The Influence of the Amphiphilic Properties of Peptides on the Phosphatidylinositol Monolayer in the Presence of Ascorbic Acid
Abstract
:1. Introduction
2. Results
2.1. Compression Isotherms of the Monolayer Formed from PI with Peptides, AA, and EAA in the Aqueous Subphase
2.2. Compressibility Coefficient of the Monolayer Formed from PI with Peptides, AA, and EAA in the Aqueous Subphase
2.3. Compression and Expansion of the Monolayer Formed from PI with Peptides, AA, and EAA in the Aqueous Subphase
2.4. Dependence of Surface Pressure on Time of the Monolayer Formed from PI with Peptides, AA, and EAA in the Aqueous Subphase
3. Discussion
4. Materials and Methods
4.1. Synthesis and Characterization of Peptides
4.2. Langmuir Films
4.3. Compression Isotherms of Phosphatidylinositol on the Aqueous Subphase with P2 or P4 and AA or EAA
4.4. Hysteresis
4.5. Compressibility Coefficient of the Monolayer
4.6. Surface Pressure Changes over Time
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Golonka, I.; Greber, K.E.; Oleksy-Wawrzyniak, M.; Paleczny, J.; Dryś, A.; Junka, A.; Sawicki, W.; Musiał, W. Antimicrobial and Antioxidative Activity of Newly Synthesized Peptides Absorbed into Bacterial Cellulose Carrier against Acne vulgaris. Int. J. Mol. Sci. 2021, 22, 7466. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.; Morais, T.P.; Zaini, P.A.; Campos, C.S.; Almeida-Souza, H.O.; Dandekar, A.M.; Nascimento, R.; Goulart, L.R. Antimicrobial activity of Epsilon-Poly-l-lysine against phytopathogenic bacteria. Sci. Rep. 2020, 10, 11324. [Google Scholar] [CrossRef] [PubMed]
- López-Expósito, I.; Recio, I. Antibacterial activity of peptides and folding variants from milk proteins. Int. Dairy J. 2006, 16, 1294–1305. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, Y.; Li, L. Relationship between primary structure or spatial conformation and functional activity of antioxidant peptides from Pinctada fucata. Food Chem. 2018, 264, 108–117. [Google Scholar] [CrossRef]
- Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T.; Ikemoto, N.; Terashima, M. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018, 245, 750–755. [Google Scholar] [CrossRef]
- Gatica, M.; Allende, C.C.; Antonelli, M.; Allende, J.E. Polylysine-containing peptides, including the carboxyl-terminal segment of the human c-Ki-ras 2 protein, affect the activity of some key membrane enzymes. Proc. Natl. Acad. Sci. USA 1987, 84, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Reddersen, K.; Greber, K.E.; Korona-Glowniak, I.; Wiegand, C. The Short Lipopeptides (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 Protect HaCaT Keratinocytes from Bacterial Damage Caused by Staphylococcus aureus Infection in a Co-Culture Model. Antibiotics 2020, 9, 879. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linpinski, C.A.; Lombardo, F.; Dominy, B.W.; Freeny, P. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Golonka, I.; Greber, K.E.; Szyja, B.M.; Petrus, P.P.; Pucułek, J.E.; Musiał, W. Effect of Newly Synthesized Structures of Peptides on the Stability of the Monolayers Formed. Int. J. Mol. Sci. 2023, 24, 4318. [Google Scholar] [CrossRef]
- Bohdanowicz, M.; Grinstein, S. Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis. Physiol. Rev. 2013, 93, 69–106. [Google Scholar] [CrossRef]
- McLaughlin, J.; Watterson, S.; Layton, A.M.; Bjourson, A.J.; Barnard, E.; McDowell, A. Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms 2019, 7, 128. [Google Scholar] [CrossRef] [PubMed]
- Mayslich, C.; Grange, P.A.; Dupin, N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021, 9, 303. [Google Scholar] [CrossRef]
- Skalozubova, T.A.; Reshetova, V.O. Leaves of common nettle (Urtica dioica L.) as a source of ascorbic acid (vitamin C). World Appl. Sci. J. 2013, 28, 250–253. [Google Scholar]
- Golonka, I.; Oleksy, M.; Junka, A.; Matera-Witkiewicz, A.; Bartoszewicz, M.; Musiał, W. Selected Physicochemical and Biological Properties of Ethyl Ascorbic Acid Compared to Ascorbic Acid. Biol. Pharm. Bull. 2017, 40, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Ramata-Stunda, A.; Boroduskis, M.; Kaktina, E.; Patetko, L.; Kalnenieks, U.; Lasa, Z.; Rubina, M.; Strazdina, I.; Kalnins, G.; Rutkis, R. Comparative Evaluation of Existing and Rationally Designed Novel Antimicrobial Peptides for Treatment of Skin and Soft Tissue Infections. Antibiotics 2023, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Dildar, L.; Haque, A.; Patra, P.; Mukhopadhyay, M.; Hazra, S.; Kulkarni, M.; Thomas, S.; Plaisier, J.R.; Dutta, S.B. Chitosan-Fatty Acid Interaction Mediated Growth of Langmuir Monolayer and Langmuir-Blodgett Films. J. Colloid Interface Sci. 2018, 514, 433–442. [Google Scholar] [CrossRef]
- Golonka, I.; Pucułek, J.E.; Greber, K.E.; Dryś, A.; Sawicki, W.; Musiał, W. Evaluation of the Effect of Antibacterial Peptides on Model Monolayers. Int. J. Mol. Sci. 2023, 24, 14861. [Google Scholar] [CrossRef] [PubMed]
- Hädicke, A.; Blume, A. Binding of the Cationic Peptide (KL)4K to Lipid Monolayers at the Air-Water Interface: Effect of Lipid Headgroup Charge, Acyl Chain Length, and Acyl Chain Saturation. J. Phys. Chem. B 2016, 120, 3880–3887. [Google Scholar] [CrossRef] [PubMed]
- Keszthelyi, T.; Hill, K.; Kiss, É. Interaction of phospholipid Langmuir monolayers with an antibiotic peptide conjugate. J. Phys. Chem. B. 2013, 117, 6969–6979. [Google Scholar] [CrossRef] [PubMed]
- Avogadro Chemistry. Avogadro 2016. Available online: http://avogadro.cc/ (accessed on 3 November 2024).
