Unveiling the Anti-Obesity Potential of Thunder God Vine: Network Pharmacology and Computational Insights into Celastrol-like Molecules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potential Targets for the Thunder God Vine and Obesity
2.2. Cluster of Analysis
2.3. Network Pharmacology Results
2.4. Batch Molecular Docking and Machine-Learning Prediction Results for the First Cluster of Molecular from the Thunder God Vine Discs with PPARG and PTGS2
2.5. Results of Molecular Dynamics Simulations
2.5.1. Molecular Dynamics Properties of the Twelve Systems
2.5.2. Analysis of the Interaction Between Protein and Inhibitors
2.6. Functional Group Analysis
2.7. Functional Association Network Analysis of the Two Hub Targets Was Conducted Using GeneMANIA
3. Materials and Methods
3.1. Clustering of Molecules
3.2. Network Pharmacology Analysis
3.2.1. Predictive Analysis of Interactions Between Potential Obesity Targets and Receptor Components of Thunder God Vine
3.2.2. Precise Construction of Protein–Protein Interaction Networks
3.2.3. Comprehensive Enrichment Analysis of GO and KEGG Pathways
3.2.4. Molecular Docking of Active Components from the First Cluster of Thunder God Vine with PPARG and PTGS2
3.3. Molecular Dynamics Simulations
3.4. GeneMANIA-Based Functional Association Network Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbafati, C.; Abbas, K.M.; Ali, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 1492. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus—An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef] [PubMed]
- Seravalle, G.; Grassi, G. Obesity and hypertension. Pharmacol. Res. 2017, 122, 1–7. [Google Scholar] [CrossRef]
- Charlton, M. Obesity, hyperlipidemia, and metabolic syndrome. Liver Transpl. 2009, 15 (Suppl. 2), S83–S89. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Xiong, C.; Zou, H. The negative effects of obesity on heart, especially the electrophysiology of the heart. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1055–1062. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; La Sala, L.; Chiumello, D.; Folli, F. Is blood glucose or obesity responsible for the bad prognosis of COVID-19 in obesity–diabetes? Diabetes Res. Clin. Pract. 2020, 167, 108342. [Google Scholar] [CrossRef]
- Piening, A.A.-O.; Ebert, E.A.-O.; Gottlieb, C.; Khojandi, N.; Kuehm, L.M.; Hoft, S.G.; Pyles, K.D.; McCommis, K.A.-O.; DiPaolo, R.J.; Ferris, S.T.; et al. Obesity-related T cell dysfunction impairs immunosurveillance and increases cancer risk. Nat. Commun. 2024, 15, 2835. [Google Scholar] [CrossRef]
- Gilbert, E.W.; Wolfe, B.M. Bariatric surgery for the management of obesity: State of the field. Plast. Reconstr. Surg. 2012, 130, 948–954. [Google Scholar] [CrossRef]
- Elmaleh-Sachs, A.; Schwartz, J.L.; Bramante, C.T.; Nicklas, J.M.; Gudzune, K.A.; Jay, M. Obesity Management in Adults: A Review. Jama 2023, 330, 2000–2015. [Google Scholar] [CrossRef] [PubMed]
- McNeely, W.; Benfield, P. Orlistat. Drugs 1998, 56, 241–249; discussion 250. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Liraglutide: A review of its use in the management of obesity. Drugs 2015, 75, 899–910. [Google Scholar] [CrossRef]
- Chao, A.M.; Tronieri, J.S.; Amaro, A.; Wadden, T.A. Semaglutide for the treatment of obesity. Trends Cardiovasc. Med. 2023, 33, 159–166. [Google Scholar] [CrossRef]
- Drucker, D.A.-O. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. Diabetes Care 2024, 47, 1873–1888. [Google Scholar] [CrossRef]
