Oxidative Stress Triggers a Pivotal Peptide Linked to Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Effect of High Glucose on Cell Viability
2.2. Induction of Oxidative Stress with High Glucose
2.3. Oxidative Stress Increased Ache mRNA and T14 Expressions
2.4. NBP14 Reversed T14 Expression and Protected Against the Toxic Effects of High Glucose
2.5. Effects of NBP14 on Oxidative Stress
3. Discussion
3.1. Oxidative Stress and T14
3.2. Protective Nature of NBP14
4. Materials and Methods
4.1. PC12 Cell Culture and Treatment
4.2. Cell Viability
4.3. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
4.4. Protein Extraction
4.5. Western Blot
4.6. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prince, M.; Ali, G.C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y.T. Recent Global Trends in the Prevalence and Incidence of Dementia, and Survival with Dementia. Alzheimers Res. Ther. 2016, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of Oxidative Stress in Alzheimer’s Disease. Biomed. Rep. 2016, 4, 519. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, P.; Boccardi, V.; Cecchetti, R.; Bastiani, P.; Scamosci, M.; Ruggiero, C.; Baroni, M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. J. Alzheimer’s Dis. 2018, 62, 1319–1335. [Google Scholar] [CrossRef]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging Roles of Oxidative Stress in Brain Aging and Alzheimer’s Disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef]
- Guha Roy, R.; Mandal, P.K.; Maroon, J.C. Oxidative Stress Occurs Prior to Amyloid Aβ Plaque Formation and Tau Phosphorylation in Alzheimer’s Disease: Role of Glutathione and Metal Ions. ACS Chem. Neurosci. 2023, 14, 2944–2954. [Google Scholar] [CrossRef]
- Giraldo, E.; Lloret, A.; Fuchsberger, T.; Viña, J. Aβ and Tau Toxicities in Alzheimer’s Are Linked via Oxidative Stress-Induced P38 Activation: Protective Role of Vitamin E. Redox Biol. 2014, 2, 873–877. [Google Scholar] [CrossRef]
- Chang, K.C.; Petrash, J.M. Aldo-Keto Reductases: Multifunctional Proteins as Therapeutic Targets in Diabetes and Inflammatory Disease. Adv. Exp. Med. Biol. 2018, 1032, 173–202. [Google Scholar] [CrossRef]
- Koshimura, K.; Tanaka, J.; Murakami, Y.; Kato, Y. Involvement of Nitric Oxide in Glucose Toxicity on Differentiated PC12 Cells: Prevention of Glucose Toxicity by Tetrahydrobiopterin, a Cofactor for Nitric Oxide Synthase. Neurosci. Res. 2002, 43, 31–38. [Google Scholar] [CrossRef]
- Chen, M.; Zheng, H.; Wei, T.; Wang, D.; Xia, H.; Zhao, L.; Ji, J.; Gao, H. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism. Biomed. Res. Int. 2016, 2016, 4125731. [Google Scholar] [CrossRef]
- Albert-Garay, J.S.; Riesgo-Escovar, J.R.; Salceda, R. High Glucose Concentrations Induce Oxidative Stress by Inhibiting Nrf2 Expression in Rat Müller Retinal Cells in Vitro. Sci. Rep. 2022, 12, 1261. [Google Scholar] [CrossRef]
- Garcia-Ratés, S.; Greenfield, S. When a Trophic Process Turns Toxic: Alzheimer’s Disease as an Aberrant Recapitulation of a Developmental Mechanism. Int. J. Biochem. Cell Biol. 2022, 149, 106260. [Google Scholar] [CrossRef] [PubMed]