- Santamaria, A.; Batchu, K.C.; Fragneto, G.; Laux, V.; Haertlein, M.; Darwish, T.A.; Russell, R.A.; Zaccai, N.R.; Guzmán, E.; Maestro, A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J. Colloid Interface Sci. 2023, 637, 55–66. [Google Scholar] [CrossRef]
- Pastuszak, K.; Kowalczyk, B.; Tarasiuk, J.; Jurak, M.; Palusińska-Szysz, M. Influence of the Antimicrobial LL-37 Peptide on Legionella dumoffii Phospholipids Adsorbed at the Air-Liquid Interface. Sustainability 2023, 15, 6670. [Google Scholar] [CrossRef]
- Ahmed, I.; Haque, A.; Bhattacharyya, S.; Patra, P.; Plaisier, J.R.; Perissinotto, F.; Bal, J.K. Vitamin C/Stearic Acid Hybrid Monolayer Adsorption at Air-Water and Air-Solid Interfaces. ACS Omega 2018, 3, 15789–15798. [Google Scholar] [CrossRef]
- Gérard, V.; Ay, E.; Graff, B.; Morlet-Savary, F.; Galopin, C.; Mutilangi, W.; Lalevée, J. Ascorbic Acid Derivatives as Potential Substitutes for Ascorbic Acid to Reduce Color Degradation of Drinks Containing Ascorbic Acid and Anthocyanins from Natural Extracts. J. Agric. Food Chem. 2019, 67, 12061–12071. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, G.; Zhang, J.; Nau, W.M. Increased antioxidant reactivity of vitamin C at low pH in model membranes. J. Am. Chem. Soc. 2002, 124, 11252–11253. [Google Scholar] [CrossRef] [PubMed]
- Birdi, K.S. Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; Chapter 2. [Google Scholar]
- Albrecht, O.; Gruler, H.; Sackmann, E. Polymorphism of phospholipid monolayers. J. Phys. 1978, 39, 301–313. [Google Scholar] [CrossRef]
- Oliveira, O.N., Jr.; Caseli, L.; Ariga, K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef] [PubMed]
- Rojewska, M.; Smułek, W.; Kaczorek, E.; Prochaska, K. Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. Membranes 2021, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Qassime, M.M.; Goryacheva, V.A.; Al-Alwani, A.J.; Lugovitskaya, T.N.; Shipovskaya, A.B.; Glukhovskoy, E.G. A studying of subphase temperature and dissolved ascorbic acid concentration influence on the process of Langmuir monolayer formation. J. Phys. Conf. Ser. 2018, 1124, 031010. [Google Scholar] [CrossRef]
- Sudheesh, S.; Ahmad, J.; Singh, G.S. Hysteresis of Isotherms of Mixed Monolayers of N-Octadecyl-N′-phenylthiourea and Stearic Acid at Air/Water Interface. Int. Sch. Res. Not. 2012, 2012, 835397. [Google Scholar] [CrossRef]
- Nath, J.; Nath, R.K.; Chakraborty, A.; Hussain, S.A. Monolayer characteristics of chitosan assembled in Langmuir films mixed with arachidic acid. Surf. Rev. Lett. 2014, 21, 1450049. [Google Scholar] [CrossRef]
- Połeć, K.; Wójcik, A.; Flasiński, M.; Wydro, P.; Broniatowski, M.; Hąc-Wydro, K. The influence of terpinen-4-ol and eucalyptol—The essential oil components—On fungi and plant sterol monolayers. Biochim. Biophys. Acta (BBA)—Biomembr. 2019, 1861, 1093–1102. [Google Scholar] [CrossRef]
- Wójcik, A.; Perczyk, P.; Wydro, P.; Broniatowski, M. Incorporation of cyclodiene pesticides and their polar metabolites to model membranes of soil bacteria. J. Mol. Liquids 2020, 298, 112019. [Google Scholar] [CrossRef]
- Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic alpha helical antimicrobial peptides. Eur. J. Biochem. 2001, 268, 5589–5600. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2012, 132 Pt 2, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.; Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000, 8, 402–410. [Google Scholar] [CrossRef]
