Drug Repurposing for Cancer Treatment: A Comprehensive Review
Abstract
:1. Introduction
1.1. Cancer Statistics for Saudi Arabia
1.2. Challenges Associated with the Development of Anticancer Drugs
1.3. Drug Repurposing
2. Drug Repurposing Cases for Cancer Treatment
2.1. Repurposing with a Multi-Type Anticancer Activity
2.1.1. Repurposing Anti-Platelet Medication for Cancer Treatment
2.1.2. Repurposing Anti-Diabetic Medication for Cancer Treatment
2.1.3. Repurposing Anti-Helminthic Medication for Cancer Treatment
2.1.4. Repurposing Anti-Viral Medication for Cancer Treatment
2.1.5. Repurposing Cardiovascular Medications for Cancer Treatment
- Anti-Hypertension Medication
- Antihyperlipidemic
- Repurposing Ion Channels Modulators for Cancer Treatment
2.1.6. Repurposing Antibiotic Medications for Cancer Treatment
2.1.7. Repurposing Anti-Malarial Medications for Cancer Treatment
2.1.8. Repurposing Antipsychotic Medications for Cancer Treatment
2.1.9. Repurposing NSAID Medications for Cancer Treatment
2.1.10. Repurposing Disease-Modifying Antirheumatic Drug (DMARD) for Cancer Treatment
2.1.11. Repurposing Anti-Epileptic Medications for Cancer Treatment
2.1.12. Repurposing Anesthetic Medications for Cancer Treatment
2.2. Repurposing with Type-Specific Anticancer Activity
2.2.1. Repurposing Medications for Prostate Cancer (PC) Treatment
- Anti-Dyslipidemic Drugs
- Antiarrhythmic Drugs
Pharmacological Class | Drug Name | Chemical Structure | New Therapeutic Indication | New Target | Original Target | Development Status | References |
---|---|---|---|---|---|---|---|
Anti-Platelet | Aspirin | Gastric, esophageal, colorectal, pancreatic, ovarian, endometrial, breast, and prostate cancers | PIK3CA, mTORC1 and AMPK | COXs | Phase II (NCT00468910) and III (NCT02301286) clinical trials, meta-analysis | [32,33,34,35,36,37,38,39,40] | |
Anti-Diabetic | Metformin (biguanides) | Colorectal, breast, pancreatic, prostate, lung, and cervical malignancies | Cell cycle/pSTAT3, S6 kinase, and mTOR/AMPK/ | Mitochondrial respiration | Phase II (NCT05929495) and III (NCT03685409) clinical trials | [41,42,43,44,45,46,47,48,49,59,60,61,162,163,164,165,166,167,168,169,170,171] | |
Pioglitazone (TZDs) | Breast, prostate, and colon cancer | PPAR γ | PPAR γ | Phase II trials (NCT00099021) | [55,56,57,58,59,60,61] | ||
Desmopressin | Colon cancer | COX-2 and CD1 | AVPR2 | Preclinical | [30,52,53,54] | ||
Anti-Helminthic | Flubendazole (benzimidazole) | Neuroblastoma, multiple myeloma, leukemia, lung, liver, colorectal, and breast cancer | Apoptosis (caspase 3 and 7) | Tubulin polymerization | Preclinical | [64,65,66,67,68] | |
Parbendazole | Pancreatic cancer | Apoptosis, cell cycle, and DNA damage | Tubulin polymerization | Preclinical | [52] | ||
Mebendazole (MZ) | Glioblastoma, melanoma, prostate, breast, brain, ovarian, colon, lung, colorectal and endocrine cancers | Cell cycle, apoptosis (caspase-3 pathway), ABL and BRAF | Tubulin polymerization | Preclinical | [62,63,64,69,70,71,72,172,173] | ||
Niclosamide | Colon, prostate, liver, ovarian, and breast cancers | Wnt/β-catenin, NF-KB, mTOR, and JAK/STAT3 pathways | Uncoupling of oxidative phosphorylation | Preclinical | [66,73,74,162,163,164] | ||
Clioquinol | Leukemia and malignant myeloma | HDAC | DNA replication | Preclinical | [75,76] | ||
Anti-Viral | Ritonavir | Ovarian, pancreatic, and breast cancer, lymphocytic leukemia | Apoptosis | Protease inhibitors target HIV | Preclinical | [78,79,80] | |
Ribavirin | Acute myeloid leukemia (AML) | Induces VEGF mRNA translation | RNA replicating | Phase II clinical trial (NCT00559091) | [81] | ||
Cidofovir | Glioblastomas | Apoptosis | Viral DNA polymerase | Preclinical | [81] | ||
Cardiovascular Anti-Hypertension Medication | |||||||
Angiotensin Receptor Blocker | Losartan | Pancreatic cancer | Depleting the matrix and reducing collagen I levels | Angiotensin receptor | Phase II clinical trials (NCT01821729) | [22,82,83,89] | |
Candesartan | Colon cancer, prostate cancer, liver and kidney cancer | VEGF expression | Angiotensin receptor | Preclinical | [83,91,92,97,98,102] | ||
Irbesartan | Colon cancer, liver and kidney cancer | AP-1 DNA binding, pErbB3, and p38/MAPK | Angiotensin receptor | Preclinical | [22,82,83,91,92,102] | ||
Telmisartan | Colon cancer, liver and kidney cancer | pErbB3, p38/MAPK caspase-3, Bcl-2, PI3/AKT pathway | Angiotensin receptor | Preclinical | [22,82,83,102,103] | ||
ACE Inhibitors | Captopril | Colorectal liver metastases, prostate cancer, liver and kidney cancer | p53 expression | ACE | Preclinical | [22,82,83,91,92,97,98,102,103] | |
Enalapril | Colorectal cancer (CRC) | IGF-IR 1 | ACE | Preclinical | [83,91,92] | ||
Beta-Blockers | Carvedilol | Breast cancer | Growth factor receptors and mitochondrial function | Beta receptors | Phase II trials (NCT02177175) | [22,82,83,95,96] | |
Propranolol | Ovarian, colorectal, lung, prostate, breast cancer, multiple myeloma, pancreatic, neuroblastoma, angiosarcoma, melanoma, and leukemia | p-AKT/p-ERK/p-MEK and CD8+ T cells JNK signaling pathway and ROS. | Beta receptors | Phase I trials (NCT03633747) Phase II trials (NCT02596867) | [81,84,85,86,87,88,89,90,95,96] | ||
Direct Vasodilator | Minoxidil | Ovarian cancer | Caspase-3 | ATP-sensitive potassium channels | Phase II trials (NCT05272462) | [99,100,101] | |
Hydralazine | Prostate cancer | Induces demethylation, re-expressing suppressed genes | Direct vasodilator | Preclinical | [97,98] | ||
Tezosentan | Various cancer types, especially with high expression of endothelin receptor type A | Endothelin receptor A | Endothelin receptor A/B | Preclinical | [104,105] | ||
Cardiovascular Antihyperlipidemic | Fenofibrate | Breast cancer, lung cancer | AMPK, NF-κB, and ERK signaling | PPARα | Preclinical | [106,107] | |
Ion Channels modulators | |||||||
Potassium K+ Channel Inhibitors | Glipalamide | Melanoma, lung, stomach, and breast cancers | Kv10.1, Kv10.2 (EAG2), and Kv11.1 channels | K channel (SUR). | Preclinical | [117,118] | |
Verapamil | Neuroblastoma and prostate cancer | K and Ca channels | T- and L-type Ca2+ channel antagonist | Preclinical | [117,118] | ||
Astemizole | Various cancer cell lines | Kv10.1 | H1-antagonist | Preclinical | [117,118] | ||
Calcium (Cav) Channel Blockers | Mibefradil | High-grade glioma tumors | T-type Ca2+ channel | T and L-type Ca2+ channel | Phase I trials (NCT01480050) | [4,121] | |
Nifedipine | Colon cancer | PDL-1 | Calcium channel | Preclinical | [83,91,92] | ||
Antibiotic | Bedaquiline | Breast | Mitochondrial ATP-synthase | ATP synthase | Preclinical | [122,123,124] | |
Doxycycline (Tetracycline) | Various cancer cell lines | AMPK-mediated mTOR, WNT/b-catenin, and PI3K/AKT | 30S ribosomal subunit | Preclinical | [78,125,126,132,133,134,135,174,175,176] | ||
Clofoctol | Various cancer cell lines | UPR pathway | Bacterial protein synthesis | Preclinical | [127,128] | ||
Doxorubicin (Anthracyclines) | Breast cancer | DNA intercalator | DNA intercalator | Approved | [129,130,131] | ||
Minocycline (Tetracycline) | Ovarian, breast cancer, glioblastoma | Cell cycle arrest, cyclins A, B, and E | Inhibit the 30S ribosomal subunit | Phase II trials (NCT01580969) | [132] | ||
Tigecycline (Tetracycline) | Gliomas, myeloid leukemia, non-small cell lung cancer | Cell cycle arrest | Inhibit the 30S ribosomal subunit | Phase I trials (NCT01332786) | [125,126,134,135,177,178] | ||
Ciprofloxacin (Fluoroquinolones) | Leukemia, osteoblastoma, osteosarcoma, colon, bladder, and prostate cancers | miRNA production | Inhibit bacterial gyrase | Preclinical | [136,137] | ||
Anti-Malarial | Chloroquine | Glioblastoma | Autophagy | Inhibits heme polymerase | Preclinical | [62,63,138,139,140] | |
Artesunate | Leukemia, Kaposi’s sarcoma | ROS production and apoptosis | Free radicals generation | Preclinical | [138] | ||
