Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study
Abstract
:1. Introduction
2. Results and Discussions
2.1. Phase Solubility Study
2.2. Fourier Transform Infrared Spectroscopy
2.3. X-Ray Diffraction (XRD)
2.4. Thermogravimetric Analysis
2.5. Molecular Modeling Studies
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Phase Solubility Study
3.4. Preparation of HP-β-CD/Kae Inclusion Complex and Physical Mixture
3.5. Molecular Modeling, Docking, and Dynamics Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saenger, W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed. 2003, 19, 344–362. [Google Scholar] [CrossRef]
- Narayanan, G.; Shen, J.L.; Matai, I.; Sachdev, A.; Boy, R.; Tonelli, A.E. Cyclodextrin-based nanostructures. Prog. Mater. Sci. 2022, 124, 100869. [Google Scholar]
- Tian, B.R.; Hua, S.Y.; Tian, Y.; Liu, J.Y. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: A review. Environ. Sci. Pollut. Res. 2020, 28, 1317–1340. [Google Scholar] [CrossRef]
- Liu, Z.J.; Ye, L.; Xi, J.N.; Wang, J.; Feng, Z.G. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog. Polym. Sci. 2021, 118, 101408. [Google Scholar] [CrossRef]
- Tian, B.R.; Liu, Y.M.; Liu, J.Y. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohyd. Polym. 2021, 251, 116871. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y.N.; Gao, X.L.; Fu, J.J.; Hu, L.D. Application of cyclodextrin in food industry. Crit. Rev. Food Sci. Nutr. 2020, 62, 2627–2640. [Google Scholar] [CrossRef]
- Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2022, 63, 9580–9604. [Google Scholar] [CrossRef]
- Dong, X.Y.; Zhou, S.Y.; Nao, J.F. Kaempferol as a therapeutic agent in Alzheimer’s disease: Evidence from preclinical studies. Ageing Res. Rev. 2023, 87, 101910. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, L.J.; Wang, L. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine. Biomed. Pharmacother. 2023, 165, 115215. [Google Scholar] [CrossRef]
- Chen, J.; Zhong, H.P.; Huang, Z.Y.; Chen, X.P.; You, J.M.; Zou, T.D. A Critical Review of Kaempferol in Intestinal Health and Diseases. Antioxidants 2023, 12, 1642. [Google Scholar] [CrossRef]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.B.; Nabavi, S.M.; Dagli, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015, 99, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fang, J.; Ou, D.Y.; Xu, J.W.; Deng, X.M.; Chi, G.F.; Feng, H.H.; Wang, J.F. Therapeutic potential of kaempferol on Streptococcus pneumoniae infection. Microbes Infect. 2023, 25, 105058. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.M.; Yao, T.W.; Zeng, S. Determination of quercetin and kaempferol in human urine after orally administrated tablet of ginkgo biloba extract by HPLC. J. Pharm. Biomed. Anal. 2003, 33, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Ciric, A.R.; Djurdjevic, P.; Jakovljevic, I. Metal Complexes of Kaempferol and Their Speciation in Human Plasma; Biochemistry Research Trends; Nova Science Publishers, Inc.: New York, NY, USA, 2013; pp. 1–249. [Google Scholar]
- Higuchi, T.; Connors, K.A. A phase solubility technique. Adv. Anal. Chem. Instrum. 1965, 4, 117–211. [Google Scholar]
- Mercader-Ros, M.T.; Lucas-Abellán, C.; Fortea, M.I.; Gabaldón, J.A.; Núñez-Delicado, E. Effect of HP-β-cyclodextrins complexation on the antioxidant activity of flavonols. Food Chem. 2010, 118, 769–773. [Google Scholar] [CrossRef]
- Baranović, G.; Šegota, S. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 473–486. [Google Scholar] [CrossRef]
- Moyano, J.R.; Arias-Blanco, M.J.; Ginés, J.M.; Giordano, F. Solid-state characterization and dissolution characteristics of gliclazide-β-cyclodextrin inclusion complexes. Int. J. Pharm. 1997, 148, 211–217. [Google Scholar] [CrossRef]
- Jakupović, L.; Bačić, I.; Jablan, J.; Marguí, E.; Marijan, M.; Inić, S.; Nižić Nodilo, L.; Hafner, A.; Zovko Končić, M. Hydroxypropyl-β-Cyclodextrin-Based Helichrysum italicum Extracts: Antioxidant and Cosmeceutical Activity and Biocompatibility. Antioxidants 2023, 12, 855. [Google Scholar] [CrossRef]
- Wang, R.; Ni, N.; Zhang, Q.X.; Duan, X.L.; He, Q.; Chi, Y.L. Adsorption and separation of flavonoid aglycones and flavonol aglycones by using Zr(IV) immobilized collagen fiber adsorbent as column packing material. Sep. Purif. Technol. 2022, 289, 120684. [Google Scholar] [CrossRef]
