Impact of Reduced Saliva Production on Intestinal Integrity and Microbiome Alterations: A Sialoadenectomy Mouse Model Study
Abstract
:1. Introduction
2. Results
2.1. Mice in the Sialoadenectomy Group Showed Regular Body Weight Gain and Significantly Lower Saliva Secretion
2.2. Effects of Decreased Saliva Secretion Due to Sialoadenectomy on Histopathological Changes in the Intestinal Tract with Hematoxyline and Eosin Staining
2.2.1. Morphological Changes in Intestinal Villi
2.2.2. Morphological Changes in Paneth Cells
2.3. Sialoadenectomy Group Demonstrated Significantly Reduced PAS-Positive Goblet Cell Density, Decreased Expression of EGF, and Increased Expression of PARP-1 at 3 Months After Surgery
2.3.1. The Result of d-PAS-Positive Goblet Cell Number and Cell Density per Unit Area
2.3.2. Immunohistochemical Analysis of EGF, VEGF, and PARP-1
2.4. Intestinal Microbiome Analysis
2.4.1. Microbiome Composition Was Significantly Different 3 Months After Surgery in the Sialoadenectomy Group and Similar Among All Groups at 6 and 12 Months After Surgery
- f_Lactobacillaceae; g_Lactobacillus: significantly higher in the sialoadenectomy group (mean relative abundance: 11.99%) at 3 months after surgery and significantly higher in the sham group (mean relative abundance: 12.50%) at 6 months after surgery.
- f_Peptostreptococcaceae; g_Romboutsia: significantly higher in the control group (mean relative abundance: 4.96%) at 3 months after surgery and significantly lower in the sham group (mean relative abundance: 0.0%) at 6 months after surgery.
- f_Tannerellaceae; g_Parabacteroides: significantly lower in the control group than in the sham and sialoadenectomy groups at 3 months after surgery (mean relative abundance: 0.54%, 1.36%, and 1.07%, respectively). At 6 months after surgery, the control and sialoadenectomy groups were significantly lower than the sham group (mean relative abundance: 0.43%, 0.54%, and 1.29%, respectively).
- f_Ruminococcaceae; g_incertae_sedis: significantly higher in the control group than the sham and sialoadenectomy groups at 3 months after surgery (mean relative abundance: 1.80%, 016%, and 0.11%, respectively) (Figure 7b).
2.4.2. Within-Subject α-Diversity Showed Similar Trends and Between-Subject β-Diversity Showed Different Patterns of Significant Differences at 3, 6, and 12 Months After Surgery Within the Three Groups
2.4.3. LEfSe Analysis Identified Specific Microbiome Alterations After Sialoadenectomy
2.4.4. Heatmap Analysis Showed a Microbiome Substantially Similar to That of the LEfSe Analysis
3. Discussion
4. Materials and Methods
4.1. Animal Models
4.2. Experimental Procedure
4.3. Measurement of Body Weight and Salivary Secretion
4.4. Preparation of Fecal and Intestinal Samples
4.5. Histopathological Analysis—Villi Length, Thickness, and Area
4.6. Diastase Periodic Acid–Schiff (d-PAS) Staining and the Number of Goblet Cells per Unit Area
4.7. Immunohistochemistry and Semi-Quantitative Analysis
4.8. DNA Extraction and 16S rRNA Gene Amplicon Sequencing
4.8.1. DNA Extraction from Fecal Samples
4.8.2. 16S rRNA Gene Amplification and Library Preparation
F | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNCCTACGGGNGGCWGCAG |
R | GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNGACTACHVGGGTATCTAATCC |
4.8.3. Sequencing on Illumina MiSeq Platform
4.8.4. Bioinformatics Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, A.; Gullickson, R.G.; Singh, R.; Ro, S.; Omaye, S.T. The Link between Oral and Gut Microbiota in Inflammatory Bowel Disease and a Synopsis of Potential Salivary Biomarkers. Appl. Sci. 2020, 10, 6421. [Google Scholar] [CrossRef]
- Kodukula, K.; Faller, D.V.; Harpp, D.N.; Kanara, I.; Pernokas, J.; Pernokas, M.; Powers, W.R.; Soukos, N.S.; Steliou, K.; Moos, W.H. Gut Microbiota and Salivary Diagnostics: The Mouth Is Salivating to Tell Us Something. Biores. Open Access 2017, 6, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Miyauchi, E.; Kato, T.; Sato, K.; Suda, W.; Tsuzuno, T.; Yamada-Hara, M.; Sasaki, N.; Ohno, H.; Yamazaki, K. Dysbiotic Human Oral Microbiota Alters Systemic Metabolism via Modulation of Gut Microbiota in Germ-Free Mice. J. Oral. Microbiol. 2022, 14, 2110194. [Google Scholar] [CrossRef]
- Giri, S.; Uehara, O.; Takada, A.; Paudel, D.; Morikawa, T.; Arakawa, T.; Nagasawa, T.; Abiko, Y.; Furuichi, Y. The Effect of Porphyromonas Gingivalis on the Gut Microbiome of Mice in Relation to Aging. J. Periodontal Res. 2022, 57, 1256–1266. [Google Scholar] [CrossRef]
- Brook, I. Late Side Effects of Radiation Treatment for Head and Neck Cancer. Radiat. Oncol. J. 2020, 38, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.; Kellett, J.; Toohey, K.; D’cunha, N.M.; Isbel, S.; Naumovski, N. Toxicities Caused by Head and Neck Cancer Treatments and Their Influence on the Development of Malnutrition: Review of the Literature. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 935–949. [Google Scholar] [CrossRef]
- Kim-Lee, C.; Suresh, L.; Ambrus, J.L. Gastrointestinal Disease in Sjogren’s Syndrome: Related to Food Hypersensitivities. Springerplus 2015, 4, 766. [Google Scholar] [CrossRef]
- Mavragani, C.P.; Moutsopoulos, H.M. Sjögren Syndrome. CMAJ 2014, 186, E579–E586. [Google Scholar] [CrossRef]
- Bomeli, S.R.; Desai, S.C.; Johnson, J.T.; Walvekar, R.R. Management of Salivary Flow in Head and Neck Cancer Patients—A Systematic Review. Oral. Oncol. 2008, 44, 1000–1008. [Google Scholar] [CrossRef]
- Jensen, S.B.; Vissink, A.; Limesand, K.H.; Reyland, M.E. Salivary Gland Hypofunction and Xerostomia in Head and Neck Radiation Patients. JNCI Monogr. 2019, 2019, lgz016. [Google Scholar] [CrossRef]
- Hahnel, S.; Schwarz, S.; Zeman, F.; Schäfer, L.; Behr, M. Prevalence of Xerostomia and Hyposalivation and Their Association with Quality of Life in Elderly Patients in Dependence on Dental Status and Prosthetic Rehabilitation: A Pilot Study. J. Dent. 2014, 42, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Mauri-Obradors, E.; Estrugo-Devesa, A.; Jané-Salas, E.; Viñas, M.; López-López, J. Oral Manifestations of Diabetes Mellitus. A Systematic Review. Med. Oral. Patol. Oral Cir. Bucal 2017, 22, e586–e594. [Google Scholar] [CrossRef] [PubMed]
- Fornari, C.B.; Bergonci, D.; Stein, C.B.; Agostini, B.A.; Rigo, L. Prevalence of Xerostomia and Its Association with Systemic Diseases and Medications in the Elderly: A Cross-Sectional Study. Sao Paulo Med. J. 2021, 139, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Fayez, K. Ghishan the Physiology of Intestinal Absorption. Best. Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef]