Mefloquine | Breast, leukemia, gastric, cervical, and colon cancers | P-gp expression, production of ROS | Inhibits 80S ribosome | Preclinical | [138,139,140] | ||
Antipsychotic | Haloperidol | Pancreatic cancer | DRD2 | DRD2 | Preclinical | [141,142,143] | |
Penfluridol | Pancreatic cancer | DRD2, autophagy, JAK2–STAT3 and ERK/AKT signaling pathways | DRD2 | Preclinical | [141,142,143] | ||
Nonsteroidal Anti-Inflammatory Drug (NSAID) | Diclofenac | Pancreatic cancer | Wnt/β-catenin signaling pathway | COXs | Preclinical | [144,145,179] | |
Celecoxib (selective COX-2 inhibitor) | Breast cancer | Wnt/β-catenin signaling pathway | COX-2 | Phase II trials (NCT01695226) | [132,133] | ||
Disease-Modifying Antirheumatic Drug (DMARD) | Auranofin | Various cancer types | TrxR, UPS system | Redox enzymes | Phase I (NCT01737502) and Phase II (NCT01419691) trials | [146,147,148] | |
Anti-Epileptic | Oxcarbazepine | Various cancer types | Cell cycle arrest, HDAC, PI3K-Akt-mTOR pathway | Na channel inhibitor | Preclinical | [149,150] | |
Lacosamide | Glioblastoma | CRMP2 | Na channel | Preclinical | [151,152,153,154,155,156] | ||
Lamotrigine | Brain tumors | N-, L-, and P-type Ca channels, 5-HT3 receptors | Na+ channels | Preclinical | [155,156] | ||
Anesthetic Medications | Ketamine | Lung cancer, ovarian cancer, breast cancer, hepatocellular carcinomas | CD69, P57, glutathione peroxidase 4 | NMDA receptor | Preclinical | [52] | |
Propofol | Squamous cell carcinoma | Caspase and MAPK pathways | GABA receptors | Preclinical | [157,158] |
- Anti-Inflammatory Drugs
- Antidepressant Drugs
- Beta-Blockers
- Miscellaneous
2.2.2. Repurposed Medications in the Treatment of Gastric Cancer (GC)
- Antidepressants
- Anti-epileptic
- Antipsychotic
- Agents that chelate iron
2.2.3. Repurposed Medications in the Treatment of Blood Malignancies
2.2.4. Repurposed Medications in the Treatment of Breast Cancer
2.2.5. Repurposed Medications in the Treatment of Colon Cancer
- Antihypertensive and antiarrhythmic medications
- Anti-Helminthic
2.2.6. Repurposed Medications in the Treatment of Hepatocellular Carcinoma (HCC)
New Therapeutic Indication | Pharmacological Class | Drug Name | Chemical Structure | New Target | Original Target | Status | References |
---|---|---|---|---|---|---|---|
Prostate Cancer | Anti-Dyslipidemic Drugs | Atorvastatin (Statins) | Block cholesterol synthesis and androgen production | HMG-CoA reductase | Phase II trials (NCT01821404) | [47,48,49,159,160] | |
Antiarrhythmic Drugs | Digoxin | Cell cycle topoisomerase II | Na/K pump inhibition | Preclinical | [59,60,61,161,212] | ||
Ouabain | Apoptosis by blocking the production of survivin and STAT3 | Na/K pump inhibition | Preclinical | [161,212] | |||
Anti-Inflammatory Drugs | Indomethacin | MYC gene family expression | Cyclooxygenases (COXs) | Preclinical | [179] | ||
Antidepressant Drugs | Sertraline | Angiogenesis, metastasis, and autophagy | Selective serotonin reuptake inhibitor | Preclinical | [180] | ||
Beta-Blockers | Propranolol | CREB1-EZH2-TSP1 pathway | Beta receptors | Phase II trials (NCT03152786) | [181] | ||
Miscellaneous | Heparin | Cytokine, adhesion molecule, and angiogenic factor expression | Antithrombin | Preclinical | [182] | ||
Zoledronic acid | G1 arrest, metastasis | Osteoclast proliferation | Preclinical | [183,184] | |||
Mifepristone | Suppressing over-expressed cell surface receptors in CRPC cells | Anti-progesterone | Preclinical | [183,184] | |||
Rapamycin | Binding to the FRB domain of mTOR, inhibiting mTORC1 | Cytokine signaling | Preclinical | [50,51,165,166,167,183,184] | |||
Gastric cancer (GC) | Antidepressant | Fluoxetine | Inhibition of the endoplasmic reticulum stress marker (CHOP) | Serotonin reuptake inhibitor (SSRI) | Preclinical | [185] | |
Paroxetine | Enhanced DNA damage and reduced DNA repair | Preclinical | [185] | ||||
Anti-Epileptic | Valproic acid (VPA) | HDAC1/PTEN/Akt signaling pathway | Na channel | Phase II trials (NCT00496444) | [155,156,185,186] | ||
Antipsychotic | Risperidone | Caspase 3, 8,9, ROS | Serotonin and norepinephrine reuptake inhibition | Preclinical | [187,188] | ||
Agents that chelate iron | Deferasirox | NDRG1, mTOR, and c-myc expression | Iron chelator/iron toxicity | Preclinical | [185,189] | ||
Blood malignancies | Antiemetic | Thalidomide | TNF-α | Immunomodulation | Approved | [190,191,192,193] | |
Tyrosine kinase inhibitor | Imatinib | Suppression of KIT kinase gastrointestinal stromal tumors (GISTs) | Chronic myelogenous leukemia | Approved | [194,195,196,197] | ||
Dasatinib | Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL) | Chronic myeloid leukemia (CML) | Approved | [196,197] | |||
Breast cancer | Antibiotic | Nitroxoline (NTX) | Anti-angiogenic activity, cathepsin B | Chelation of divalent cations | Preclinical | [157,200] | |
Colon cancer | Antibiotic | Rapamycin | mTOR pathway | mTOR pathway | Preclinical | [50,51,165,166,167,183,184] | |
Anti-Helminthic | Mebendazole (benzimidazole) | MYC pathway | Tubulin polymerization | Phase III trials (NCT03925662) | [62,70,172] | ||
Niclosamide | Wnt/β-catenin cascade | Phase I trials (NCT02687009) | [162,163,164] | ||||
Hepatocellular carcinoma | Antipsychotic | Pimozide | Apoptosis expression of STAT3 | DRD2 | Preclinical | [141,142,205,206,213,214] | |
Antiarrhythmic | Amiodarone | mTOR inhibitor | Na and K channels | Preclinical, meta-analysis | [207,208] | ||
Lanatoside C | Mitochondrial membrane potential (MMP), AKT/mTOR, PKCd | Na channel | Preclinical | [207,209] | |||
Anti-Microbe | Atovaquone | p53 and p21, kinase-2 and H2AX | ETC at the bc1 complex | Preclinical | [210,215,216] |
2.3. Repurposing with a Mechanism-Directed Anticancer Activity
2.3.1. Repurposed Medications to Target Mitochondrial Energy Metabolism in Cancer
- Anti-diabetic
- Anti-microbe
2.3.2. Repurposed Drugs as ROS Inducer in Cancer
Targeted Mechanism | Pharmacological Class | Drug Name | Chemical Structure | New Therapeutic Indication | Development Status | References |
---|---|---|---|---|---|---|
Mitochondrial energy metabolism | Anti-diabetic | Metformin (biguanides) | Colorectal, breast, pancreatic, prostate, lung, and cervical malignancies | Phase II (NCT01632020) and III trials (NCT05921942) | [60,168,169] | |
Phenformin | Colorectal cancer | Phase I trials (NCT03026517) | [169,170,217] | |||
Canagliflozin | Prostate and lung cancer | Preclinical | [174,218,219] | |||
Pioglitazone | Breast, prostate, and lung cancer | Phase II trials (NCT00780234) | [55,56,57,58,59,60,61,218,219] | |||
Anti-microbe | Bedaquiline | Breast | Preclinical | [123] | ||
Ivermectin | Pancreatic and colorectal cancers | Preclinical | [215,216] | |||
Pyrvinium | Pancreatic, colorectal, and breast cancers | Phase I (NCT05055323) trials | [220,221] | |||
Itraconazole | Non-small cell lung cancer (NSCLC), prostate cancer, and basal cell carcinoma (BCC) | Phase II (NCT00769600) trials | [222,223,224] | |||
ROS inducer | Antibiotic | Tigecycline | Hepatocellular carcinoma and acute myeloid leukemia | Phase I (NCT01332786) trials | [177,227] | |
Levofloxacin | Lung and breast cancer | Preclinical | [178,227] | |||
Anti-parasitic | Albendazole | Ovarian, colorectal, and pancreatic cancers | Preclinical | [173,228] | ||
Antipsychotic | Pimozide | Hepatocellular carcinoma | Preclinical | [141,205,213,214] |
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piña-Sánchez, P.; Chávez-González, A.; Ruiz-Tachiquín, M.; Vadillo, E.; Monroy-García, A.; Montesinos, J.J.; Grajales, R.; de la Barrera, M.G.; Mayani, H. Cancer biology, epidemiology, and treatment in the 21st century: Current status and future challenges from a biomedical perspective. Cancer Control. 2021, 28, 10732748211038735. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. NIH Curriculum Supplement Series; The Institutes: Malvern, PA, USA, 2007. Available online: https://www.ncbi.nlm.nih.gov/books/NBK20362/ (accessed on 16 November 2024).
