Interleukin-6: Cardiovascular Aspects of Long-Term Cytokine Suppression in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Results
General Characteristics of the Study Population
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baviera, M.; Cioffi, G.; Colacioppo, P.; Tettamanti, M.; Fortino, I.; Roncaglioni, M.C. Temporal trends from 2005 to 2018 in deaths and cardiovascular events in subjects with newly diagnosed rheumatoid arthritis. Intern Emerg. Med. 2021, 16, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Patoulias, D.; Stachteas, P.; Lefkou, E.; Dimitroulas, T.; Fragakis, N. Accelerated Atherosclerosis and Management of Cardiovascular Risk in Autoimmune Rheumatic Diseases: An Updated Review. Curr. Probl. Cardiol. 2023, 48, 101999. [Google Scholar] [CrossRef]
- Balsa, A.; Lojo-Oliveira, L.; Alperi-López, M.; García-Manrique, M.; Ordóñez-Cañizares, C.; Pérez, L.; Ruiz-Esquide, V.; Corrales, A.; Narváez, J.; Rey-Rey, J.; et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring in clinical practice: The spanish cohort of the COMORA study. Reumatol. Clin. 2019, 15, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Duruöz, M.T.; Ataman, Ş.; Bodur, H.; Çay, H.F.; Melikoğlu, M.A.; Akgül, Ö.; Çapkın, E.; Gürer, G.; Çevik, R.; Göğüş, F.N.; et al. Prevalence of cardiovascular diseases and traditional cardiovascular risk factors in patients with rheumatoid arthritis: A real-life evidence from BioSTAR nationwide registry. Rheumatol. Int. 2024, 44, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, L.R.; Woodman, R.J.; Shanahan, E.M.; Mangoni, A.A. The Impact of Traditional Cardiovascular Risk Factors on Cardiovascular Outcomes in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0117952. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Rehm, S.; Schlitt, A.; Bitter, K.; Reichert, S. The Interleukin 6 Protein Level as well as a Genetic Variants, (rs1800795, rs1800797) Are Associated with Adverse Cardiovascular Outcomes within 10-Years Follow-Up. Cells 2023, 12, 2722. [Google Scholar] [CrossRef]
- Eltoft, A.; Arntzen, K.A.; Wilsgaard, T.; Mathiesen, E.B.; Johnsen, S.H. Interleukin-6 is an independent predictor of progressive atherosclerosis in the carotid artery: The Tromsø Study. Atherosclerosis 2018, 271, 1–8. [Google Scholar] [CrossRef]
- Levin, M.G.; Klarin, D.; Georgakis, M.K.; Lynch, J.; Liao, K.P.; Voight, B.F.; O’donnell, C.J.; Chang, K.-M.; Assimes, T.L.; Tsao, P.S.; et al. A Missense Variant in the IL-6 Receptor and Protection From Peripheral Artery Disease. Circ. Res. 2021, 129, 968–970. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Malik, R.; Li, X.; Gill, D.; Levin, M.G.; Vy, H.M.T.; Judy, R.; Ritchie, M.; Verma, S.S.; Center, R.G.; et al. Genetically Downregulated Interleukin-6 Signaling Is Associated With a Favorable Cardiometabolic Profile: A Phenome-Wide Association Study. Circulation 2021, 143, 1177–1180. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Malik, R.; Gill, D.; Franceschini, N.; Sudlow, C.L.; Dichgans, M. Interleukin-6 Signaling Effects on Ischemic Stroke and Other Cardiovascular Outcomes: A Mendelian Randomization Study. Circ. Genom. Precis. Med. 2020, 13, E002872. [Google Scholar] [CrossRef]