- Garcia Ratés, S.; García-Ayllón, M.S.; Falgàs, N.; Brangman, S.A.; Esiri, M.M.; Coen, C.W.; Greenfield, S.A. Evidence for a Novel Neuronal Mechanism Driving Alzheimer’s Disease, Upstream of Amyloid. Alzheimer’s Dement. 2024, 20, 5027–5034. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Ahmed, M.; Garcia-Ratés, S.; Greenfield, S. Antagonising a Novel Toxin “T14” in Alzheimer’s Disease: Comparison of Receptor Blocker versus Antibody Effects in Vitro. Biomed. Pharmacother. 2023, 158, 114120. [Google Scholar] [CrossRef] [PubMed]
- Ranglani, S.; Ashton, A.; Mahfooz, K.; Komorowska, J.; Graur, A.; Kabbani, N.; Garcia-Rates, S.; Greenfield, S. A Novel Bioactive Peptide, T14, Selectively Activates MTORC1 Signalling: Therapeutic Implications for Neurodegeneration and Other Rapamycin-Sensitive Applications. Int. J. Mol. Sci. 2023, 24, 9961. [Google Scholar] [CrossRef]
- Graur, A.; Sinclair, P.; Schneeweis, A.K.; Pak, D.T.; Kabbani, N. The Human Acetylcholinesterase C-Terminal T30 Peptide Activates Neuronal Growth through Alpha 7 Nicotinic Acetylcholine Receptors and the MTOR Pathway. Sci. Rep. 2023, 13, 11434. [Google Scholar] [CrossRef]
- Garcia-Ratés, S.; Lewis, M.; Worrall, R.; Greenfield, S. Additive Toxicity of β-Amyloid by a Novel Bioactive Peptide In Vitro: Possible Implications for Alzheimer’s Disease. PLoS ONE 2013, 8, e54864. [Google Scholar] [CrossRef]
- Berson, A.; Knobloch, M.; Hanan, M.; Diamant, S.; Sharoni, M.; Schuppli, D.; Geyer, B.C.; Ravid, R.; Mor, T.S.; Nitsch, R.M.; et al. Changes in Readthrough Acetylcholinesterase Expression Modulate Amyloid-Beta Pathology. Brain 2008, 131, 109–119. [Google Scholar] [CrossRef]
- García-Ayllón, M.S.; Riba-Llena, I.; Serra-Basante, C.; Alom, J.; Boopathy, R.; Sáez-Valero, J. Altered Levels of Acetylcholinesterase in Alzheimer Plasma. PLoS ONE 2010, 5, e8701. [Google Scholar] [CrossRef]
- Işık, M.; Beydemir, Ş. AChE mRNA Expression as a Possible Novel Biomarker for the Diagnosis of Coronary Artery Disease and Alzheimer’s Disease, and Its Association with Oxidative Stress. Arch. Physiol. Biochem. 2022, 128, 352–359. [Google Scholar] [CrossRef]
- Rossor, M.N. Parkinson’s Disease and Alzheimer’s Disease as Disorders of the Isodendritic Core. Br. Med. J. (Clin. Res. Ed.) 1981, 283, 1588. [Google Scholar] [CrossRef]
- Woolf, N.J. Global and Serial Neurons Form A Hierarchically Arranged Interface Proposed to Underlie Memory and Cognition. Neuroscience 1996, 74, 625–651. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, M.; Nakamura, A.; Ebashi, M.; Hirokawa, K.; Takahashi, R.; Uchihara, T. Brainstem Tau Pathology in Alzheimer’s Disease Is Characterized by Increase of Three Repeat Tau and Independent of Amyloid β. Acta Neuropathol. Commun. 2018, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Deng, T.; Zhai, Z.; Sun, T.; Xu, Y. The Cellular Model for Alzheimer’s Disease Research: PC12 Cells. Front. Mol. Neurosci. 2023, 15, 1016559. [Google Scholar] [CrossRef] [PubMed]
- Arslan, J.; Jamshed, H.; Qureshi, H. Early Detection and Prevention of Alzheimer’s Disease: Role of Oxidative Markers and Natural Antioxidants. Front. Aging Neurosci. 2020, 12, 547539. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, M.Y.; Tucker, H.M.; Nair, P.; Aksenova, M.V.; Butterfield, D.A.; Estus, S.; Markesbery, W.R. The Expression of Key Oxidative Stress-Handling Genes in Different Brain Regions in Alzheimer’s Disease. J. Mol. Neurosci. 1998, 11, 151–164. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Liu, Y.W.; Zhang, L.; Li, Y.; Cheng, Y.Q.; Zhu, X.; Zhang, F.; Yin, X.X. Activation of MTOR Signaling Mediates the Increased Expression of AChE in High Glucose Condition: In Vitro and in Vivo Evidences. Mol. Neurobiol. 2016, 53, 4972–4980. [Google Scholar] [CrossRef]
