|---|---|---|---|---|---|
1A | Serpents | Venom | 13–15 | 119 | - | P15445 (cobra) | [11,12] |
1B | Mammals | Intestinal tract, lungs, pancreas | 16 | 148 | 1–15 | P04054 (human) | [12,13] |
2A | Serpents, Mammals | Venom, Synovial fluid, liver, tongue, prostate, spleen, intestinal tract | 16 | 138 144 | - 1–20 | A0A8C6Y0K5 (cobra) P14555 (human) | [14,15,16,17,18] |
2B | Serpents | Venom | 13–15 | 118 | - | P00620 (gaboon viper) | [11] |
2C | Mammals | Testis, endometrial | 15–16 | 149 | 1–18 | Q5R387 (human) | [11,19] |
2D | Mammals | Pancreas, spleen, umbilical cord blood | 14–15 | 145 | 1–20 | Q9UNK4 (human) | [12,17,20,21] |
2E | Mammals | Brain, heart, uterus | 14–15 | 142 | 1–19 | Q9NZK7 (human) | [10] |
2F | Mammals | Testis, embryo, thymus, spleen, synovial fluid, liver, prostate | 16–17 | 168 | 1–20 | Q9BZM2 (human) | [20,21,22,23] |
3 | Insects, Arachnids, Reptiles, Mammals | Venom, brain, immune cells | 15–57 | 167 509 | 1–18 1–19 | P00630 (bee) Q9NZ20 (human) | [20,24] |
5 | Mammals | Heart, lung, immune cells, embryo | 14–16 | 138 | 1–20 | P39877 (human) | [25,26,27,28] |
6 | Serpents | Venom | 15–16 | 138 | 1–16 | Q6H3C8 (Chinese viper) | [29] |
7 | Serpents | Venom | 15 | 138 | 1–16 | P70089 (Indian viper) | [30] |
9 | Marine Snails | Venom | 8 | 77 | - | Q9TWL9 (marine snail) | [20,31] |
10 | Mammals | Heart, spleen, colon, thymus, lungs, nervous system, immune cells | 14–18 | 165 | 1–31 | O15496 (human) | [20,32] |
11 | Plants | Sprout | 12–13 | 138 | 1–21 | Q9XG80 (rice) | [10] |
12A | Mammals | Uterus, heart, skeletal muscle, kidney, liver, pancreas | 21 | 189 | 1–22 | Q9BZM1 (human) | [33,34] |
12B | Mammals | Liver, small intestine, kidney | 21 | 195 | 1–19 | Q9BX93 (human) | [33,34,35] |
Chemical Group | Compound | Selectivity | Empirical Formula | Molecular Weight (Da) | Cas Number | Ref. |
---|---|---|---|---|---|---|
Indole derivatives | LY311727 | Inhibits sPLA2 IIA | C22H27N2O5P | 430.43 | 164083-84-5 | [104] |
Varespladib | Inhibits sPLA2-IIA, and less efficiently sPLA2-V and sPLA2-X | C21H20N2O5 | 380.39 | 172732-68-2 | [105] | |
Darapladib | Inhibits LpPLA2 (or sPLA2 VII) | C36H38F4N4O2S | 666.77 | 356057-34-6 | [106] | |
Thielocins | Thielocin B1 | Inhibits sPLA2-II | C53H58O17 | 967.02 | 144118-26-3 | [107] |
Sulfonamides | Dabrafenib | Inhibits sPLA2-IIA | C23H20F3N5O2S2 | 519.6 | 1195765-45-7 | [108] |
Carboxamines | 1H-indole-2-carboxamide | Inhibits sPLA2-X | C9H8N2O | 160.17 | 1670-84-4 | [109] |
Triterpenoids | Celastrol | Inhibits sPLA2-IIA | C29H38O4 | 450.61 | 34157-83-0 | [110] |
Maslinic acid | Inhibits sPLA2-IIA | C30H48O4 | 472.7 | 4373-41-5 | [111] | |
Oleanolic acid | Inhibits sPLA2-II | C30H48O3 | 456.7 | 508-02-1 | [112] | |
Ursolic acid | Inhibits sPLA2-IIA | C30H48O3 | 456.7 | 77-52-1 | [113] | |
PLI | γCdcPLI | Inhibits sPLA2 and/or cPLA2 | - | 22,340 | - | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, I.; Sorolla, M.A.; Sorolla, A.; Salud, A.; Parisi, E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. Int. J. Mol. Sci. 2024, 25, 12408. https://doi.org/10.3390/ijms252212408
Hidalgo I, Sorolla MA, Sorolla A, Salud A, Parisi E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. International Journal of Molecular Sciences. 2024; 25(22):12408. https://doi.org/10.3390/ijms252212408
Chicago/Turabian StyleHidalgo, Ivan, Maria Alba Sorolla, Anabel Sorolla, Antonieta Salud, and Eva Parisi. 2024. "Secreted Phospholipases A2: Drivers of Inflammation and Cancer" International Journal of Molecular Sciences 25, no. 22: 12408. https://doi.org/10.3390/ijms252212408
APA StyleHidalgo, I., Sorolla, M. A., Sorolla, A., Salud, A., & Parisi, E. (2024). Secreted Phospholipases A2: Drivers of Inflammation and Cancer. International Journal of Molecular Sciences, 25(22), 12408. https://doi.org/10.3390/ijms252212408