- Ridker, P.M.; Libby, P.; MacFadyen, J.G.; Thuren, T.; Ballantyne, C.; Fonseca, F.; Koenig, W.; Shimokawa, H.; Everett, B.M.; Glynn, R.J. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 2018, 39, 3499–3507. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Silverman, A.; Khalfan, M.; Vernice, N.A.; Kasselman, L.J.; Carsons, S.E.; De Leon, J. Accelerated Atherosclerosis in Rheumatoid Arthritis: Mechanisms and Treatment. Curr. Pharm. Des. 2019, 25, 969–986. [Google Scholar] [CrossRef]
- Fomicheva, O.A.; Popkova, T.V.; Krougly, L.B.; Gerasimova, E.V.; Novikova, D.S.; Pogorelova, O.A. Factors of progression and occurrence of atherosclerosis in rheumatoid arthritis. Kardiologiya 2021, 61, 12–21. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, I.A.; de Lima, N.A.; da Silva, G.B.; de Castro, R.L.; Patel, P.; de Lima, C.C.V.; da Lino, D.O.C. Novel biomarkers in the prognosis of patients with atherosclerotic coronary artery disease. Rev. Port. Cardiol. 2020, 39, 667–672. [Google Scholar] [CrossRef]
- Troncoso, M.F.; Ortiz-Quintero, J.; Garrido-Moreno, V.; Sanhueza-Olivares, F.; Guerrero-Moncayo, A.; Chiong, M.; Castro, P.F.; García, L.; Gabrielli, L.; Corbalán, R.; et al. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2021, 1867, 166170. [Google Scholar] [CrossRef] [PubMed]
- Kerola, A.M.; Rollefstad, S.; Semb, A.G. Atherosclerotic Cardiovascular Disease in Rheumatoid Arthritis: Impact of Inflammation and Antirheumatic Treatment. Eur. Cardiol. 2021, 16, e18. [Google Scholar] [CrossRef]
- Nasonov, E.; Popkova, T. Atherosclerosis: Perspectives of anti-inflammatory therapy. Ter. Arkh. 2018, 90, 4–12. [Google Scholar]
- McInnes, I.B.; Thompson, L.; Giles, J.T.; Bathon, J.M.; E Salmon, J.; Beaulieu, A.D.; E Codding, C.; Carlson, T.H.; Delles, C.; Lee, J.S.; et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 2015, 74, 694–702. [Google Scholar] [CrossRef]
- Castagné, B.; Viprey, M.; Martin, J.; Schott, A.-M.; Cucherat, M.; Soubrier, M. Cardiovascular safety of tocilizumab: A systematic review and network meta-analysis. PLoS ONE 2019, 14, e0220178. [Google Scholar] [CrossRef]
- Pappas, D.A.; Etzel, C.J.; Crabtree, M.; Blachley, T.; Best, J.; Zlotnick, S.; Kremer, J.M. Effectiveness of Tocilizumab in Patients with Rheumatoid Arthritis Is Unaffected by Comorbidity Burden or Obesity: Data from a US Registry. J. Rheumatol. 2020, 47, 1464–1474. [Google Scholar] [CrossRef]
- Jones, G.; Wallace, T.; McIntosh, M.J.; Brockwell, L.; Gómez-Reino, J.J.; Sebba, A. Five-year Efficacy and Safety of Tocilizumab Monotherapy in Patients with Rheumatoid Arthritis Who Were Methotrexate- and Biologic-naive or Free of Methotrexate for 6 Months: The AMBITION Study. J. Rheumatol. 2017, 44, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Souto, A.; Salgado, E.; Maneiro, J.R.; Mera, A.; Carmona, L.; Gómez-Reino, J.J. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: A systematic review and meta-analysis. Arthritis. Rheumatol. 2015, 67, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Cacciapaglia, F.; Anelli, M.G.; Rinaldi, A.; Fornaro, M.; Lopalco, G.; Scioscia, C.; Lapadula, G.; Iannone, F. Lipids and Atherogenic Indices Fluctuation in Rheumatoid Arthritis Patients on Long-Term Tocilizumab Treatment. Mediators. Inflamm. 2018, 2018, 2453265. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova, E.V.; Popkova, T.V.; Martynova, A.V.; Kirillova, I.G.; Markelova, E.I.; Semashko, A.S.; Lila, A.M.; Nasonov, E.L. Dynamics of traditional modifiable risk factors, total cardiovascular risk, and structural changes of carotid arteries in patients with rheumatoid arthritis on long-term interleukin-6 receptor antagonist treatment. Nauchno Prakt. Revmatol. 2021, 59, 84–92. [Google Scholar] [CrossRef]