- Ben-Sahra, I.; Manning, B.D. MTORC1 Signaling and the Metabolic Control of Cell Growth. Curr. Opin. Cell Biol. 2017, 45, 72–82. [Google Scholar] [CrossRef]
- Garcia-Ratés, S.; Morrill, P.; Tu, H.; Pottiez, G.; Badin, A.S.; Tormo-Garcia, C.; Heffner, C.; Coen, C.W.; Greenfield, S.A. (I) Pharmacological Profiling of a Novel Modulator of the A7 Nicotinic Receptor: Blockade of a Toxic Acetylcholinesterase-Derived Peptide Increased in Alzheimer Brains. Neuropharmacology 2016, 105, 487–499. [Google Scholar] [CrossRef]
- Brai, E.; Simon, F.; Cogoni, A.; Greenfield, S.A. Modulatory Effects of a Novel Cyclized Peptide in Reducing the Expression of Markers Linked to Alzheimer’s Disease. Front. Neurosci. 2018, 12, 362. [Google Scholar] [CrossRef]
- Maher, F.; Davies-Hill, T.M.; Lysko, P.G.; Henneberry, R.C.; Simpson, I.A. Expression of Two Glucose Transporters, GLUT1 and GLUT3, in Cultured Cerebellar Neurons: Evidence for Neuron-Specific Expression of GLUT3. Mol. Cell. Neurosci. 1991, 2, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Létitia, J.; Thomas, B.; Tahiri-Alaoui, A.; Shaw, M.; Vaux, D.J. Heterologous Amyloid Seeding: Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease. PLoS ONE 2007, 2, e652. [Google Scholar] [CrossRef]
- Cederberg, J.; Galli, J.; Luthman, H.; Eriksson, U.J. Increased MRNA Levels of Mn-SOD and Catalase in Embryos of Diabetic Rats from a Malformation-Resistant Strain. Diabetes 2000, 49, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Tam, N.N.C.; Gao, Y.; Leung, Y.K.; Ho, S.M. Androgenic Regulation of Oxidative Stress in the Rat Prostate: Involvement of NAD(P)H Oxidases and Antioxidant Defense Machinery during Prostatic Involution and Regrowth. Am. J. Pathol. 2003, 163, 2513–2522. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene | Forward Primer Sequence (5′-3′) | Reverse Primer Sequence | Product Size (bp) |
---|---|---|---|
Ache | GGTTCTCCTTCGTGCCTGT | AGCCCTCATCCTTCACCAC | 113 |
Cat | GGCAGCTATGTGAGAGCC | CTGACGTCCACCCTGACT | 373 |
Gapdh | GGGCTCTCTGCTCCTCCCTGT | CAGGCGTCCGATACGGCCAAA | 119 |
Gs | CACCAGCTGGGGAAGCATCT | GGTGAGGGGAAGAGCGTGAA | 162 |
Sod2 | CTGAGGAGAGCAGCGGTCGT | CTTGGCCAGCGCCTCGTGGT | 371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, N.; Mahfooz, K.; Garcia-Rates, S.; Greenfield, S. Oxidative Stress Triggers a Pivotal Peptide Linked to Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 12413. https://doi.org/10.3390/ijms252212413
Evans N, Mahfooz K, Garcia-Rates S, Greenfield S. Oxidative Stress Triggers a Pivotal Peptide Linked to Alzheimer’s Disease. International Journal of Molecular Sciences. 2024; 25(22):12413. https://doi.org/10.3390/ijms252212413
Chicago/Turabian StyleEvans, Nikki, Kashif Mahfooz, Sara Garcia-Rates, and Susan Greenfield. 2024. "Oxidative Stress Triggers a Pivotal Peptide Linked to Alzheimer’s Disease" International Journal of Molecular Sciences 25, no. 22: 12413. https://doi.org/10.3390/ijms252212413
APA StyleEvans, N., Mahfooz, K., Garcia-Rates, S., & Greenfield, S. (2024). Oxidative Stress Triggers a Pivotal Peptide Linked to Alzheimer’s Disease. International Journal of Molecular Sciences, 25(22), 12413. https://doi.org/10.3390/ijms252212413