- Bull, M.J.; Plummer, N.T. Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. 2014, 13, 17–22. [Google Scholar]
- Kastl, A.J.; Terry, N.A.; Wu, G.D.; Albenberg, L.G. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. CMGH 2020, 9, 33–45. [Google Scholar] [CrossRef]
- Teofani, A.; Marafini, I.; Laudisi, F.; Pietrucci, D.; Salvatori, S.; Unida, V.; Biocca, S.; Monteleone, G.; Desideri, A. Intestinal Taxa Abundance and Diversity in Inflammatory Bowel Disease Patients: An Analysis Including Covariates and Confounders. Nutrients 2022, 14, 260. [Google Scholar] [CrossRef]
- Rebersek, M. Gut Microbiome and Its Role in Colorectal Cancer. BMC Cancer 2021, 21, 1325. [Google Scholar] [CrossRef] [PubMed]
- Zubeldia-Varela, E.; Barker-Tejeda, T.C.; Obeso, D.; Villaseñor, A.; Barber, D.; Pérez-Gordo, M. Microbiome and Allergy: New Insights and Perspectives. J. Investig. Allergol. Clin. Immunol. 2022, 32, 327–344. [Google Scholar] [CrossRef]
- Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.F. Impact of Microbiota on Central Nervous System and Neurological Diseases: The Gut-Brain Axis. J. Neuroinflammation 2019, 16, 53. [Google Scholar] [CrossRef]
- Ling, X.; Jie, W.; Qin, X.; Zhang, S.; Shi, K.; Li, T.; Guo, J. Gut Microbiome Sheds Light on the Development and Treatment of Abdominal Aortic Aneurysm. Front. Cardiovasc. Med. 2022, 9, 1063683. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.H.; Wu, C.Y. The Gut Microbiome in Obesity. J. Formos. Med. Assoc. 2019, 118, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, B.; Yu, D.; Zhu, C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front. Cell. Infect. Microbiol. 2022, 12, 834485. [Google Scholar] [CrossRef] [PubMed]
- Van’T Hof, W.; Veerman, E.C.I.; Amerongen, A.V.N.; Ligtenberg, A.J.M. Antimicrobial Defense Systems in Saliva; S. Karger AG: Basel, Switzerland, 2014; Volume 24, ISBN 9783318025958. [Google Scholar]
- Nagakubo, D.; Kaibori, Y. Oral Microbiota: The Influences and Interactions of Saliva, IgA, and Dietary Factors in Health and Disease. Microorganisms 2023, 11, 2307. [Google Scholar] [CrossRef]
- Motahari, P.; Fathollahzadeh, D.; Alipour, A. Salivary Vascular Endothelial Growth Factor and Epidermal Growth Factor Levels in Patients with Recurrent Aphthous Stomatitis: A Meta-Analysis. J. Dent. 2023, 24, 277–284. [Google Scholar]
- Chul, W.Y.; Hee, J.A.; Wan, Y.K.; Mi, J.S.; Sung, K.K.; Joo, H.P.; Young, O.K.; Yong, S.K.; Kim, J.; Byung, K.B. Influence of the Renin-Angiotensin System on Epidermal Growth Factor Expression in Normal and Cyclosporine-Treated Rat Kidney. Kidney Int. 2001, 60, 847–857. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function. Mediat. Inflamm. 2016, 2016, 1927348. [Google Scholar] [CrossRef]
- Mellinghoff, I.K.; Wang, M.Y.; Vivanco, I.; Haas-Kogan, D.A.; Zhu, S.; Dia, E.Q.; Lu, K.V.; Yoshimoto, K.; Huang, J.H.; Chute, D.J.; et al. Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. N. Engl. J. Med. 2005, 353, 2012–2024. [Google Scholar] [CrossRef]