- Gabay, C.; McInnes, I.B.; Kavanaugh, A.; Tuckwell, K.; Klearman, M.; Pulley, J.; Sattar, N. Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1806–1812. [Google Scholar] [CrossRef]
- Choi, I.A.; Sagawa, A.; Lee, E.Y.; Song, Y.W. Tocilizumab Increases Body Weight and Serum Adipokine Levels in Patients with Rheumatoid Arthritis Independently of Their Treatment Response: A Retrospective Cohort Study. J. Korean Med. Sci. 2020, 35, e155. [Google Scholar] [CrossRef]
- Toussirot, E. The Interrelations between Biological and Targeted Synthetic Agents Used in Inflammatory Joint Diseases, and Obesity or Body Composition. Metabolites 2020, 10, 107. [Google Scholar] [CrossRef]
- Tournadre, A.; Pereira, B.; Dutheil, F.; Giraud, C.; Courteix, D.; Sapin, V.; Frayssac, T.; Mathieu, S.; Malochet-Guinamand, S.; Soubrier, M. Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J. Cachexia. Sarcopenia. Muscle 2017, 8, 639–646. [Google Scholar] [CrossRef]
- Toussirot, E.; Marotte, H.; Mulleman, D.; Cormier, G.; Coury, F.; Gaudin, P.; Dernis, E.; Bonnet, C.; Damade, R.; Grauer, J.-L.; et al. Increased high molecular weight adiponectin and lean mass during tocilizumab treatment in patients with rheumatoid arthritis: A 12-month multicentre study. Arthritis. Res. Ther. 2020, 22, 224. [Google Scholar] [CrossRef]
- Wada, E.; Tanihata, J.; Iwamura, A.; Takeda, S.; Hayashi, Y.K.; Matsuda, R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet. Muscle. 2017, 7, 23. [Google Scholar] [CrossRef]
- Ando, K.; Takahashi, F.; Kato, M.; Kaneko, N.; Doi, T.; Ohe, Y.; Koizumi, F.; Nishio, K.; Takahashi, K. Tocilizumab, a Proposed Therapy for the Cachexia of Interleukin6-Expressing Lung Cancer. PLoS ONE 2014, 9, e102436. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; van de Lisdonk, D.; Ferrer, M.; Gegenhuber, B.; Wu, M.; Park, Y.; Tuveson, D.A.; Tollkuhn, J.; Janowitz, T.; Li, B. Area postrema neurons mediate interleukin-6 function in cancer cachexia. Nat. Commun. 2024, 15, 4682. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; McKay, J.D.; Nasonov, E.L.; Mysler, E.F.; da Silva, N.A.; Alecock, E.; Woodworth, T.; Gomez-Reino, J.J. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: The tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 2008, 58, 2968–2980. [Google Scholar] [CrossRef] [PubMed]
- Soubrier, M.; Pei, J.; Durand, F.; Gullestad, L.; John, A. Concomitant Use of Statins in Tocilizumab-Treated Patients with Rheumatoid Arthritis: A Post Hoc Analysis. Rheumatol. Ther. 2017, 4, 133–149. [Google Scholar] [CrossRef]
- Hoffman, E.; Rahat, M.A.; Feld, J.; Elias, M.; Rosner, I.; Kaly, L.; Lavie, I.; Gazitt, T.; Zisman, D. Effects of Tocilizumab, an Anti-Interleukin-6 Receptor Antibody, on Serum Lipid and Adipokine Levels in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2019, 20, 4633. [Google Scholar] [CrossRef]