- Fujioka, K. Current and emerging medications for overweight or obesity in people with comorbidities. Diabetes Obes. Metab. 2015, 17, 1021–1032. [Google Scholar] [CrossRef]
- Smits, M.M.; Van Raalte, D.H. Safety of Semaglutide. Front. Endocrinol. 2021, 12, 645563. [Google Scholar] [CrossRef]
- Law, S.K.; Simmons, M.P.; Techen, N.; Khan, I.A.; He, M.F.; Shaw, P.C.; But, P.P. Molecular analyses of the Chinese herb Leigongteng (Tripterygium wilfordii Hook.f.). Phytochemistry 2011, 72, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jun, Y.; Shu, J.C.; Liu, J.Q. Advance on alkaloids from Tripterygium wilfordii and their bioactivities. Nat. Prod. Res. Dev. 2019, 31, 2170–2181. (In Chinese) [Google Scholar]
- Huang, J.; Cai, H.; Ye, X.; Zhang, G.; Ye, L.; Yang, C.; Wang, J.; Jin, M. Demethylzeylasteral (T-96) Alleviates Allergic Asthma via Inhibiting MAPK/ERK and NF-κB Pathway. Int. Arch. Allergy Immunol. 2024, 185, 631–640. [Google Scholar] [CrossRef]
- Pasdaran, A.; Hassani, B.A.-O.; Tavakoli, A.; Kozuharova, E.A.-O.; Hamedi, A.A.-O. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life 2023, 13, 1589. [Google Scholar] [CrossRef]
- Chen, S.R.; Dai, Y.; Zhao, J.; Lin, L.; Wang, Y.; Wang, Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium wilfordii Hook F. Front. Pharmacol. 2018, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lee, J.; Salazar Hernandez, M.A.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell 2015, 161, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Luo, Q.; Alitongbieke, G.; Chong, S.; Xu, C.; Xie, L.; Chen, X.; Zhang, D.; Zhou, Y.; Wang, Z.; et al. Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Mol. Cell 2017, 66, 141–153.e146. [Google Scholar] [CrossRef] [PubMed]
- Backman, T.W.; Cao, Y.; Girke, T. ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011, 39, W486–W491. [Google Scholar] [CrossRef] [PubMed]
- Talevi, A. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. Methods Mol. Biol. 2024, 2714, 1–20. [Google Scholar]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Huang, L.; Xie, D.; Yu, Y.; Liu, H.; Shi, Y.; Shi, T.; Wen, C. TCMID 2.0: A comprehensive resource for TCM. Nucleic Acids Res. 2018, 46, D1117–D1120. [Google Scholar] [CrossRef]
- UniProt Consortium, T. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2018, 46, 2699. [Google Scholar] [CrossRef]
- Amberger, J.S.; Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes. Curr. Protoc. Bioinform. 2017, 58, 1.2.1–1.2.12. [Google Scholar] [CrossRef]
- Kim, J.; So, S.; Lee, H.J.; Park, J.C.; Kim, J.J.; Lee, H. DigSee: Disease gene search engine with evidence sentences (version cancer). Nucleic Acids Res. 2013, 41, W510–W517. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational methods in drug discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef]
- Taguchi, Y.H. Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated analysis of gene expression between diseases and DrugMatrix datasets. Sci. Rep. 2017, 7, 13733. [Google Scholar] [CrossRef]
- Wang, K.; Cui, H.; Liu, K.; He, Q.; Fu, X.; Li, W.; Han, W. Exploring the anti-gout potential of sunflower receptacles alkaloids: A computational and pharmacological analysis. Comput. Biol. Med. 2024, 172, 108252. [Google Scholar] [CrossRef]
- Oliveros, J.C. VENNY. An Interactive Tool for Comparing Lists with Venn Diagrams. 2007. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 5 October 2024).