- Zeng, F.; Harris, R.C. Epidermal Growth Factor, from Gene Organization to Bedside. Semin. Cell Dev. Biol. 2014, 28, 2–11. [Google Scholar] [CrossRef]
- Sabnis, A.; Carrasco, R.; Liu, S.X.L.; Yan, X.; Managlia, E.; Chou, P.M.; Tan, X.D.; De Plaen, I.G. Intestinal Vascular Endothelial Growth Factor Is Decreased in Necrotizing Enterocolitis. Neonatology 2015, 107, 191–198. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ho, S.B. Intestinal Goblet Cells and Mucins in Health and Disease: Recent Insights and Progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Hindson, J. Mucus Secretion from Colonic Goblet Cells Is Regulated by Autophagy and ER Stress. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 202. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, H.; Urao, M.; Lee, D.; Drongowski, R.A.; Coran, A.G. The Effect of Epidermal Growth Factor on Bacterial Translocation in Newborn Rabbits. J. Pediatr. Surg. 1998, 33, 225–228. [Google Scholar] [CrossRef]
- Lord, R.V.N.; Park, J.M.; Wickramasinghe, K.; DeMeester, S.R.; Oberg, S.; Salonga, D.; Singer, J.; Peters, J.H.; Danenberg, K.D.; DeMeester, T.R.; et al. Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor Expression in Esophageal Adenocarcinoma and Barrett Esophagus. J. Thorac. Cardiovasc. Surg. 2003, 125, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Luo, W.; Wang, Y. Emerging Role of PARP-1 and PARthanatos in Ischemic Stroke. J. Neurochem. 2022, 160, 74–87. [Google Scholar] [CrossRef]
- Zingarelli, B.; Hake, P.W.; Burroughs, T.J.; Piraino, G.; O’Connor, M.; Denenberg, A. Activator Protein-1 Signalling Pathway and Apoptosis Are Modulated by Poly(ADP-Ribose) Polymerase-1 in Experimental Colitis. Immunology 2004, 113, 509–517. [Google Scholar] [CrossRef]
- Coutry, N.; Nguyen, J.; Soualhi, S.; Gerbe, F.; Meslier, V.; Dardalhon, V.; Almeida, M.; Quinquis, B.; Thirion, F.; Herbert, F.; et al. Cross Talk between Paneth and Tuft Cells Drives Dysbiosis and Inflammation in the Gut Mucosa. Proc. Natl. Acad. Sci. USA 2023, 120, e2219431120. [Google Scholar] [CrossRef]
- Huynh, U.; Zastrow, M.L. Metallobiology of Lactobacillaceae in the Gut Microbiome. J. Inorg. Biochem. 2022, 238, 112023. [Google Scholar] [CrossRef]
- Pittayanon, R.; Lau, J.T.; Yuan, Y.; Leontiadis, G.I.; Tse, F.; Surette, M.; Moayyedi, P. Gut Microbiota in Patients with Irritable Bowel Syndrome—A Systematic Review. Gastroenterology 2019, 157, 97–108. [Google Scholar] [CrossRef]
- Kaakoush, N.O. Insights into the Role of Erysipelotrichaceae in the Human Host. Front. Cell. Infect. Microbiol. 2015, 5, 84. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.A.; Artis, D. Intestinal Bacteria and the Regulation of Immune Cell Homeostasis. Annu. Rev. Immunol. 2010, 28, 623–667. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, J.; Ge, L.; Liu, Z.; Chen, H.; Yu, B.; Chen, D. Exogenous Infusion of Short-Chain Fatty Acids Can Improve Intestinal Functions Independently of the Gut Microbiota. J. Anim. Sci. 2020, 98, skaa371. [Google Scholar] [CrossRef]
- Davis, C.D. The Gut Microbiome and Its Role in Obesity. Nutr. Today 2016, 51, 167–174. [Google Scholar] [CrossRef]