- Schiff, M.H.; Kremer, J.M.; Jahreis, A.; Vernon, E.; Isaacs, J.D.; van Vollenhoven, R.F. Integrated safety in tocilizumab clinical trials. Arthritis Res. Ther. 2011, 13, R141. [Google Scholar] [CrossRef]
- Navarro, G.; Taroumian, S.; Barroso, N.; Duan, L.; Furst, D. Tocilizumab in rheumatoid arthritis: A meta-analysis of efficacy and selected clinical conundrums. Semin. Arthritis Rheum. 2014, 43, 458–469. [Google Scholar] [CrossRef]
- Sarwar, N.; Butterworth, A.S.; Freitag, D.F.; Gregson, J.; Willeit, P.; Gorman, D.N.; Gao, P.; Saleheen, D.; Rendon, A.; Nelson, C.P.; et al. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet 2012, 379, 1205–1213. [Google Scholar] [CrossRef]
- Kitas, G.D.; Nightingale, P.; Armitage, J.; Sattar, N.; Belch, J.J.F.; Symmons, D.P.M.; Williams, H.; Vasishta, S.; Storey, R.; Bruce, I.; et al. A Multicenter, Randomized, Placebo-Controlled Trial of Atorvastatin for the Primary Prevention of Cardiovascular Events in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 1437–1449. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Yazdanpanah, N.; Chardoli, M.; Dehghan, A. Role of interleukin 6 signaling pathway in the anti-inflammatory effects of statins on coronary artery disease: Evidence from Mendelian randomization analysis. Int. J. Cardiol. 2024, 406, 131964. [Google Scholar] [CrossRef]
- Halacoglu, J.; Shea, L.A. Cardiovascular Risk Assessment and Therapeutic Implications in Rheumatoid Arthritis. J. Cardiovasc. Transl. Res. 2020, 13, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Ludman, A.; Venugopal, V.; Yellon, D.M.; Hausenloy, D.J. Statins and cardioprotection—More than just lipid lowering? Pharmacol. Ther. 2009, 122, 30–43. [Google Scholar] [CrossRef]
- Abeles, A.M.; Pillinger, M.H. Statins as antiinflammatory and immunomodulatory agents: A future in rheumatologic therapy? Arthritis Rheum. 2006, 54, 393–407. [Google Scholar] [CrossRef]
- Siniscalchi, C.; Imbalzano, E.; Meschi, T.; Ticinesi, A.; Prati, B.; Basaglia, M.; Camporese, G.; Perrella, A.; Viorica, A.; Eletto, E.; et al. Statins during Anticoagulation for Emergency Life-Threatening Venous Thromboembolism: A Review. Medicina 2024, 60, 1240. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Ogata, A.; Kishimoto, T. A new era for the treatment of inflammatory autoimmune diseases by interleukin-6 blockade strategy. Semin. Immunol. 2014, 26, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Solomon, D.H.; Rogers, J.R.; Gale, S.; Klearman, M.; Sarsour, K.; Schneeweiss, S. Cardiovascular Safety of Tocilizumab Versus Tumor Necrosis Factor Inhibitors in Patients With Rheumatoid Arthritis: A Multi-Database Cohort Study. Arthritis Rheumatol. 2017, 69, 1154–1164. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; Hernández-Hernández, M.V.; Tejera-Segura, B.; Delgado-Frías, E.; Macía-Díaz, M.; Machado, J.D.; Diaz-González, F. Effect of IL-6 Receptor Blockade on Proprotein Convertase Subtilisin/Kexin Type-9 and Cholesterol Efflux Capacity in Rheumatoid Arthritis Patients. Horm. Metab. Res. 2019, 51, 200–209. [Google Scholar] [CrossRef]