- Doile, M.M.; Fortunato, K.A.; Schmücker, I.C.; Schucko, S.K.; Silva, M.A.S.; Rodrigues, P.O. Physicochemical Properties and Dissolution Studies of Dexamethasone Acetate-β-Cyclodextrin Inclusion Complexes Produced by Different Methods. AAPS PharmSciTech 2008, 9, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Udrescu, L.; Sbârcea, L.; Fuliaș, A.; Ledeţi, I.; Vlase, T.; Barvinschi, P.; Kurunczi, L. Physicochemical characterization of zofenopril inclusion complex with hydroxypropyl-β-cyclodextrin. J. Serb. Chem. Soc. 2015, 80, 485–497. [Google Scholar] [CrossRef]
- Han, D.X.; Han, Z.B.; Liu, L.Y.; Wang, Y.; Xin, S.G.; Zhang, H.B.; Yu, Z. Solubility Enhancement of Myricetin by Inclusion Complexation with Heptakis-O-(2-Hydroxypropyl)-β-Cyclodextrin: A Joint Experimental and Theoretical Study. Int. J. Mol. Sci. 2020, 21, 766. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Cui, M.; Yan, C.Y.; Song, F.R.; Liu, Z.Q.; Liu, S.Y.; Zhang, H.X. Gas phase isomeric differentiation of oleanolic and ursolic acids associated with heptakis-(2,6-di-O-methyl)-β-cyclodextrin by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Mass. Spectrom. 2010, 45, 444–450. [Google Scholar] [CrossRef]
- Wang, R.H.; Ding, B.T.; Liang, G.Z. Interaction poses, intermolecular forces, dynamic preferences between flavonoids and maltosyl-β-cyclodextrin. J. Mol. Liq. 2022, 346, 117068. [Google Scholar] [CrossRef]
- Řezáč, J.; Hobza, P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2011, 8, 141–151. [Google Scholar] [CrossRef]
- Sambasevam, K.P.; Mohamad, S.; Sarih, N.M.; Ismail, N.A. Synthesis and Characterization of the Inclusion Complex of β-cyclodextrin and Azomethine. Int. J. Mol. Sci. 2013, 14, 3671–3682. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Y.; Xu, Z.Z.; Wu, M.Q.; Xia, W.; Zhang, W.Q. Chimonanthus praecox extract/cyclodextrin inclusion complexes: Selective inclusion, enhancement of antioxidant activity and thermal stability. Ind. Crops Prod. 2017, 95, 60–65. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012, 4, 17. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Rozanska, X.; Stewart, J.P.; Ungerer, P.; Leblanc, B.; Freeman, C.; Saxe, P.; Wimmer, E. High-Throughput Calculations of Molecular Properties in the MedeA Environment: Accuracy of PM7 in Predicting Vibrational Frequencies, Ideal Gas Entropies, Heat Capacities, and Gibbs Free Energies of Organic Molecules. J. Chem. Eng. Data 2014, 59, 3136–3143. [Google Scholar] [CrossRef]
- Dermawan, D.; Wathoni, N.; Muchtaridi, M. Host-Guest Interactions of α−Mangostin with (α,β,γ)−Cyclodextrins: Semi-Empirical Quantum Mechanical Methods of PM6 and PM7. J. Young Pharm. 2018, 11, 31–35. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, N.; Zou, L.; Zhang, M.; Chi, R. Molecular dynamics simulation on the dissolution process of Kaempferol cluster. J. Mol. Liq. 2020, 304, 112779. [Google Scholar] [CrossRef]
CD | Linear Regression Function | R2 | K (L/mol) |
---|---|---|---|
HP-β-CD | Y = 0.00825 c + 4.23806 × 10−6 | 0.9961 | 2311.69 |
DM-β-CD | Y = 0.00470 c + 4.03346 × 10−6 | 0.9970 | 1312.26 |
β-CD | Y = 0.00198 c + 3.37478 × 10−6 | 0.9951 | 551.32 |
γ-CD | Y = 0.00327 c + 3.48283 × 10−6 | 0.9995 | 911.69 |
Host | Guest | Ecomplex (kcal/mol) | Ehost (kcal/mol) | Eguest (kcal/mol) | ΔE (kcal/mol) |
---|---|---|---|---|---|
β-CD | Kae | −1596.02(3) | −1376.91(4) | −234.35(6) | 15.25 |
γ-CD | −1710.50(1) | −1469.10(2) | −7.04 | ||
DM-β-CD | −1701.83(8) | −1460.99(2) | −6.49 | ||
HP-β-CD | −1938.05(2) | −1694.69(8) | −8.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Han, Z.; Liu, L.; Xin, S.; Yu, Z. Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study. Int. J. Mol. Sci. 2024, 25, 12492. https://doi.org/10.3390/ijms252312492
Han D, Han Z, Liu L, Xin S, Yu Z. Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study. International Journal of Molecular Sciences. 2024; 25(23):12492. https://doi.org/10.3390/ijms252312492
Chicago/Turabian StyleHan, Dongxu, Zhongbao Han, Liyan Liu, Shigang Xin, and Zhan Yu. 2024. "Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study" International Journal of Molecular Sciences 25, no. 23: 12492. https://doi.org/10.3390/ijms252312492
APA StyleHan, D., Han, Z., Liu, L., Xin, S., & Yu, Z. (2024). Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study. International Journal of Molecular Sciences, 25(23), 12492. https://doi.org/10.3390/ijms252312492