- Cooper, G.M.; Hausman, R.E. The development and causes of cancer. Cell A Mol. Approach 2000, 2, 725–766. [Google Scholar]
- Correia, A.S.; Gärtner, F.; Vale, N. Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon 2021, 7, e05948. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the definition of cancer. Mol. Cancer Res. 2023, 21, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Goodman, E.N. What is the Environment Doing to Our Genes? A Pedigree Analysis of the Possible Genetic Basis of a Set of Familial Clinical Disorders; Encompass: Tonbridge, UK, 2022. [Google Scholar]
- Ramalingam, S. (Ed.) Cancer Genes; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023. [Google Scholar]
- Khan, M.; Pelengaris, S. (Eds.) The Molecular Biology of Cancer: A Bridge from Bench to Bedside; John Wiley & Sons: Hoboken, NJ, USA, 2013; Available online: https://library.iau.edu.sa/scholarly-journals/molecular-biology-cancer-bridge-bench-bedside-2nd/docview/1349242751/se-2 (accessed on 16 November 2024).
- Hejmadi, M. Introduction to Cancer Biology; Bookboon: London, UK, 2014. [Google Scholar]
- Greenwald, P.; Dunn, B.K. Landmarks in the history of cancer epidemiology. Cancer Res. 2009, 69, 2151–2162. [Google Scholar] [CrossRef]
- Almatroudi, A. The incidence rate of colorectal cancer in Saudi Arabia: An observational descriptive epidemiological analysis. Int. J. Gen. Med. 2020, 977–990. [Google Scholar] [CrossRef]
- Alqahtani, W.S.; Almufareh, N.A.; Domiaty, D.M.; Albasher, G.; Alduwish, M.A.; Alkhalaf, H.; Almuzzaini, B.; Al-Marshidy, S.S.; Alfraihi, R.; Elasbali, A.M.; et al. Epidemiology of cancer in Saudi Arabia thru 2010–2019: A systematic review with constrained meta-analysis. AIMS Public Health 2020, 7, 679. [Google Scholar] [CrossRef]
- Basudan, A.M. Breast cancer incidence patterns in the Saudi female population: A 17-year retrospective analysis. Medicina 2022, 58, 1617. [Google Scholar] [CrossRef]
- Elwali, N.E.; Jarrah, O.; Alzahrani, S.G.; Alharbi, M.B.; Alhejaily, A.G.; Alsharm, A.; Elhassan, M. Colorectal cancer in Saudi Arabia: The way forward. Asian Pac. J. Cancer Prev. APJCP 2023, 24, 13. [Google Scholar] [CrossRef]
- Elwali, N.E.; Jarrah, O.; Alzahrani, S.G.; Alharbi, M.B.; Alhejaily, A.G.; Alsharm, A.; Elhassan, M. Patterns of thyroid cancer mortality and incidence in Saudi Arabia: A 30-year study. Diagnostics 2022, 12, 2716. [Google Scholar] [CrossRef]
- Youk, T.M.; Hong, J.H.; Park, B.K.; Park, Y.M.; Park, E.-C. Estimation of the Three Phases by Direct Cost of Care for Non-Surviving Patients with Cancer: A National Population-Based Patient-Level Study. J. Cancer 2024, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Sleire, L.; Førde, H.E.; Netland, I.A.; Leiss, L.; Skeie, B.S.; Enger, P.O. Drug repurposing in cancer. Pharmacol. Res. 2017, 124, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, V.S.; Alagarsamy, V.; Solomon, V.R.; Jose, P.A.; Murugesan, S. Drug repurposing: An effective tool in modern drug discovery. Russ. J. Bioorganic Chem. 2023, 49, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Chung, K.C.M. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef]
- Weth, F.R.; Hoggarth, G.B.; Weth, A.F.; Paterson, E.; White, M.P.J.; Tan, S.T.; Peng, L.; Gray, C. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br. J. Cancer 2024, 130, 703–715. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, W.; Zhu, M.; Wang, B.; Wang, X.; Yang, X.; Huang, Y.; Tan, M.; Li, J. Drug repurposing for cancer treatment through global propagation with a greedy algorithm in a multilayer network. Cancer Biol. Med. 2022, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Li, L.; Wang, X. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Commun. Biol. 2020, 3, 505. [Google Scholar] [CrossRef]
- Turnbull, A.K.; Selli, C.; Martinez-Perez, C.; Fernando, A.; Renshaw, L.; Keys, J.; Figueroa, J.D.; He, X.; Tanioka, M.; Munro, A.F.; et al. Unlocking the transcriptomic potential of formalin-fixed paraffin embedded clinical tissues: Comparison of gene expression profiling approaches. BMC Bioinform. 2020, 21, 1–10. [Google Scholar] [CrossRef]
- Rheinbay, E.; Nielsen, M.M.; Abascal, F.; Wala, J.A.; Shapira, O.; Tiao, G.; Hornshøj, H.; Hess, J.M.; Juul, R.I.; Lin, Z.; et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 2020, 578, 102–111. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All. World Health Organization, 2020. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/handle/10665/330745 (accessed on 16 November 2024).
- Creighton, C.J. Making use of cancer genomic databases. Curr. Protoc. Mol. Biol. 2018, 121, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nature reviews. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Schcolnik-Cabrera, A.; Juárez-López, D.; Duenas-Gonzalez, A. Perspectives on Drug Repurposing. Curr. Med. Chem. 2021, 28, 2085–2099. [Google Scholar] [CrossRef] [PubMed]
- Schein, C.H. Repurposing approved drugs for cancer therapy. Br. Med. Bull. 2021, 137, 13–27. [Google Scholar] [CrossRef]
- Rodrigues, R.; Duarte, D.; Vale, N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int. J. Mol. Sci. 2022, 23, 4280. [Google Scholar] [CrossRef]
- Aggarwal, S.; Verma, S.S.; Aggarwal, S.; Gupta, S.C. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin. Cancer Biol. 2021, 68, 8–20. [Google Scholar] [CrossRef]
- Elwood, P.; Morgan, G.; Watkins, J.; Protty, M.; Mason, M.; Adams, R.; Dolwani, S.; Pickering, J.; Delon, C.; Longley, M. Aspirin and cancer treatment: Systematic reviews and meta-analyses of evidence: For and against. Br. J. Cancer 2024, 130, 3–8. [Google Scholar] [CrossRef]
- Zhang, X.; Du, R.; Luo, N.; Xiang, R.; Shen, W. Aspirin mediates histone methylation that inhibits inflammation-related stemness gene expression to diminish cancer stemness via COX-independent manner. Stem Cell Res. Ther. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Zhang, C.; Su, Z.-Y.; Li, W.; Huang, M.-T.; Kong, A.-N.T. The epigenetic effects of aspirin: The modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane-and dextran sulfate sodium-treated CF-1 mice. Carcinogenesis 2016, 37, 616–624. [Google Scholar] [CrossRef]
- Elwood, P.; Protty, M.; Morgan, G.; Pickering, J.; Delon, C.; Watkins, J. Aspirin and cancer: Biological mechanisms and clinical outcomes. Open Biol. 2022, 12, 220124. [Google Scholar] [CrossRef] [PubMed]
- Motta, R.; Cabezas-Camarero, S.; Torres-Mattos, C.; Riquelme, A.; Calle, A.; Figueroa, A.; Sotelo, M.J. Immunotherapy in microsatellite instability metastatic colorectal cancer: Current status and future perspectives. J. Clin. Transl. Res. 2021, 7, 511. [Google Scholar] [PubMed] [PubMed Central]
- Nounu, A.; Greenhough, A.; Heesom, K.J.; Richmond, R.C.; Zheng, J.; Weinstein, S.J.; Albanes, D.; Baron, J.A.; Hopper, J.L.; Figueiredo, J.C.; et al. A combined proteomics and Mendelian randomization approach to investigate the effects of aspirin-targeted proteins on colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.A.; Ahmed, S.; Jan, B.; Bender, O.; Al Hagbani, T.; Alqarni, A.; Anwar, S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed. Pharmacother. 2022, 145, 112375. [Google Scholar] [CrossRef]
- Lord, S.R.; Harris, A.L. Is it still worth pursuing the repurposing of metformin as a cancer therapeutic? Br. J. Cancer 2023, 128, 958–966. [Google Scholar] [CrossRef]
- Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef]
- Siddiqui, S.; Deshmukh, A.J.; Mudaliar, P.; Nalawade, A.J.; Iyer, D.; Aich, J. Drug repurposing: Re-inventing therapies for cancer without re-entering the development pipeline—A review. J. Egypt. Natl. Cancer Inst. 2022, 34, 33. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, K.; Ren, Z.; Yin, D.; Zhou, Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl. Oncol. Vol. 2024, 44, 101945. [Google Scholar] [CrossRef]
- LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef]
- Bose, S.; Zhang, C.; Le, A. Glucose metabolism in cancer: The Warburg effect and beyond. Adv. Exp. Med. Biol. 2021, 1311, 3–15. Available online: http://www.springer.com/series/5584 (accessed on 16 November 2024).