- Strang, A.C.; Bisoendial, R.J.; Kootte, R.S.; Schulte, D.M.; Dallinga-Thie, G.M.; Levels, J.H.; Kok, M.; Vos, K.; Tas, S.W.; Tietge, U.J.; et al. Pro-atherogenic lipid changes and decreased hepatic LDL receptor expression by tocilizumab in rheumatoid arthritis. Atherosclerosis 2013, 229, 174–181. [Google Scholar] [CrossRef]
- Ruiz-Limón, P.; Ortega, R.; de la Rosa, I.A.; Aguilera, M.C.; Pérez-Sánchez, C.; Jiménez-Gómez, Y.; Peralbo-Santaella, E.; Font, P.; Ruiz-Vilches, D.; Ferrín, G.; et al. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl. Res. 2017, 183, 87–103. [Google Scholar] [CrossRef]
- Bacchiega, B.C.; Bacchiega, A.B.; Usnayo, M.J.G.; Bedirian, R.; Singh, G.; da Pinheiro, G.R.C. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J. Am. Heart Assoc. 2017, 6, e005038. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Pavlidis, G.; Katsimbri, P.; Andreadou, I.; Triantafyllidi, H.; Tsoumani, M.; Varoudi, M.; Vlastos, D.; Makavos, G.; Kostelli, G.; et al. Differential effects of inhibition of interleukin 1 and 6 on myocardial, coronary and vascular function. Clin. Res. Cardiol. 2019, 108, 1093–1101. [Google Scholar] [CrossRef]
- Carbone, F.; Bonaventura, A.; Liberale, L.; Paolino, S.; Torre, F.; Dallegri, F.; Montecucco, F.; Cutolo, M. Atherosclerosis in Rheumatoid Arthritis: Promoters and Opponents. Clin. Rev. Allergy Immunol. 2020, 58, 1–14. [Google Scholar] [CrossRef] [PubMed]
- DeMizio, D.J.; Geraldino-Pardilla, L.B. Autoimmunity and Inflammation Link to Cardiovascular Disease Risk in Rheumatoid Arthritis. Rheumatol. Ther. 2020, 7, 19–33. [Google Scholar] [CrossRef]
- Bedeković, D.; Bošnjak, I.; Šarić, S.; Kirner, D.; Novak, S. Role of inflammatory cytokines in rheumatoid arthritis and development of atherosclerosis: A Review. Medicina 2023, 59, 1550. [Google Scholar] [CrossRef]
- Mu, W.; Chen, M.; Gong, Z.; Zheng, F.; Xing, Q. Expression of vascular cell adhesion molecule-1 in the aortic tissues of atherosclerotic patients and the associated clinical implications. Exp. Ther. Med. 2015, 10, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.B.; Colangelo, L.A.; Bielinski, S.J.; Larson, N.B.; Ding, J.; Allen, N.B.; Michos, E.D.; Shah, S.J.; Lloyd-Jones, D.M. Circulating Vascular Cell Adhesion Molecule-1 and Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2020, 9, e019390. [Google Scholar] [CrossRef]
- Blankenberg, S.; Rupprecht, H.J.; Bickel, C.; Peetz, D.; Hafner, G.; Tiret, L.; Meyer, J. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 2001, 104, 1336–1342. [Google Scholar] [CrossRef]
- Hope, S.A.; Meredith, I.T. Cellular adhesion molecules and cardiovascular disease. Part II. Their association with conventional and emerging risk factors, acute coronary events and cardiovascular risk prediction. Intern Med. J. 2003, 33, 450–462. [Google Scholar] [CrossRef]
- Davies, R.; Williams, J.; Sime, K.; Jin, H.-S.; Thompson, C.; Jordan, L.; Lang, D.; Halcox, J.P.; Ellins, E.; Jones, G.W.; et al. The role of interleukin-6 trans-signalling on cardiovascular dysfunction in inflammatory arthritis. Rheumatology 2021, 60, 2852–2861. [Google Scholar] [CrossRef]