- Zhao, Y.; Hansen, N.L.; Duan, Y.T.; Prasad, M.; Motawia, M.S.; Møller, B.L.; Pateraki, I.; Staerk, D.; Bak, S.; Miettinen, K.; et al. Biosynthesis and biotechnological production of the anti-obesity agent celastrol. Nat. Chem. 2023, 15, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Athanasios, A.; Charalampos, V.; Vasileios, T.; Ashraf, G.M. Protein-Protein Interaction (PPI) Network: Recent Advances in Drug Discovery. Curr. Drug Metab. 2017, 18, 5–10. [Google Scholar] [CrossRef]
- Tryggestad, J.B.; Teague, A.M.; Sparling, D.P.; Jiang, S.; Chernausek, S.D. Macrophage-Derived microRNA-155 Increases in Obesity and Influences Adipocyte Metabolism by Targeting Peroxisome Proliferator-Activated Receptor Gamma. Obesity 2019, 27, 1856–1864. [Google Scholar] [CrossRef]
- Pan, Y.; Cao, S.; Tang, J.; Arroyo, J.P.; Terker, A.S.; Wang, Y.; Niu, A.; Fan, X.; Wang, S.; Zhang, Y.; et al. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice. J. Clin. Investig. 2022, 132, e152391. [Google Scholar] [CrossRef] [PubMed]
- Voicu, A.; Duteanu, N.; Voicu, M.; Vlad, D.; Dumitrascu, V. The rcdk and cluster R packages applied to drug candidate selection. J. Cheminform 2020, 12, 3. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Nemetchek, M.D.; Hughes, T.S.; McClelland, L.J. Cocrystal of PPARg LBD with NFKBIB/IKBB Peptide Containing N-Anchor Motif LxxLL and Agonist GW1929. Available online: https://www.rcsb.org/structure/9CK0 (accessed on 17 July 2024).
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Vecchio, A.J.; Simmons, D.M.; Malkowski, M.G. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J. Biol. Chem. 2010, 285, 22152–22163. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Cao, B.Z.; Cao, Q.T.; Hun, M.; Cao, L.; Zhao, M.Y. An analysis of reported cases of hemophagocytic lymphohistiocytosis (HLH) after COVID-19 vaccination. Hum. Vaccin. Immunother. 2023, 19, 2263229. [Google Scholar] [CrossRef]
- Filipe, H.A.L.; Loura, L.M.S. Molecular Dynamics Simulations: Advances and Applications. Molecules 2022, 27, 2105. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Mermelstein, D.J.; Lin, C.; Nelson, G.; Kretsch, R.; McCammon, J.A.; Walker, R.C. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. J. Comput. Chem. 2018, 39, 1354–1358. [Google Scholar] [CrossRef] [PubMed]
- Ando, T. Shear viscosity of OPC and OPC3 water models. J. Chem. Phys. 2023, 159, 101102. [Google Scholar] [CrossRef] [PubMed]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Lin, Y.; Pan, D.; Li, J.; Zhang, L.; Shao, X. Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. J. Chem. Phys. 2017, 146, 124108. [Google Scholar] [CrossRef]
- Song, R.; Liu, K.; He, Q.; He, F.; Han, W. Exploring Bitter and Sweet: The Application of Large Language Models in Molecular Taste Prediction. J. Chem. Inf. Model. 2024, 64, 4102–4111. [Google Scholar] [CrossRef]
- Zazeri, G.A.-O.; Povinelli, A.A.-O.; Le Duff, C.A.-O.; Tang, B.; Cornelio, M.A.-O.; Jones, A.A.-O. Synthesis and Spectroscopic Analysis of Piperine- and Piperlongumine-Inspired Natural Product Scaffolds and Their Molecular Docking with IL-1β and NF-κB Proteins. Molecules 2020, 25, 2841. [Google Scholar] [CrossRef] [PubMed]