- Bailey, C.J. Metformin: Historical overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.W.; Hughey, C.C.; Lantier, L.; Sundelin, E.I.; Peggie, M.; Zeqiraj, E.; Sicheri, F.; Jessen, N.; Wasserman, D.H.; Sakamoto, K. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat. Med. 2018, 24, 1395–1406. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; He, P.; Yao, H.; Song, R.; Ma, C.; Cao, M.; Cui, B.; Ning, G. Cancer risk among patients with type 2 diabetes: A real-world study in Shanghai, China. J. Diabetes 2019, 11, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, A.; Nigam, M.; Singh, R.K.; Panwar, A.S.; Lasisi, A.; Alhumaydhi, F.A.; Kumar, V.J.; Mishra, A.P.; Sharifi-Rad, J. Cancer and diabetes: The interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int. 2021, 21, 1–27. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Nguyen, P.-A.; Humayun, A.; Chien, S.-C.; Yang, H.-C.; Asdary, R.N.; Syed-Abdul, S.; Hsu, M.-H.; Moldovan, M.; Yen, Y.; et al. Does long-term use of antidiabetic drugs changes cancer risk? Medicine 2019, 98, e17461. [Google Scholar] [CrossRef]
- Hijazi, M.A.; Gessner, A.; El-Najjar, N. Repurposing of chronically used drugs in cancer therapy: A chance to grasp. Cancers 2023, 15, 3199. [Google Scholar] [CrossRef]
- Kirtonia, A.; Gala, K.; Fernandes, S.G.; Pandya, G.; Pandey, A.K.; Sethi, G.; Khattar, E.; Garg, M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol. 2021, 68, 258–278. [Google Scholar] [CrossRef]
- Dąbrowski, M. Diabetes, antidiabetic medications and cancer risk in type 2 diabetes: Focus on SGLT-2 inhibitors. Int. J. Mol. Sci. 2021, 22, 1680. [Google Scholar] [CrossRef]
- Kole, L.; Sarkar, M.; Deb, A.; Giri, B. Pioglitazone, an anti-diabetic drug requires sustained MAPK activation for its anti-tumor activity in MCF7 breast cancer cells, independent of PPAR-γ pathway. Pharmacol. Rep. 2016, 68, 144–154. [Google Scholar] [CrossRef]
- Chi, T.; Wang, M.; Wang, X.; Yang, K.; Xie, F.; Liao, Z.; Wei, P. PPAR-γ modulators as current and potential cancer treatments. Front. Oncol. 2021, 11, 737776. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, M.; Yang, K.; Chi, T.; Liao, Z.; Wei, P. PPAR-α modulators as current and potential cancer treatments. Front. Oncol. 2021, 11, 599995. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem. 2019, 166, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Galal, M.A.; Al-Rimawi, M.; Hajeer, A.; Dahman, H.; Alouch, S.; Aljada, A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int. J. Mol. Sci. 2024, 25, 4083. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Zheng, Y.; Yao, Y.; Jia, R.; Ge, S.; Zhuang, A. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403. [Google Scholar] [CrossRef]
- Brown, J.R.; Chan, D.K.; Shank, J.J.; Griffith, K.A.; Fan, H.; Szulawski, R.; Yang, K.; Reynolds, R.K.; Johnston, C.; McLean, K.; et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI Insight 2020, 5, e133247. [Google Scholar] [CrossRef]
- Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. Repurposing Drugs in Oncology (ReDO)—Mebendazole as an anticancer agent. Ecancermedicalscience 2014, 8, 443. [Google Scholar] [CrossRef]
- Laudisi, F.; Marônek, M.; Di Grazia, A.; Monteleone, G.; Stolfi, C. Repositioning of anthelmintic drugs for the treatment of cancers of the digestive system. Int. J. Mol. Sci. 2020, 21, 4957. [Google Scholar] [CrossRef]
- Younis, N.S.; Ghanim, A.M.H.; Saber, S. Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci. Rep. 2019, 9, 19095. [Google Scholar] [CrossRef]
- Chen, H.; Weng, Z.; Xu, C. Albendazole suppresses cell proliferation and migration and induces apoptosis in human pancreatic cancer cells. Anticancer. Drugs 2020, 31, 431–439. [Google Scholar] [CrossRef]
- Lee, M.; Chen, Y.; Hsu, Y.; Lin, B. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol. Rep. 2020, 43, 549–561. [Google Scholar] [CrossRef]
- Xing, X.; Zhou, Z.; Peng, H.; Cheng, S. Anticancer role of flubendazole: Effects and molecular mechanisms. Oncol. Lett. 2024, 28, 558. [Google Scholar] [CrossRef]
- Venugopal, S.; Kaur, B.; Verma, A.; Wadhwa, P.; Magan, M.; Hudda, S.; Kakoty, V. Recent advances of benzimidazole as anticancer agents. Chem. Biol. Drug Des. 2023, 102, 357–376. [Google Scholar] [CrossRef]
- Mohi-Ud-Din, R.; Chawla, A.; Sharma, P.; Mir, P.A.; Potoo, F.H.; Reiner, Ž.; Reiner, I.; Ateşşahin, D.A.; Sharifi-Rad, J.; Mir, R.H.; et al. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects. Eur. J. Med. Res. 2023, 28, 345. [Google Scholar] [CrossRef]
- Guerini, A.E.; Triggiani, L.; Maddalo, M.; Bonù, M.L.; Frassine, F.; Baiguini, A.; Alghisi, A.; Tomasini, D.; Borghetti, P.; Pasinetti, N.; et al. Mebendazole as a candidate for drug repurposing in oncology: An extensive review of current literature. Cancers 2019, 11, 1284. [Google Scholar] [CrossRef]
- Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer 2020, 122, 517–527. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, J.; Liu, H. Drug repurposing in oncology: Current evidence and future direction. Curr. Med. Chem. 2021, 28, 2175–2194. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Lu, L.; Dong, J.; Wang, L.; Xia, Q.; Zhang, D.; Kim, H.; Yin, T.; Fan, S.; Shen, Q. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene 2018, 37, 5292–5304. [Google Scholar] [CrossRef]
- Cao, B.; Li, J.; Zhu, J.; Shen, M.; Han, K.; Zhang, Z.; Yu, Y.; Wang, Y.; Wu, D.; Chen, S.; et al. The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity. J. Biol. Chem. 2013, 288, 34181–34189. [Google Scholar] [CrossRef]
- Cao, B.; Shen, M.; Wu, D.; Du, J.; Zhu, J.; Chen, S.; Sun, A.; Tang, X.; Xu, Z.; Kong, Y.; et al. The Proteasomal Inhibitor Clioquinol Induces Apoptosis in Leukemia and Myeloma Cells by Inhibiting Histone Deacetylase Activity. Blood 2012, 120, 2449. [Google Scholar] [CrossRef]
- Borcherding, N.; Jethava, Y.; Vikas, P. Repurposing anticancer drugs for COVID-19 treatment. Drug design, development and therapy. Drug Des. Dev. Ther. 2020, 5045–5058. [Google Scholar] [CrossRef]
- Pfab, C.; Schnobrich, L.; Eldnasoury, S.; Gessner, A.; El-Najjar, N. Repurposing of antimicrobial agents for cancer therapy: What do we know? Cancers 2021, 13, 3193. [Google Scholar] [CrossRef]
- Aldea, M.; Michot, J.-M.; Danlos, F.-X.; Ribas, A.; Soria, J.-C. Repurposing of anticancer drugs expands possibilities for antiviral and anti-inflammatory discovery in COVID-19. Cancer Discov. 2021, 11, 1336–1344. [Google Scholar] [CrossRef]
- Pal, D.; Song, I.-H.; Warkad, S.D.; Song, K.-S.; Yeom, G.S.; Saha, S.; Shinde, P.B.; Nimse, S.B. Indazole-based microtubule-targeting agents as potential candidates for anticancer drugs discovery. Bioorganic Chem. 2022, 122, 105735. [Google Scholar] [CrossRef]
- De Lellis, L.; Veschi, S.; Tinari, N.; Mokini, Z.; Carradori, S.; Brocco, D.; Florio, R.; Grassadonia, A.; Cama, A. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers 2021, 13, 3946. [Google Scholar] [CrossRef]
- Regulska, K.; Regulski, M.; Karolak, B.; Murias, M.; Stanisz, B. Can cardiovascular drugs support cancer treatment? The rationale for drug repurposing. Drug Discov. Today 2019, 24, 1059–1065. [Google Scholar] [CrossRef]
- Hashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G.A.; et al. Angiotensin receptor blocker Losartan inhibits tumor growth of colorectal cancer. Excli J. 2021, 20, 506. [Google Scholar] [CrossRef]
- Tan, X.; Guo, S.; Wang, C. Propranolol in the treatment of infantile hemangiomas. Clinical, Cosmetic and Investigational Dermatology Clin. Cosmet. Investig. Dermatol. 2021, 1155–1163. [CrossRef]
- Kwak, J.H.; Yang, A.; Jung, H.L.; Kim, H.J.; Kim, D.S.; Shim, J.Y.; Shim, J.W. Cardiac Evaluation before and after Oral Propranolol Treatment for Infantile Hemangiomas. J. Clin. Med. 2024, 13, 3332. [Google Scholar] [CrossRef]