- Colunga-Pedraza, I.J.; Galarza-Delgado, D.A.; Guajardo-Jauregui, N.; Cardenas-de la Garza, J.A.; Garcia-Arellano, G.; Arvizu-Rivera, R.I.; Garza-Cisneros, A.N.; Garcia-Heredia, A.; Balderas-Palacios, M.A.; Azpiri-Lopez, J.R. Association of soluble cell adhesion molecules and lipid levels in rheumatoid arthritis patients. Clin. Rheumatol. 2023, 42, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Østerud, B.; Elvevoll, E.O.; Brox, J.; Anderssen, T.; Eliassen, L.T.; Halvorsen, H.; Høgmo, P.; Kvernmo, H.; Lia, K.; Lund, T.; et al. Haemostatic parameters related to lipids and adhesion molecules. Blood Coagul. Fibrinolysis 1999, 10, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Shaofang, F.; Chen, C.; Chunhua, S.; Nan, W.; Chao, L. IL-33 Suppresses the Progression of Atherosclerosis via the ERK1/2-IRF1-VCAM-1 Pathway. Cardiovasc. Drugs Ther. 2024, 38, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Chu, C.-F.; Wang, C.-N.; Wu, H.-T.; Bi, K.-W.; Pang, J.-H.S.; Huang, S.-T. The anti-atherosclerotic effect of tanshinone IIA is associated with the inhibition of TNF-α-induced VCAM-1, ICAM-1 and CX3CL1 expression. Phytomedicine 2014, 21, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Amano, K.; Yamada, S.; Hatta, K.; Ohta, H.; Kuwaba, N. Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: An open-label randomized controlled trial. J. Rheumatol. 2011, 38, 2169–2171. [Google Scholar] [CrossRef]
- Chen, D.-Y.; Chen, Y.-M.; Hsieh, T.-Y.; Hsieh, C.-W.; Lin, C.-C.; Lan, J.-L. Significant effects of biologic therapy on lipid profiles and insulin resistance in patients with rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 52. [Google Scholar] [CrossRef]
- Popkova, T.V.; Novikova, D.S.; Panasyuk, E.Y.; Avdeeva, A.S.; Udachkina, E.V.; Alexandrova, E.N.; Novikov, A.A.; Volkov, A.V.; Nasonov, E.L. Tocilizumab impact on blood cholesterine transport and early manifestation of atherosclerosis in patients with rheumatoid arthritis. Ter. Arkh. 2012, 84, 9–18. Available online: https://ter-arkhiv.ru/0040-3660/article/view/31011 (accessed on 6 October 2024).
- Rao, V.U.; Pavlov, A.; Klearman, M.; Musselman, D.; Giles, J.T.; Bathon, J.M.; Sattar, N.; Lee, J.S. An evaluation of risk factors for major adverse cardiovascular events during tocilizumab therapy. Arthritis Rheumatol. 2015, 67, 372–380. [Google Scholar] [CrossRef]
- Okazaki, S.; Sakaguchi, M.; Miwa, K.; Furukado, S.; Yamagami, H.; Yagita, Y.; Mochizuki, H.; Kitagawa, K. Association of interleukin-6 with the progression of carotid atherosclerosis: A 9-year follow-up study. Stroke 2014, 45, 2924–2929. [Google Scholar] [CrossRef]
- Puz, P.; Lasek–Bal, A. Repeated measurements of serum concentrations of TNF-alpha, interleukin-6 and interleukin-10 in the evaluation of internal carotid artery stenosis progression. Atherosclerosis 2017, 263, 97–103. [Google Scholar] [CrossRef]
- Pauli, N.; Puchałowicz, K.; Kuligowska, A.; Krzystolik, A.; Dziedziejko, V.; Safranow, K.; Rać, M.; Chlubek, D.; Rać, M.E. Associations between IL-6 and echo-parameters in patients with early onset coronary artery disease. Diagnostics 2019, 9, 189. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, F.; Yun, H.; Chen, L.; Muntner, P.; Levitan, E.B.; Safford, M.M.; Kent, S.T.; Osterman, M.T.; Lewis, J.D.; et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1813–1818. [Google Scholar] [CrossRef]
- Grange, S.; Schmitt, C.; Ganeshalingam, K.; Choy, E.H. Tocilizumb did not Significantly Increase Serum Cholesterol Levels in Healthy Subjects. Rheumatology 2014, 53 (Suppl. S1), i95–i96. [Google Scholar] [CrossRef]