- Zazeri, G.A.-O.; Povinelli, A.P.R.; Pavan, N.M.; Jones, A.A.-O.; Ximenes, V.F. Solvent-Induced Lag Phase during the Formation of Lysozyme Amyloid Fibrils Triggered by Sodium Dodecyl Sulfate: Biophysical Experimental and In Silico Study of Solvent Effects. Molecules 2023, 28, 6891. [Google Scholar] [CrossRef]
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res. 2018, 46, W60–W64. [Google Scholar] [CrossRef]
Molecule | PPARG | PTGS2 |
---|---|---|
3-Epikatonic Acid | −2.3 | −8.7 |
Hederagenin | −0.6 | −8.8 |
Triptonide | −6.5 | −8.5 |
Triptotriterpenic Acid B | 4.4 | −8.5 |
Triptotriterpenic Acid C | −3.1 | −8.6 |
Ursolic Acid | −2.8 | −8.5 |
System | ΔEvdw | ΔEele | ΔGsolv | ΔGgas | ΔGtotal |
---|---|---|---|---|---|
3-Epikatonic Acid | −52.94 ± 3.81 | −12.39 ± 7.76 | 32.12 ± 6.57 | −65.34 ± 7.98 | −33.22 ± 4.32 |
Hederagenin | −54.88 ± 3.73 | −32.45 ± 18.59 | 47.21 ± 12.81 | −87.33 ± 18.17 | −40.12 ± 7.75 |
Triptonide | −45.31 ± 2.38 | −10.15 ± 3.80 | 35.10 ± 4.49 | −55.47 ± 5.23 | −20.36 ± 3.49 |
Triptotriterpenic Acid B | −60.37 ± 3.09 | −11.69 ± 3.98 | 36.82 ± 4.77 | −72.06 ± 4.64 | −35.24 ± 4.03 |
Triptotriterpenic Acid C | −58.80 ± 3.05 | −16.75 ± 4.77 | 38.59 ± 4.12 | −75.55 ± 5.18 | −36.96 ± 5.30 |
Ursolic Acid | −60.23 ± 2.79 | −7.18 ± 1.75 | 32.38 ± 2.18 | −67.41 ± 3.09 | −35.03 ± 3.33 |
System | ΔEvdw | ΔEele | ΔGsolv | ΔGgas | ΔGtotal |
---|---|---|---|---|---|
3-Epikatonic Acid | −46.81 ± 3.47 | −9.16 ± 6.00 | 30.95 ± 5.37 | −55.97 ± 6.81 | −25.03 ± 4.00 |
Hederagenin | −43.96 ± 3.74 | 2.78 ± 11.80 | 13.51 ± 10.54 | −41.18 ± 11.19 | −27.67 ± 4.45 |
Triptonide | −25.70 ± 4.91 | −5.77 ± 5.35 | 17.40 ± 7.44 | −31.46 ± 8.27 | −14.06 ± 2.46 |
Triptotriterpenic Acid B | −46.53 ± 2.86 | −7.10 ± 5.04 | 25.90 ± 5.52 | −53.62 ± 6.03 | −27.72 ± 3.04 |
Triptotriterpenic Acid C | −46.62 ± 3.49 | −17.23 ± 4.84 | 37.68 ± 3.69 | −63.86 ± 5.72 | −26.18 ± 5.57 |
Ursolic Acid | −48.58 ± 4.19 | −4.13 ± 6.36 | 25.52 ± 8.20 | −52.71 ± 9.37 | −27.19 ± 3.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Yang, H.; Zheng, J.; Wang, Y.; Jia, B.; Li, W. Unveiling the Anti-Obesity Potential of Thunder God Vine: Network Pharmacology and Computational Insights into Celastrol-like Molecules. Int. J. Mol. Sci. 2024, 25, 12501. https://doi.org/10.3390/ijms252312501
Zheng S, Yang H, Zheng J, Wang Y, Jia B, Li W. Unveiling the Anti-Obesity Potential of Thunder God Vine: Network Pharmacology and Computational Insights into Celastrol-like Molecules. International Journal of Molecular Sciences. 2024; 25(23):12501. https://doi.org/10.3390/ijms252312501
Chicago/Turabian StyleZheng, Siyun, Hengzheng Yang, Jingxian Zheng, Yidan Wang, Bo Jia, and Wannan Li. 2024. "Unveiling the Anti-Obesity Potential of Thunder God Vine: Network Pharmacology and Computational Insights into Celastrol-like Molecules" International Journal of Molecular Sciences 25, no. 23: 12501. https://doi.org/10.3390/ijms252312501
APA StyleZheng, S., Yang, H., Zheng, J., Wang, Y., Jia, B., & Li, W. (2024). Unveiling the Anti-Obesity Potential of Thunder God Vine: Network Pharmacology and Computational Insights into Celastrol-like Molecules. International Journal of Molecular Sciences, 25(23), 12501. https://doi.org/10.3390/ijms252312501