- Benish, M.; Bartal, I.; Goldfarb, Y.; Levi, B.; Avraham, R.; Raz, A.; Ben-Eliyahu, S. Perioperative use of β-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann. Surg. Oncol. 2008, 15, 2042–2052. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Wu, J.; Wang, M.; Yu, J. Artemisinin and its derivatives as a repurposing anticancer agent: What else do we need to do? Molecules 2016, 21, 1331. [Google Scholar] [CrossRef]
- Chae, Y.K.; Valsecchi, M.E.; Kim, J.; Bianchi, A.L.; Khemasuwan, D.; Desai, A.; Tester, W. Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins. Cancer Investig. 2011, 29, 585–593. [Google Scholar] [CrossRef]
- Coulson, R.; Liew, S.H.; Connelly, A.A.; Yee, N.S.; Deb, S.; Kumar, B.; Vargas, A.C.; O’toole, S.A.; Parslow, A.C.; Poh, A.; et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 2017, 8, 18640–18656. [Google Scholar] [CrossRef]
- Vinson, G.P. Why isn’t the angiotensin type 1 receptor a target in cancer? Oncotarget 2017, 8, 18618. [Google Scholar] [CrossRef]
- Tabatabai, E.; Khazaei, M.; Asgharzadeh, F.; Nazari, S.E.; Shakour, N.; Fiuji, H.; Ziaeemehr, A.; Mostafapour, A.; Parizadeh, M.R.; Nouri, M.; et al. Inhibition of angiotensin II type 1 receptor by candesartan reduces tumor growth and ameliorates fibrosis in colorectal cancer. Excli J. 2021, 20, 863. [Google Scholar] [CrossRef]
- Asgharzadeh, F.; Mostafapour, A.; Ebrahimi, S.; Amerizadeh, F.; Sabbaghzadeh, R.; Hassanian, S.M.; Fakhraei, M.; Farshbaf, A.; Ferns, G.A.; Giovannetti, E.; et al. Inhibition of angiotensin pathway via valsartan reduces tumor growth in models of colorectal cancer. Toxicol. Appl. Pharmacol. 2022, 440, 115951. [Google Scholar] [CrossRef]
- Pantziarka, P.; Verbaanderd, C.; Capistrano, R.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.; Meheus, L.; Sukhatme, V.P.; Bouche, G. ReDO_DB: The repurposing drugs in oncology database. Ecancermedicalscience 2018, 12, 886. [Google Scholar] [CrossRef]
- Le Provost, K.C.; Kepp, O.; Kroemer, G.; Bezu, L. Trial watch: Beta-blockers in cancer therapy. OncoImmunology 2023, 12, 2284486. [Google Scholar] [CrossRef]
- Bravo-Calderón, D.M.; Assao, A.; Garcia, N.G.; Coutinho-Camillo, C.M.; Roffé, M.; Germano, J.N.; Oliveira, D.T. Beta adrenergic receptor activation inhibits oral cancer migration and invasiveness. Arch. Oral Biol. 2020, 118, 104865. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Chun, K.J.; Kil, H.K.; Jung, N.; Shin, H.-A.; Jang, J.Y.; Choi, H.G.; Oh, K.-H.; Kim, M.-S. β2 adrenergic receptor expression and the effects of norepinephrine and propranolol on various head and neck cancer subtypes. Oncol. Lett. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Shebl, R. Anticancer potential of captopril and botulinum toxin type-A and associated p53 gene apototic stimulating activity. Iran. J. Pharm. Res. IJPR 2019, 18, 1967. [Google Scholar] [CrossRef]
- Hassani, B.; Attar, Z.; Firouzabadi, N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: Foes versus allies. Cancer Cell Int. 2023, 23, 254. [Google Scholar] [CrossRef]
- Fukushiro-Lopes, D.; Hegel, A.D.; Russo, A.; Senyuk, V.; Liotta, M.; Beeson, G.C.; Beeson, C.C.; Burdette, J.; Potkul, R.K.; Gentile, S. Repurposing Kir6/SUR2 channel activator minoxidil to arrests growth of gynecologic cancers. Front. Pharmacol. 2020, 11, 577. [Google Scholar] [CrossRef]
- Salanci, Š.; Vilková, M.; Martinez, L.; Mirossay, L.; Michalková, R.; Mojžiš, J. The Induction of G2/M Phase Cell Cycle Arrest and Apoptosis by the Chalcone Derivative 1C in Sensitive and Resistant Ovarian Cancer Cells Is Associated with ROS Generation. Int. J. Mol. Sci. 2024, 25, 7541. [Google Scholar] [CrossRef]
- Qiu, S.; Fraser, S.P.; Pires, W.; Djamgoz, M.B.A. Anti-invasive effects of minoxidil on human breast cancer cells: Combination with ranolazine. Clin. Exp. Metastasis 2022, 39, 679–689. [Google Scholar] [CrossRef]
- Carlos-Escalante, J.A.; de Jesús-Sánchez, M.; Rivas-Castro, A.; Pichardo-Rojas, P.S.; Arce, C.; Wegman-Ostrosky, T. The use of antihypertensive drugs as coadjuvant therapy in cancer. Front. Oncol. 2021, 11, 660943. [Google Scholar] [CrossRef]
- Ioakeim-Skoufa, I.; Tobajas-Ramos, N.; Menditto, E.; Aza-Pascual-Salcedo, M.; Gimeno-Miguel, A.; Orlando, V.; González-Rubio, F.; Fanlo-Villacampa, A.; Lasala-Aza, C.; Ostasz, E.; et al. Drug repurposing in oncology: A systematic review of randomized controlled clinical trials. Cancers 2023, 15, 2972. [Google Scholar] [CrossRef]
- Ribeiro, E.; Vale, N. Repurposing of the Drug Tezosentan for Cancer Therapy. Curr. Issues Mol. Biol. 2023, 45, 5118–5131. [Google Scholar] [CrossRef]
- Wang, R.; Dashwood, R.H. Endothelins and their receptors in cancer: Identification of therapeutic targets. Pharmacol. Res. 2011, 63, 519–524. [Google Scholar] [CrossRef]
- Lian, X.; Wang, G.; Zhou, H.; Zheng, Z.; Fu, Y.; Cai, L. Anticancer properties of fenofibrate: A repurposing use. J. Cancer 2018, 9, 1527. [Google Scholar] [CrossRef]
- Chen, L.; Peng, J.; Wang, Y.; Jiang, H.; Wang, W.; Dai, J.; Tang, M.; Wei, Y.; Kuang, H.; Xu, G.; et al. Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: The anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am. J. Transl. Res. 2020, 12, 428. [Google Scholar] [PubMed] [PubMed Central]
- Kale, V.P.; Amin, S.G.; Pandey, M.K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2015, 1848, 2747–2755. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Xu, J.; Cheng, W. The modulation of ion channels in cancer chemo-resistance. Front. Oncol. 2022, 12, 945896. [Google Scholar] [CrossRef]
- Altamura, C.; Gavazzo, P.; Pusch, M.; Desaphy, J.-F. Ion channel involvement in tumor drug resistance. J. Pers. Med. 2022, 12, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leanza, L.; Managò, A.; Zoratti, M.; Gulbins, E.; Szabo, I. Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2016, 1863, 1385–1397. [Google Scholar] [CrossRef]
- Bell, D.C.; Leanza, L.; Gentile, S.; Sauter, D.R. News and views on ion channels in cancer: Is cancer a channelopathy? Front. Pharmacol. 2023, 14, 1258933. [Google Scholar] [CrossRef]
- Li, M.; Tian, P.; Zhao, Q.; Ma, X.; Zhang, Y. Potassium channels: Novel targets for tumor diagnosis and chemoresistance. Front. Oncol. 2023, 12, 1074469. [Google Scholar] [CrossRef]
- Dupuy, M.; Gueguinou, M.; Potier-Cartereau, M.; Lézot, F.; Papin, M.; Chantôme, A.; Rédini, F.; Vandier, C.; Verrecchia, F. SKCa-and Kv1-type potassium channels and cancer: Promising therapeutic targets? Biochem. Pharmacol. 2023, 216, 115774. [Google Scholar] [CrossRef]
- Luis, E.; Anaya-Hernández, A.; León-Sánchez, P.; Durán-Pastén, M.L. The Kv10. 1 channel: A promising target in cancer. Int. J. Mol. Sci. 2022, 23, 8458. [Google Scholar] [CrossRef]
- Sakellakis, M.; Yoon, S.M.; Reet, J.; Chalkias, A. Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology. Channels 2024, 18, 2297605. [Google Scholar] [CrossRef]
- Pasello, G.; Urso, L.; Conte, P.; Favaretto, A. Effects of sulfonylureas on tumor growth: A review of the literature. Oncol. 2013, 18, 1118–1125. [Google Scholar] [CrossRef]
- Zúñiga, L.; Cayo, A.; González, W.; Vilos, C.; Zúñiga, R. Potassium channels as a target for cancer therapy: Current perspectives. OncoTargets Ther. 2022, 15, 783. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, B.-S.; Chiu, L.-Y.; Tu, D.-G.; Sheu, G.-T.; Chan, T.-T. Anticancer effects of antihypertensive L-type calcium channel blockers on chemoresistant lung cancer cells via autophagy and apoptosis. Cancer Manag. Res. 2020, 1913–1927. [Google Scholar] [CrossRef]
- Huang, T.; Zhou, J.; Wang, J. Calcium and calcium-related proteins in endometrial cancer: Opportunities for pharmacological intervention. Int. J. Biol. Sci. 2022, 18, 1065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Zhao, J.; Marostica, E.; Yuan, W.; Jin, J.; Zhang, J.; Li, R.; Tang, H.; Wang, K.; Li, Y.; et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 2024, 634, 970–978. [Google Scholar] [CrossRef]
- Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int. J. Mol. Sci. 2021, 22, 4783. [Google Scholar] [CrossRef]
- Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging 2016, 8, 1593. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Jin, W.; Zhang, J.; Zhu, L.; Lu, J.; Zhen, Y.; Zhang, L.; Ouyang, L.; Liu, B.; Yu, H. Repurposing non-oncology small-molecule drugs to improve cancer therapy: Current situation and future directions. Acta Pharm. Sin. B 2022, 12, 532–557. [Google Scholar] [CrossRef]
- Li, J.; Qin, Y.; Zhao, C.; Zhang, Z.; Zhou, Z. Tetracycline antibiotics: Potential anticancer drugs. Eur. J. Pharmacol. 2023, 956, 175949. [Google Scholar] [CrossRef]
- Dong, Z.; Abbas, M.N.; Kausar, S.; Yang, J.; Li, L.; Tan, L.; Cui, H. Biological functions and molecular mechanisms of antibiotic tigecycline in the treatment of cancers. Int. J. Mol. Sci. 2019, 20, 3577. [Google Scholar] [CrossRef]
- Bailly, C.; Vergoten, G. A new horizon for the old antibacterial drug clofoctol. Drug Discov. Today 2021, 26, 1302–1310. [Google Scholar] [CrossRef]
- Wang, M.; Shim, J.S.; Li, R.; Dang, Y.; He, Q.; Das, M.; O Liu, J. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol. 2014, 171, 4478–4489. [Google Scholar] [CrossRef] [PubMed]
- van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021, 288, 6095–6111. [Google Scholar] [CrossRef]
- Shandilya, M.; Sharma, S.; Das, P.P.; Charak, S. Molecular-level understanding of the anticancer action mechanism of anthracyclines. Adv. Precis. Med. Oncol. 2020. [Google Scholar] [CrossRef]
- Mukai, H.; Kogawa, T.; Matsubara, N.; Naito, Y.; Sasaki, M.; Hosono, A. A first-in-human Phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Investig. New Drugs 2017, 35, 307–314. [Google Scholar] [CrossRef]
- Pourgholami, M.H.; Mekkawy, A.H.; Badar, S.; Morris, D.L. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol. Oncol. 2012, 125, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Afshari, A.R.; Mollazadeh, H.; Sahebkar, A. Minocycline in treating glioblastoma multiforme: Far beyond a conventional antibiotic. J. Oncol. 2020, 2020, 8659802. [Google Scholar] [CrossRef]
- Reed, G.A.; Schiller, G.J.; Kambhampati, S.; Tallman, M.S.; Douer, D.; Minden, M.D.; Yee, K.W.; Gupta, V.; Brandwein, J.; Jitkova, Y.; et al. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016, 5, 3031–3040. [Google Scholar] [CrossRef]
- Novella, P.; Salvatore, P.; Iula, D.V.; Catania, M.R.; Chiurazzi, F.; Raimondo, M.; Beneduce, G.; Cerchione, C.; Della Pepa, R.; Giordano, C.; et al. Tigecycline-Based Front-Line Antibiotic Therapy Significantly Decreases Mortality Among Patients with Neutropenic Enterocolitis Following Cytarabine-Containing Chemotherapy for the Remission Induction of Acute Myeloid Leukemia. Blood 2016, 128, 3550. [Google Scholar] [CrossRef]
- Nowakowska, J.; Radomska, D.; Czarnomysy, R.; Marciniec, K. Recent Development of Fluoroquinolone Derivatives as Anticancer Agents. Molecules 2024, 29, 3538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- AbuBaih, R.H.; Fawzy, M.A.; Nazmy, M.H. The prospective potential of fluoroquinolones as anticancer agents. J. Mod. Res. 2023, 5, 4–10. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.-S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today 2020, 25, 2012–2022. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meng, Y.; Zhang, J.; Gu, L.; Shen, S.; Zhu, Y.; Wang, J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int. J. Nanomed. 2024, 6777–6809. [Google Scholar] [CrossRef] [PubMed]
- Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018, 14, 1435–1455. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, N.; Lampros, M.; Voulgaris, S.; Alexiou, G.A. Repurposing antipsychotics for cancer treatment. Biomedicines 2021, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Lianos, G.D.; Alexiou, G.A.; Rausei, S.; Galani, V.; Mitsis, M.; Kyritsis, A.P. Repurposing antipsychotic drugs for cancer treatment: Current evidence and future perspectives. Expert Rev. Anticancer. Ther. 2022, 22, 131–134. [Google Scholar] [CrossRef]
- Moura, C.; Vale, N. The role of dopamine in repurposing drugs for oncology. Biomedicines 2023, 11, 1917. [Google Scholar] [CrossRef]
- Vasconcelos, M.H.; Palmeira, A.; Sousa, S.M.; Xavier, C.P.R. Repurposing some of the Well-Known Non-Steroid Anti-Inflammatory Drugs (NSAIDs) for Cancer Treatment. Curr. Top. Med. Chem. 2023, 23, 1171–1195. [Google Scholar] [CrossRef]
- Ozleyen, A.; Yilmaz, Y.B.; Donmez, S.; Atalay, H.N.; Antika, G.; Tumer, T.B. Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J. Cancer Res. Clin. Oncol. 2023, 149, 2095–2113. [Google Scholar] [CrossRef]
- Bin Joo, Y.; Jung, S.M.; Park, Y.-J.; Kim, K.-J.; Park, K.-S. Use of disease-modifying antirheumatic drugs after cancer diagnosis in rheumatoid arthritis patients. J. Rheum. Dis. 2022, 29, 162–170. [Google Scholar] [CrossRef]
- De Sousa-Coelho, A.L.; Fraqueza, G.; Aureliano, M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals 2023, 17, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calip, G.S.; Patel, P.R.; Sweiss, K.; Wu, Z.; Zhou, J.; Asfaw, A.A.; Adimadhyam, S.; Lee, T.A.; Chiu, B.C. Targets of biologic disease-modifying antirheumatic drugs and risk of multiple myeloma. Int. J. Cancer 2020, 147, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Aroosa, M.; Malik, J.A.; Ahmed, S.; Bender, O.; Ahemad, N.; Anwar, S. The evidence for repurposing anti-epileptic drugs to target cancer. Mol. Biol. Rep. 2023, 50, 7667–7680. [Google Scholar] [CrossRef] [PubMed]
- Sulsenti, R.; Frossi, B.; Bongiovanni, L.; Cancila, V.; Ostano, P.; Fischetti, I.; Enriquez, C.; Guana, F.; Chiorino, G.; Tripodo, C.; et al. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front. Immunol. 2021, 12, 622001. [Google Scholar] [CrossRef] [PubMed]
- Malla, R.; Viswanathan, S.; Makena, S.; Kapoor, S.; Verma, D.; Raju, A.A.; Dunna, M.; Muniraj, N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers 2024, 16, 1463. [Google Scholar] [CrossRef]
- Rizzo, A.; Donzelli, S.; Girgenti, V.; Sacconi, A.; Vasco, C.; Salmaggi, A.; Blandino, G.; Maschio, M.; Ciusani, E. In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells. J. Exp. Clin. Cancer Res. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Moutal, A.; Villa, L.S.; Yeon, S.K.; Householder, K.T.; Park, K.D.; Sirianni, R.W.; Khanna, R. CRMP2 phosphorylation drives glioblastoma cell proliferation. Mol. Neurobiol. 2018, 55, 4403–4416. [Google Scholar] [CrossRef]
- Morales, X.; Peláez, R.; Garasa, S.; de Solórzano, C.O.; Rouzaut, A. CRMP2 as a candidate target to interfere with lung cancer cell migration. Biomolecules 2021, 11, 1533. [Google Scholar] [CrossRef]
- Costa, B.; Vale, N. Understanding Lamotrigine’s role in the CNS and possible future evolution. Int. J. Mol. Sci. 2023, 24, 6050. [Google Scholar] [CrossRef]
- Kim, K.J.; Jeun, S.H.; Sung, K.-W. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2017, 21, 169. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, L.; Cui, Q.; Iftikhar, R.; Xia, Y.; Xu, P. Repositioning lidocaine as an anticancer drug: The role beyond anesthesia. Front. Cell Dev. Biol. 2020, 8, 565. [Google Scholar] [CrossRef]
- Wu, K.-C.; Liao, K.-S.; Yeh, L.-R.; Wang, Y.-K. Drug repurposing: The mechanisms and signaling pathways of anticancer effects of anesthetics. Biomedicines 2022, 10, 1589. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, T.; Vale, N. Pharmacological efficacy of repurposing drugs in the treatment of prostate cancer. Int. J. Mol. Sci. 2023, 24, 4154. [Google Scholar] [CrossRef] [PubMed]
- Alfaqih, M.A.; Nelson, E.R.; Liu, W.; Safi, R.; Jasper, J.S.; Macias, E.; Geradts, J.; Thompson, J.W.; Dubois, L.G.; Freeman, M.R.; et al. CYP27A1 loss dysregulates cholesterol homeostasis in prostate cancer. Cancer Res. 2017, 77, 1662–1673. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Wang, F.; Tian, D.; Huang, L.; Streator, E.; Zhu, J.; Kurihara, H.; He, R.; Yao, X.; Zhang, Y.; et al. Cardiac glycosides inhibit cancer through Na/K-ATPase-dependent cell death induction. Biochem. Pharmacol. 2020, 182, 114226. [Google Scholar] [CrossRef]
- Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.-K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016, 7, 86803. [Google Scholar] [CrossRef]
- Wang, J.; Ren, X.-R.; Piao, H.; Zhao, S.; Osada, T.; Premont, R.T.; Mook, R.A.; Morse, M.A.; Lyerly, H.K.; Chen, W. Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem. J. 2019, 476, 535–546. [Google Scholar] [CrossRef]
- Hamilton, G.; Rath, B. Repurposing of anthelminthics as anticancer drugs. Oncomedicine 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Mussin, N.; Oh, S.C.; Lee, K.-W.; Park, M.Y.; Seo, S.; Yi, N.-J.; Kim, H.; Yoon, K.C.; Ahn, S.-W.; Kim, H.-S.; et al. Sirolimus and metformin synergistically inhibits colon cancer in vitro and in vivo. J. Korean Med. Sci. 2017, 32, 1385–1395. [Google Scholar] [CrossRef]
- Sanchez-Plumed, J.A.; Molina, M.G.; Alonso, A.; Arias, M. Sirolimus, the first mTOR inhibitor. Nefrología 2006, 26, 21–32. [Google Scholar]
- Granata, S.; Mercuri, S.; Troise, D.; Gesualdo, L.; Stallone, G.; Zaza, G. mTOR-inhibitors and post-transplant diabetes mellitus: A link still debated in kidney transplantation. Front. Med. 2023, 10, 1168967. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Sikora, A.; Zielonka, J.; Dwinell, M.B. Modified metformin as a more potent anticancer drug: Mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies. Cell Biochem. Biophys. 2017, 75, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zielonka, J.; Ouari, O.; Lopez, M.; McAllister, D.; Boyle, K.; Barrios, C.S.; Weber, J.J.; Johnson, B.D.; Hardy, M.; et al. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Res. 2016, 76, 3904–3915. [Google Scholar] [CrossRef]
- Amengual-Cladera, E.; Morla-Barcelo, P.M.; Morán-Costoya, A.; Sastre-Serra, J.; Pons, D.G.; Valle, A.; Roca, P.; Nadal-Serrano, M. Metformin: From Diabetes to Cancer—Unveiling Molecular Mechanisms and Therapeutic Strategies. Biology 2024, 13, 302. [Google Scholar] [CrossRef] [PubMed]
- Raafat, S.N.; El Wahed, S.A.; Badawi, N.M.; Saber, M.M.; Abdollah, M.R. Enhancing the anticancer potential of metformin: Fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis. Int. J. Pharm. X 2023, 6, 100215. [Google Scholar] [CrossRef]
- Pinto, L.C.; Mesquita, F.P.; Soares, B.M.; da Silva, E.L.; Puty, B.; de Oliveira, E.H.C.; Burbano, R.R.; Montenegro, R.C. Mebendazole induces apoptosis via C-MYC inactivation in malignant ascites cell line (AGP01). Toxicol. Vitr. 2019, 60, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.-Y.; Jung, B.-K.; Hong, S.-J. Albendazole and mebendazole as anti-parasitic and anticancer agents: An update. Korean J. Parasitol. 2021, 59, 189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aminzadeh-Gohari, S.; Weber, D.D.; Vidali, S.; Catalano, L.; Kofler, B.; Feichtinger, R.G. From old to new—Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin. Cell Dev. Biol. 2020, 98, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-F.; Tseng, L.-M.; Lee, H.-C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J. Biomed. Sci. 2023, 30, 61. [Google Scholar] [CrossRef]
- Yang, Y.; An, Y.; Ren, M.; Wang, H.; Bai, J.; Du, W.; Kong, D. The mechanisms of action of mitochondrial targeting agents in cancer: Inhibiting oxidative phosphorylation and inducing apoptosis. Front. Pharmacol. 2023, 14, 1243613. [Google Scholar] [CrossRef]
- Wang, J.; Sun, D.; Huang, L.; Wang, S.; Jin, Y. Targeting reactive oxygen species capacity of tumor cells with repurposed drug as an anticancer therapy. Oxidative Med. Cell. Longev. 2021, 2021, 8532940. [Google Scholar] [CrossRef]
- Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anticancer agents: An underestimated truth. Biomed. Pharmacother. 2019, 111, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Thiruchenthooran, V.; Sánchez-López, E.; Gliszczyńska, A. Perspectives of the application of non-steroidal anti-inflammatory drugs in cancer therapy: Attempts to overcome their unfavorable side effects. Cancers 2023, 15, 475. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Vale, N. Antidepressant drug sertraline against human cancer cells. Biomolecules 2022, 12, 1513. [Google Scholar] [CrossRef]
- Peixoto, R.; Pereira, M.d.L.; Oliveira, M. Beta-blockers and cancer: Where are we? Pharmaceuticals 2020, 13, 105. [Google Scholar] [CrossRef]
- Ma, S.-N.; Mao, Z.-X.; Wu, Y.; Liang, M.-X.; Wang, D.-D.; Chen, X.; Chang, P.-A.; Zhang, W.; Tang, J.-H. The anticancer properties of heparin and its derivatives: A review and prospect. Cell Adhes. Migr. 2020, 14, 118–128. [Google Scholar] [CrossRef]
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Bahmad, H.F.; Demus, T.; Moubarak, M.M.; Daher, D.; Moreno, J.C.A.; Polit, F.; Lopez, O.; Merhe, A.; Abou-Kheir, W.; Nieder, A.M.; et al. Overcoming drug resistance in advanced prostate cancer by drug repurposing. Med. Sci. 2022, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Ribeiro, E.; Amorim, I.; Vale, N. Repurposed drugs in gastric cancer. Molecules 2022, 28, 319. [Google Scholar] [CrossRef]
- Fatemi, N.; Karimpour, M.; Bahrami, H.; Zali, M.R.; Chaleshi, V.; Riccio, A.; Nazemalhosseini-Mojarad, E.; Totonchi, M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front. Pharmacol. 2024, 14, 1329244. [Google Scholar] [CrossRef]
- Mu, J.; Xu, H.; Yang, Y.; Huang, W.; Xiao, J.; Li, M.; Tan, Z.; Ding, Q.; Zhang, L.; Lu, J.; et al. Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer. Oncol. Rep. 2014, 31, 2107–2114. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Zhao, Y.-W.; Xue, J.-R.; Guo, R.; Zhao, Z.; Liu, H.-D.; Ren, Z.-G.; Shi, M. Thioridazine reverses trastuzumab resistance in gastric cancer by inhibiting S-phase kinase associated protein 2-mediated aerobic glycolysis. World J. Gastroenterol. 2023, 29, 5974. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R.; Ford, S.J.; Horniblow, R.D.; Iqbal, T.H.; Tselepis, C. Iron chelation in the treatment of cancer: A new role for deferasirox? J. Clin. Pharmacol. 2013, 53, 885–891. [Google Scholar] [CrossRef]
- Stewart, A.K. How Thalidomide Works Against Cancer. Science 2014, 343, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Kale, V.P.; Habib, H.; Chitren, R.; Patel, M.; Pramanik, K.C.; Jonnalagadda, S.C.; Challagundla, K.; Pandey, M.K. Old drugs, new uses: Drug repurposing in hematological malignancies. Semin. Cancer Biol. 2020, 68, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Licht, J.D.; Shortt, J.; Johnstone, R. From anecdote to targeted therapy: The curious case of thalidomide in multiple myeloma. Cancer Cell 2014, 25, 9–11. [Google Scholar] [CrossRef]
- Al Khzem, A.H.; Gomaa, M.S.; Alturki, M.; Tawfeeq, N.; Sarafroz, M.; Alonaizi, S.; Al Faran, A.; Alrumaihi, L.; Alansari, F.; Alghamdi, A. Rebirth of thalidomide. World J. Pharm. Res. 2022, 11, 842–854. [Google Scholar]
- Iqbal, N.; Iqbal, N. Imatinib: A breakthrough of targeted therapy in cancer. Chemother. Res. Pract. 2014, 2014, 357027. [Google Scholar] [CrossRef]
- Phuar, H.L.; Begley, C.E.; Chan, W.; Krause, T.M. Tyrosine kinase inhibitors initiation, cost sharing, and health care utilization in patients with newly diagnosed chronic myeloid leukemia: A retrospective claims-based study. J. Manag. Care Spec. Pharm. 2019, 25, 1140–1150. [Google Scholar] [CrossRef]
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am. J. Hematol. 2018, 93, 442–459. [Google Scholar] [CrossRef]
- Senapati, J.; Jabbour, E.; Kantarjian, H.; Short, N.J. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia 2023, 37, 5–17. [Google Scholar] [CrossRef]
- Anjum, S.; Naseer, F.; Ahmad, T.; Jahan, F.; Qadir, H.; Gul, R.; Kousar, K.; Sarwar, A.; Shabbir, A. Enhancing therapeutic efficacy: Sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Sci. Rep. 2024, 14, 11431. [Google Scholar] [CrossRef]