- Kastrati, K.; Aletaha, D.; Burmester, G.R.; Chwala, E.; Dejaco, C.; Dougados, M.; McInnes, I.B.; Ravelli, A.; Sattar, N.; A Stamm, T.; et al. A systematic literature review informing the consensus statement on efficacy and safety of pharmacological treatment with interleukin-6 pathway inhibition with biological DMARDs in immune-mediated inflammatory diseases. RMD Open 2022, 8, e002359. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.T.; Sattar, N.; Gabriel, S.; Ridker, P.M.; Gay, S.; Warne, C.; Musselman, D.; Brockwell, L.; Shittu, E.; Klearman, M.; et al. Cardiovascular Safety of Tocilizumab Versus Etanercept in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Rheumatol. 2020, 72, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Specker, C.; Alberding, A.; Aringer, M.; Burmester, G.-R.; Flacke, J.-P.; Hofmann, M.W.; Kästner, P.; Kellner, H.; Moosig, F.; Sieburg, M.; et al. ICHIBAN, a non-interventional study evaluating tocilizumab long-term effectiveness and safety in patients with active rheumatoid arthritis. Clin. Exp. Rheumatol. 2021, 39, 319–328. [Google Scholar] [CrossRef]
- Jones, G.; Panova, E. New insights and long-term safety of tocilizumab in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2018, 10, 195–199. [Google Scholar] [CrossRef]
- Gale, S.; Trinh, H.; Tuckwell, K.; Collinson, N.; Stone, J.H.; Sarsour, K.; Pei, J.; Best, J.; Birchwood, C.; Mohan, S.V. Adverse Events in Giant Cell Arteritis and Rheumatoid Arthritis Patient Populations: Analyses of Tocilizumab Clinical Trials and Claims Data. Rheumatol. Ther. 2019, 6, 77–88. [Google Scholar] [CrossRef]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef]
- Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tøllefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; et al. Randomized Trial of Interleukin-6 Receptor Inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2021, 77, 1845–1855. [Google Scholar] [CrossRef]
- Ridker, P.M. From RESCUE to ZEUS: Will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res. 2021, 117, e138–e140. [Google Scholar] [CrossRef] [PubMed]
- Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.L.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017, 76, 17–28. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Age, years, Me (25;75 percentile) | 54 (46;66) |
Gender, women/men, n (%) | 38 (84)/7 (16) |
Duration of disease, months, Me (25;75 percentile) | 90 (47;156) |
Stage, n (%): | |
Early | 7 (16) |
Advanced | 14 (31) |
Late | 24 (63) |
Extra-articular manifestations, n (%) | 27 (60) |
DAS28-ESR, Me (25; 75 percentile) | 6.2 (5.5;6.8) |
SDAI, Me (25; 75 percentile) | 35 (29;41) |
CDAI, Me (25; 75 percentile) | 31 (24;37) |
HAQ, Me (25; 75 percentile) | 1.75 (1.25;2.125) |
IgM RF +, n (%) | 45 (100) |
Anti-CCP antibodies +, n (%) | 38 (84) |
DMARD intolerance, n (%) | 11 (45) |
Inefficacy of two or more DMARDs, n (%) | 37 (82) |
Methotrexate + leflunomide + sulfasalazine, n (%) | 7 (16) |
Methotrexate + leflunomide, n (%) | 15 (33) |
Methotrexate + sulfasalazine, n (%) | 15 (33) |
Glucocorticoids, n (%) | 23 (51) |
NSAIDs, n (%) | 30 (67) |
Statins, n (%) | 7 (15) |
Parameter | Patients (n = 37) | |
---|---|---|
Before Treatment | After 260 Weeks | |