- Hold, G.L.; Smith, M.; Grange, C.; Watt, E.R.; El-Omar, E.M.; Mukhopadhya, I. Role of the Gut Microbiota in Inflammatory Bowel Disease Pathogenesis: What Have We Learnt in the Past 10 Years? World J. Gastroenterol. 2014, 20, 1192–1210. [Google Scholar] [CrossRef] [PubMed]
- Gassler, N. Paneth Cells in Intestinal Physiology and Pathophysiology. World J. Gastrointest. Pathophysiol. 2017, 8, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Cray, P.; Sheahan, B.J.; Dekaney, C.M. Secretory Sorcery: Paneth Cell Control of Intestinal Repair and Homeostasis. CMGH 2021, 12, 1239–1250. [Google Scholar] [CrossRef]
- Chung, Y.W.; Gwak, H.J.; Moon, S.; Rho, M.; Ryu, J.H. Functional Dynamics of Bacterial Species in the Mouse Gut Microbiome Revealed by Metagenomic and Metatranscriptomic Analyses. PLoS ONE 2020, 15, e0227886. [Google Scholar] [CrossRef]
- Alam, M.T.; Amos, G.C.A.; Murphy, A.R.J.; Murch, S.; Wellington, E.M.H.; Arasaradnam, R.P. Microbial Imbalance in Inflammatory Bowel Disease Patients at Different Taxonomic Levels. Gut Pathog. 2020, 12, 1. [Google Scholar] [CrossRef]
- Carpenter, C.; Payne, S.M. Regulation of Iron Transport Systems in Enterobacteriaceae in Response to Oxygen and Iron Availability. J. Inorg. Biochem. 2014, 133, 110–117. [Google Scholar] [CrossRef]
- Scanu, M.; Toto, F.; Petito, V.; Masi, L.; Fidaleo, M.; Puca, P.; Baldelli, V.; Reddel, S.; Vernocchi, P.; Pani, G.; et al. An Integrative Multi-Omic Analysis Defines Gut Microbiota, Mycobiota, and Metabolic Fingerprints in Ulcerative Colitis Patients. Front. Cell. Infect. Microbiol. 2024, 14, 1366192. [Google Scholar] [CrossRef] [PubMed]
- Osuka, A.; Ogura, H.; Ueyama, M.; Shimazu, T.; Lederer, J.A. Immune Response to Traumatic Injury: Harmony and Discordance of Immune System Homeostasis. Acute Med. Surg. 2014, 1, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, Y.; Zhang, Z.; Yu, X.; Zheng, J. Recent Advances in Mouse Models of Sjögren’s Syndrome. Front. Immunol. 2020, 11, 1158. [Google Scholar] [CrossRef]
- Wong, J.; Armour, E.; Kazanzides, P.; Iordachita, I.; Tryggestad, E.; Deng, H.; Matinfar, M.; Kennedy, C.; Liu, Z.; Chan, T.; et al. High-Resolution, Small Animal Radiation Research Platform with X-Ray Tomographic Guidance Capabilities. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1591–1599. [Google Scholar] [CrossRef]
- Miranda-Rius, J.; Brunet-Llobet, L.; Lahor-Soler, E.; Farré, M. Salivary Secretory Disorders, Inducing Drugs, and Clinical Management. Int. J. Med. Sci. 2015, 12, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Takagi, Y.; Kaneko, S.; Kurosawa, T. Effect of Three Types of Mixed Anesthetic Agents Alternate to Ketamine in Mice. Exp. Anim. 2011, 60, 481–487. [Google Scholar] [CrossRef]
- Zubeidat, K.; Saba, Y.; Barel, O.; Shoukair, F.L.; Hovav, A.H. Protocol for Parotidectomy and Saliva Analysis in Mice. STAR Protoc. 2022, 3, 101048. [Google Scholar] [CrossRef]
- Jonjic, S. Surgical Removal of Mouse Salivary Glands. Curr. Protoc. Immunol. 2001, 43, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bagavant, H.; Trzeciak, M.; Papinska, J.; Biswas, I.; Dunkleberger, M.L.; Sosnowska, A.; Deshmukh, U.S. A Method for the Measurement of Salivary Gland Function in Mice. J. Vis. Exp. 2018, 2018, 6–13. [Google Scholar] [CrossRef]