- Shivani, D.; Misari, P.; Anand, N.; Nandita, C.; Jignesh, S. Drug repurposing: A retrospective revolution in breast cancer medicine. Discov. Med. 2024, 1, 11. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Yang, D.; Pan, K.; Li, L.; Yuan, S. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing. Oncol. Lett. 2016, 11, 3265–3272. [Google Scholar] [CrossRef] [PubMed]
- El Zarif, T.; Yibirin, M.; De Oliveira-Gomes, D.; Machaalani, M.; Nawfal, R.; Bittar, G.; Bahmad, H.F.; Bitar, N. Overcoming therapy resistance in colon cancer by drug repurposing. Cancers 2022, 14, 2105. [Google Scholar] [CrossRef]
- Qi, J.; Bhatti, P.; Spinelli, J.J.; Murphy, R.A. Antihypertensive medications and risk of colorectal cancer in British Columbia. Front. Pharmacol. 2023, 14, 1301423. [Google Scholar] [CrossRef]
- Kedika, R.; Patel, M.; Sahdala, H.N.P.; Mahgoub, A.; Cipher, D.; Siddiqui, A.A. Long-term use of angiotensin converting enzyme inhibitors is associated with decreased incidence of advanced adenomatous colon polyps. J. Clin. Gastroenterol. 2011, 45, e12–e16. [Google Scholar] [CrossRef]
- Massalee, R.; Cao, X. Repurposing beta-blockers for combinatory cancer treatment: Effects on conventional and immune therapies. Front. Pharmacol. 2024, 14, 1325050. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Zhou, X.; Hu, Y.; Tan, X.; Wang, D.; Yang, L.; Zhang, Q.; Liu, S. The antipsychotic drug pimozide promotes apoptosis through the RAF/ERK pathway and enhances autophagy in breast cancer cells. Cancer Biol. Ther. 2024, 25, 2302413. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, L.; Cai, N.; Zhang, Z.; Ji, K. Antipsychotic agent pimozide promotes reversible proliferative suppression by inducing cellular quiescence in liver cancer. Oncol. Rep. 2019, 42, 1101–1109. [Google Scholar] [CrossRef]
- Attia, Y.M.; Ewida, H.; Ahmed, M.S. Successful Stories of Drug Repurposing for Cancer Therapy in Hepatocellular Carcinoma. Drug Repurposing in Cancer Therapy; Academic Press: Cambridge, MA, USA, 2020; pp. 213–229. [Google Scholar] [CrossRef]
- Huang, S.-T.; Hsu, W.-F.; Huang, H.-S.; Yen, J.-H.; Lin, M.-C.; Peng, C.-Y.; Yen, H.-R. Improved survival in hepatocellular carcinoma patients with cardiac arrhythmia by amiodarone treatment through autophagy. Int. J. Mol. Sci. 2019, 20, 3978. [Google Scholar] [CrossRef]
- Chao, M.-W.; Chen, T.-H.; Huang, H.-L.; Chang, Y.-W.; HuangFu, W.-C.; Lee, Y.-C.; Teng, C.-M.; Pan, S.-L. Lanatoside C, a cardiac glycoside, acts through protein kinase Cδ to cause apoptosis of human hepatocellular carcinoma cells. Sci. Rep. 2017, 7, 46134. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, X.; Shan, W.; Liu, Q.; Wang, C.; Zheng, J.; Yao, H.; Tang, R.; Zheng, J. Anti-malarial atovaquone exhibits anti-tumor effects by inducing DNA damage in hepatocellular carcinoma. Am. J. Cancer Res. 2018, 8, 1697. [Google Scholar] [PubMed] [PubMed Central]
- Stevens, A.M.; Schafer, E.S.; Li, M.; Terrell, M.; Rashid, R.; Paek, H.; Bernhardt, M.B.; Weisnicht, A.; Smith, W.T.; Keogh, N.J.; et al. Repurposing atovaquone as a therapeutic against acute myeloid leukemia (AML): Combination with conventional chemotherapy is feasible and well tolerated. Cancers 2023, 15, 1344. [Google Scholar] [CrossRef] [PubMed]
- Kumavath, R.; Paul, S.; Pavithran, H.; Paul, M.K.; Ghosh, P.; Barh, D.; Azevedo, V. Emergence of cardiac glycosides as potential drugs: Current and future scope for cancer therapeutics. Biomolecules 2021, 11, 1275. [Google Scholar] [CrossRef]
- Kim, U.; Kim, C.-Y.; Lee, J.M.; Ryu, B.; Kim, J.; Shin, C.; Park, J.-H. Pimozide inhibits the human prostate cancer cells through the generation of reactive oxygen species. Front. Pharmacol. 2020, 10, 1517. [Google Scholar] [CrossRef]
- Dakir, E.-H.; Pickard, A.; Srivastava, K.; McCrudden, C.M.; Gross, S.R.; Lloyd, S.; Zhang, S.-D.; Margariti, A.; Morgan, R.; Rudland, P.S.; et al. The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer. Oncotarget 2018, 9, 34889–34910. [Google Scholar] [CrossRef]
- Greene, J.; Segaran, A.; Lord, S. Targeting OXPHOS and the electron transport chain in cancer; Molecular and therapeutic implications. Semin. Cancer Biol. 2022, 86, 851–859. [Google Scholar] [CrossRef]
- Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Mutti, L.; Krstic-Demonacos, M.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget 2016, 7, 34084. [Google Scholar] [CrossRef]
- Basak, D.; Gamez, D.; Deb, S. SGLT2 inhibitors as potential anticancer agents. Biomedicines 2023, 11, 1867. [Google Scholar] [CrossRef]
- Papadopoli, D.; Uchenunu, O.; Palia, R.; Chekkal, N.; Hulea, L.; Topisirovic, I.; Pollak, M.; St-Pierre, J. Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin. Neoplasia 2021, 23, 391–399. [Google Scholar] [CrossRef]
- Jin, P.; Jiang, J.; Zhou, L.; Huang, Z.; Nice, E.C.; Huang, C.; Fu, L. Mitochondrial adaptation in cancer drug resistance: Prevalence, mechanisms, and management. J. Hematol. Oncol. 2022, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Schultz, C.W.; Nevler, A. Pyrvinium pamoate: Past, present, and future as an anticancer drug. Biomedicines 2022, 10, 3249. [Google Scholar] [CrossRef] [PubMed]
- Tomitsuka, E.; Kita, K.; Esumi, H. An anticancer agent, pyrvinium pamoate inhibits the NADH–fumarate reductase system—A unique mitochondrial energy metabolism in tumour microenvironments. J. Biochem. 2012, 152, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Weng, N.; Zhang, Z.; Tan, Y.; Zhang, X.; Wei, X.; Zhu, Q. Repurposing antifungal drugs for cancer therapy. J. Adv. Res. 2023, 48, 259–273. [Google Scholar] [CrossRef]
- Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett. 2017, 14, 1240–1246. [Google Scholar] [CrossRef]
- Head, S.A.; Shi, W.; Zhao, L.; Gorshkov, K.; Pasunooti, K.; Chen, Y.; Deng, Z.; Li, R.-J.; Shim, J.S.; Tan, W.; et al. Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc. Natl. Acad. Sci. USA 2015, 112, E7276–E7285. [Google Scholar] [CrossRef]
- Pancu, D.F.; Scurtu, A.; Macasoi, I.G.; Marti, D.; Mioc, M.; Soica, C.; Coricovac, D.; Horhat, D.; Poenaru, M.; Dehelean, C. Antibiotics: Conventional therapy and natural compounds with antibacterial activity—A pharmaco-toxicological screening. Antibiotics 2021, 10, 401. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; Macnair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A deep learning approach to antibiotic discovery. Cell 2020, 180, 688–702. [Google Scholar] [CrossRef]
- Bano, N.; Parveen, S.; Saeed, M.; Siddiqui, S.; Abohassan, M.; Mir, S.S. Drug Repurposing of Selected Antibiotics: An Emerging Approach in Cancer Drug Discovery. ACS Omega 2024, 9, 26762–26779. [Google Scholar] [CrossRef]
- Castro, L.; Kviecinski, M.; Ourique, F.; Parisotto, E.; Grinevicius, V.; Correia, J.; Filho, D.W.; Pedrosa, R. Albendazole as a promising molecule for tumor control. Redox Biol. 2016, 10, 90–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Khzem, A.H.; Gomaa, M.S.; Alturki, M.S.; Tawfeeq, N.; Sarafroz, M.; Alonaizi, S.M.; Al Faran, A.; Alrumaihi, L.A.; Alansari, F.A.; Alghamdi, A.A. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 12441. https://doi.org/10.3390/ijms252212441
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. International Journal of Molecular Sciences. 2024; 25(22):12441. https://doi.org/10.3390/ijms252212441
Chicago/Turabian StyleAl Khzem, Abdulaziz H., Mohamed S. Gomaa, Mansour S. Alturki, Nada Tawfeeq, Mohammad Sarafroz, Shareefa M. Alonaizi, Alhassan Al Faran, Laela Ahmed Alrumaihi, Fatimah Ahmed Alansari, and Abdullah Abbas Alghamdi. 2024. "Drug Repurposing for Cancer Treatment: A Comprehensive Review" International Journal of Molecular Sciences 25, no. 22: 12441. https://doi.org/10.3390/ijms252212441
APA StyleAl Khzem, A. H., Gomaa, M. S., Alturki, M. S., Tawfeeq, N., Sarafroz, M., Alonaizi, S. M., Al Faran, A., Alrumaihi, L. A., Alansari, F. A., & Alghamdi, A. A. (2024). Drug Repurposing for Cancer Treatment: A Comprehensive Review. International Journal of Molecular Sciences, 25(22), 12441. https://doi.org/10.3390/ijms252212441