- Seo, M.D.; Won, H.S.; Kim, J.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides for therapeutic applications: A review. Molecules 2012, 17, 12276–12286. [Google Scholar] [CrossRef]
- Falanga, L.; Lombardi, G.; Franci, M.; Vitiello, M.R.; Morelli, M.; Galdiero, S. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria. Int. J. Mol. Sci. 2016, 17, 785. [Google Scholar] [CrossRef]
- Lee, C.M.; Jin, S.P.; Doh, E.J.; Lee, D.H.; Chung, J.H. Regional Variation of Human Skin Surface Temperature. Ann. Dermatol. 2019, 31, 349–352. [Google Scholar] [CrossRef]
- Sudheesh, S.; Ahmad, J. Effect of Wilhelmy Plate Material on Hysteresis of Langmuir Film Isotherms. Asian J. Chem. 2013, 25, 3535–3538. [Google Scholar] [CrossRef]
- Davies, J.T.; Rideal, E.K. Interfacial Phenomena; Academic Press: New York, NY, USA, 1963. [Google Scholar]
Acronym | Temperature | |||
---|---|---|---|---|
20 °C | 25 °C | 30 °C | 35 °C | |
PI | 46.23 | 48.18 | 48.22 | 49.95 |
PI+AA | 49.39 | 51.58 | 47.53 | 44.60 |
PI+EAA | 45.47 | 49.01 | 46.77 | 47.21 |
PI+P2 | 44.28 | 43.50 | 43.81 | 46.86 |
PI+P2+AA | 51.47 | 52.26 | 56.78 | 54.12 |
PI+P2+EAA | 45.58 | 53.32 | 53.33 | 57.71 |
PI+P4 | 40.23 | 44.19 | 45.80 | 43.84 |
PI+P4+AA | 51.79 | 57.71 | 57.85 | 60.98 |
PI+P4+EAA | 45.97 | 48.85 | 55.68 | 55.89 |
Acronym | Composition [Molecules] | ||||
---|---|---|---|---|---|
PI (Monolayer) | AA (Subphase) | EAA (Subphase) | P2 (Subphase) | P4 (Subphase) | |
PI | 1.20 × 1016 | ||||
PI+AA | 1.20 × 1016 | 2.30 × 1016 | |||
PI+EAA | 1.20 × 1016 | 2.30 × 1016 | |||
PI+P2 | 1.20 × 1016 | 2.30 × 1016 | |||
PI+P2+AA | 1.20 × 1016 | 2.30 × 1016 | 2.30 × 1016 | ||
PI+P2+EAA | 1.20 × 1016 | 2.30 × 1016 | 2.30 × 1016 | ||
PI+P4 | 1.20 × 1016 | 2.30 × 1016 | |||
PI+P4+AA | 1.20 × 1016 | 2.30 × 1016 | 2.30 × 1016 | ||
PI+P4+EAA | 1.20 × 1016 | 2.30 × 1016 | 2.30 × 1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golonka, I.; Łukasiewicz, I.W.; Sebastiańczyk, A.; Greber, K.E.; Sawicki, W.; Musiał, W. The Influence of the Amphiphilic Properties of Peptides on the Phosphatidylinositol Monolayer in the Presence of Ascorbic Acid. Int. J. Mol. Sci. 2024, 25, 12484. https://doi.org/10.3390/ijms252312484
Golonka I, Łukasiewicz IW, Sebastiańczyk A, Greber KE, Sawicki W, Musiał W. The Influence of the Amphiphilic Properties of Peptides on the Phosphatidylinositol Monolayer in the Presence of Ascorbic Acid. International Journal of Molecular Sciences. 2024; 25(23):12484. https://doi.org/10.3390/ijms252312484
Chicago/Turabian StyleGolonka, Iwona, Izabela W. Łukasiewicz, Aleksandra Sebastiańczyk, Katarzyna E. Greber, Wiesław Sawicki, and Witold Musiał. 2024. "The Influence of the Amphiphilic Properties of Peptides on the Phosphatidylinositol Monolayer in the Presence of Ascorbic Acid" International Journal of Molecular Sciences 25, no. 23: 12484. https://doi.org/10.3390/ijms252312484
APA StyleGolonka, I., Łukasiewicz, I. W., Sebastiańczyk, A., Greber, K. E., Sawicki, W., & Musiał, W. (2024). The Influence of the Amphiphilic Properties of Peptides on the Phosphatidylinositol Monolayer in the Presence of Ascorbic Acid. International Journal of Molecular Sciences, 25(23), 12484. https://doi.org/10.3390/ijms252312484