- Takahashi, A.; Inoue, H.; Mishima, K.; Ide, F.; Nakayama, R.; Hasaka, A.; Ryo, K.; Ito, Y.; Sakurai, T.; Hasegawa, Y.; et al. Evaluation of the Effects of Quercetin on Damaged Salivary Secretion. PLoS ONE 2015, 10, e0116008. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, J.; Hu, X.; Yang, S.; Zhong, S.; Yang, T.; Zhou, Y.; Zhao, G.; Jiang, Y.; Li, Y. Alterations in the Jejunal Microbiota and Fecal Metabolite Profiles of Rabbits Infected with Eimeria Intestinalis. Parasites Vectors 2022, 15, 231. [Google Scholar] [CrossRef]
- Le Naour, J.; Montégut, L.; Joseph, A.; Garbin, K.; Vacchelli, E.; Kroemer, G.; Pol, J.G.; Maiuri, M.C. Improved Swiss-Rolling Method for Histological Analyses of Colon Tissue. MethodsX 2022, 9, 101630. [Google Scholar] [CrossRef]
- Bialkowska, A.B.; Ghaleb, A.M.; Nandan, M.O.; Yang, V.W. Improved Swiss-Rolling Technique for Intestinal Tissue Preparation for Immunohistochemical and Immunofluorescent Analyses. J. Vis. Exp. 2016, 2016, 54161. [Google Scholar] [CrossRef]
- Abreu Velez, A.M.; Upegui Zapata, Y.A.; Howard, M.S. Periodic Acid-Schiff Staining Parallels the Immunoreactivity Seen by Direct Immunofluorescence in Autoimmune Skin Diseases. N. Am. J. Med. Sci. 2016, 8, 151–155. [Google Scholar] [CrossRef]
- Osho, S.O.; Wang, T.; Horn, N.L.; Adeola, O. Research Note: Comparison of Goblet Cell Staining Methods in Jejunal Mucosa of Turkey Poults. Poult. Sci. 2017, 96, 556–559. [Google Scholar] [CrossRef]
- Landini, G.; Martinelli, G.; Piccinini, F. Colour Deconvolution: Stain Unmixing in Histological Imaging. Bioinformatics 2021, 37, 1485–1487. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software “EZR” for Medical Statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Pascal, V.; Pozuelo, M.; Borruel, N.; Casellas, F.; Campos, D.; Santiago, A.; Martinez, X.; Varela, E.; Sarrabayrouse, G.; Machiels, K.; et al. A Microbial Signature for Crohn’s Disease. Gut 2017, 66, 813–822. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High- Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Kato-Kogoe, N.; Sakaguchi, S.; Kamiya, K.; Omori, M.; Gu, Y.H.; Ito, Y.; Nakamura, S.; Nakano, T.; Tamaki, J.; Ueno, T.; et al. Characterization of Salivary Microbiota in Patients with Atherosclerotic Cardiovascular Disease: A Case-Control Study. J. Atheroscler. Thromb. 2022, 29, 403–421. [Google Scholar] [CrossRef]
- An, Y.; Li, Y.; Wang, X.; Chen, Z.; Xu, H.; Wu, L.; Li, S.; Wang, C.; Luan, W.; Wang, X.; et al. Cordycepin Reduces Weight through Regulating Gut Microbiota in High-Fat Diet-Induced Obese Rats. Lipids Health Dis. 2018, 17, 276. [Google Scholar] [CrossRef]
- Shamsaddini, A.; Dadkhah, K.; Gillevet, P.M. BiomMiner: An Advanced Exploratory Microbiome Analysis and Visualization Pipeline. PLoS ONE 2020, 15, e0234860. [Google Scholar] [CrossRef]
Control | Sham | Sialoadenectomy | ||
---|---|---|---|---|
jejunum | 3 M | 375.2 ± 83.8 | 348.5 ± 105.2 | 292.0 ± 69.5 * |
6 M | 347.5 ± 74.2 | 348.3 ± 81.3 | 331.6 ± 76.6 | |
12 M | 326.8 ± 74.1 | 381.5 ± 73.5 * | 311.2 ± 66.8 | |
ileum | 3 M | 221.1 ± 33.9 | 200.1 ± 40.7 | 184.5 ± 42.7 * |
6 M | 241.1 ± 39.8 | 241.2 ± 45.0 | 200.7 ± 29.6 * | |
12 M | 199.7 ± 37.2 | 232.1 ± 30.6 * | 198.1 ± 34.6 |
Control | Sham | Sialoadenectomy | ||