DAS28-ESR | 6.2 (5.5;6.8) | 2.0 (1.3;2.9) * |
SDAI | 35 (29;41) | 2.8 (1.9;3.5) |
CDAI | 31 (24;37) | 2.1 (1.5;3.1) |
HAQ | 1.75 (1.25;2.125) | 0.5 (0.25;1.0) * |
IgM-RF, IU/mL | 221.0 (40.2;568.4) | 77.9 (23.9;282.8) |
Anti-CCP antibodies, units/mL | 300 (30;300) | 285 (32;300) |
CRP, mg/L | 29.0 (11.0;80.8) | 0.3 (0.1;2.1) * |
ESR, mm/h | 48 (30;68) | 5 (3;10) * |
sVCAM-1, ng/mL | 1721 (997;1921) | 851 (611;1535) * |
sICAM-1, ng/mL | 321 (270;411) | 298 (217;402) |
Serum IL-6, pg/mL | 79 (68;92) | 7 (5;8) * |
Parameter | Patients (n = 45) | |
---|---|---|
Before Treatment | After 260 Weeks | |
Dyslipidemia, n (%) | 30 (67) | 23 (51) |
Total cholesterol > 5.0 mmol/L, n (%) | 30 (67) | 8 (18) * |
HDL-C <1.0 mmol/L in men or <1.2 mmol/L in women, n (%) | 15 (33) | 3 (7) * |
LDL-C > 2.6 mmol/L, n (%) | 30 (67) | 23 (51) |
TG >1.7 mmol/L, n (%) | 9 (20) | 14 (31) |
Arterial hypertension, n (%) | 29 (64) | 30 (67) |
Body weight deficiency, n (%) | 6 (13) | - |
Overweight, n (%) | 23 (51) | 28 (62) |
BMI, kg/m2, Me (25; 75 percentiles) | 26.1 (21.8;33.2) | 29.1 (27.5;35.1) * |
Family history of CVD, n (%) | 16 (36) | - |
Smoking, n (%) | 7 (16) | 3 (7) |
Parameter | Group 1 (n = 21) | Group 2 (n = 24) | ||
---|---|---|---|---|
Before Treatment | After 265 Weeks | Before Treatment | After 265 Weeks | |
Total cholesterol, mmol/L | 5.3 (4.5;6.1) * | 4.5 (3.1;4.1) * | 4.9 (4.4;6.2) | 5.2 (4.6;6.8) |
HDL-C, mmol/L | 1.5 (1.1;1.7) * | 2.1 (1.6;2.3) * | 1.6 (1.3;1.8) | 1.8 (1.3;2.0) |
LDL-C, mmol/L | 3.9 (2.8;3.4) | 2.9 (2.4;3.9) | 3.4 (2.8;3.6) | 3.0 (2.1;4.2) |
TG, mmol/L | 1.3 (0.9;1.7) | 1.1 (0.8;1.5) | 1.1 (0.9;1.4) | 1.5 (1.1;1.9) |
Atherogenicity index | 2.7 (2.1;3.2) * | 1.2 (1.0;2.7) * | 2.2 (1.8;2.6) | 1.7 (1.3;2.9) |
Parameter | Before Treatment | After 265 Weeks |
---|---|---|
Carotid ASPs, %: | ||
None | 33 | 28 |
1 carotid ASP | 54 | 54 |
≥2 carotid ASPs | 13 | 18 |
cIMT max left, mm | 0.9 (0.7;0.9) | 1.1 (0.8;1.4) |
cIMT max right, mm | 0.8 (0.6;0.9) | 1.0 (0.8;1.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova, E.V.; Popkova, T.V.; Kirillova, I.G.; Gerasimova, D.A.; Nasonov, E.L.; Lila, A.M. Interleukin-6: Cardiovascular Aspects of Long-Term Cytokine Suppression in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 12425. https://doi.org/10.3390/ijms252212425
Gerasimova EV, Popkova TV, Kirillova IG, Gerasimova DA, Nasonov EL, Lila AM. Interleukin-6: Cardiovascular Aspects of Long-Term Cytokine Suppression in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences. 2024; 25(22):12425. https://doi.org/10.3390/ijms252212425
Chicago/Turabian StyleGerasimova, Elena V., Tatiana V. Popkova, Irina G. Kirillova, Daria A. Gerasimova, Evgenii L. Nasonov, and Aleksandr M. Lila. 2024. "Interleukin-6: Cardiovascular Aspects of Long-Term Cytokine Suppression in Patients with Rheumatoid Arthritis" International Journal of Molecular Sciences 25, no. 22: 12425. https://doi.org/10.3390/ijms252212425
APA StyleGerasimova, E. V., Popkova, T. V., Kirillova, I. G., Gerasimova, D. A., Nasonov, E. L., & Lila, A. M. (2024). Interleukin-6: Cardiovascular Aspects of Long-Term Cytokine Suppression in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 25(22), 12425. https://doi.org/10.3390/ijms252212425