---|---|---|---|---|
jejunum | 3 M | 74.5 ± 11.7 * | 62.1 ± 7.1 | 63.6 ± 9.2 |
6 M | 67.7 ± 12.9 | 71.1 ± 9.6 | 67.1 ± 10.8 | |
12 M | 69.5 ± 6.9 | 63.7 ± 7.8 | 76.2 ± 7.3 ** | |
ileum | 3 M | 54.5 ± 7.5 | 56.4 ± 5.7 | 52.2 ± 4.4 |
6 M | 54.3 ± 7.8 | 68.9 ± 16.0 * | 62.6 ± 7.2 | |
12 M | 52.6 ± 5.0 | 54.7 ± 8.2 | 58.6 ± 9.2 |
Control | Sham | Sialoadenectomy | ||
---|---|---|---|---|
jejunum | 3 M | 21,296.3 ± 4577.8 | 17,867.3 ± 4082.4 | 14,530.35 ± 4842.8 ** |
6 M | 17,841.8 ± 4727.2 | 19,743.7 ± 4603.0 | 19,742.2 ± 5813.5 | |
12 M | 17,692.5 ± 4154.8 | 17,922.7 ± 2396.2 | 21,746.5 ± 5106.7 | |
ileum | 3 M | 10,458.0 ± 2197.5 | 8776.4 ± 1964.5 | 6833.5 ± 2178.4 |
6 M | 7755.5 ± 1401.0 | 9854.7 ± 2972.0 | 8720.9 ± 1086.82 | |
12 M | 8874.1 ± 1053.3 | 9544.5 ± 1195.3 | 9641.5 ± 1785.2 |
Control | Sham | Sialoadenectomy | ||
---|---|---|---|---|
jejunum | 3 M | 11.8 ± 4.3 * | 7.6 ± 2.7 | 7.9 ± 3.3 |
6 M | 8.4 ± 2.9 | 7.8 ± 2.2 | 8.4 ± 2.0 | |
12 M | 9.0 ± 3.1 | 9.1 ± 3.6 | 8.9 ± 2.4 | |
ileum | 3 M | 9.8 ± 2.7 * | 7.1 ± 2.4 | 6.2 ± 2.4 |
6 M | 7.7 ± 2.1 * | 6.5 ± 2.2 | 6.6 ± 2.0 | |
12 M | 8.1 ± 2.1 | 8.1 ± 2.0 | 8.3 ± 2.1 |
Group | Time Point | Upregulated Microbiome |
---|---|---|
Sialoadenectomy | 3 M | o_Lactobacillales; f_Lactobacillaceae; g_Lactobacillus |
Control | 3 M | f_Ruminococcaceae; g_Incertae_Sedis |
3 M | o_Peptostreptococcales-Tissierellales; f_Peptostreptococcaceae | |
3 M | o_Oscillospirales; f_Ruminococcaceae; g_Romboutsia, | |
6 M | f_Peptostreptococcaceae; g_Romboutsia | |
6 M | o_Erysipelotrichales; f_Erysipelotrichaceae; g_Turicibacter |
3 M | 6 M | 12 M | |
---|---|---|---|
Sialoadenectomy Group | 10 | 10 | 15 |
Sham Group | 9 | 10 | 14 |
Control Group | 5 | 5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maita, K.; Fujihara, H.; Matsumura, M.; Miyakawa, M.; Baba, R.; Morimoto, H.; Nakayama, R.; Ito, Y.; Kawaguchi, K.; Hamada, Y. Impact of Reduced Saliva Production on Intestinal Integrity and Microbiome Alterations: A Sialoadenectomy Mouse Model Study. Int. J. Mol. Sci. 2024, 25, 12455. https://doi.org/10.3390/ijms252212455
Maita K, Fujihara H, Matsumura M, Miyakawa M, Baba R, Morimoto H, Nakayama R, Ito Y, Kawaguchi K, Hamada Y. Impact of Reduced Saliva Production on Intestinal Integrity and Microbiome Alterations: A Sialoadenectomy Mouse Model Study. International Journal of Molecular Sciences. 2024; 25(22):12455. https://doi.org/10.3390/ijms252212455
Chicago/Turabian StyleMaita, Kanna, Hisako Fujihara, Mitsuki Matsumura, Moeko Miyakawa, Ryoko Baba, Hiroyuki Morimoto, Ryoko Nakayama, Yumi Ito, Koji Kawaguchi, and Yoshiki Hamada. 2024. "Impact of Reduced Saliva Production on Intestinal Integrity and Microbiome Alterations: A Sialoadenectomy Mouse Model Study" International Journal of Molecular Sciences 25, no. 22: 12455. https://doi.org/10.3390/ijms252212455
APA StyleMaita, K., Fujihara, H., Matsumura, M., Miyakawa, M., Baba, R., Morimoto, H., Nakayama, R., Ito, Y., Kawaguchi, K., & Hamada, Y. (2024). Impact of Reduced Saliva Production on Intestinal Integrity and Microbiome Alterations: A Sialoadenectomy Mouse Model Study. International Journal of Molecular Sciences, 25(22), 12455. https://doi.org/10.3390/ijms252212455