Immune System-Related Plasma Pathogenic Extracellular Vesicle Subpopulations Predict Osteoarthritis Progression
Abstract
:1. Introduction
2. Results
2.1. EV Characterization and Protein Cargo
2.2. Surface EV Markers Correlated in OA Plasma and Synovial Fluid (Peptides+(PL,SF))
2.3. FN1 Directly Interacts with Proteins Corresponding to 51.2% of Peptides Correlated in OA Plasma and Synovial Fluid (EV Peptides+(PL,SF))
2.4. FN1, ITGB1 (CD29), and TLN1 Genes Expressed in OA Chondrocytes and Synovial Cells
2.5. Baseline Frequencies of FGA+, FGB+, FGG+, TLN1+, and AMBP+ Plasma EV Subpopulations Predicted Progression of Knee rOA
3. Discussion
4. Materials and Methods
4.1. Study Cohorts
4.2. EV Isolation
4.3. Analyses of OA EV Proteomic Data
4.4. Gene Expression of Biomarkers of Interest in OA Joint Tissue
4.5. High-Resolution Multicolor Flow Cytometry
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousefzadeh, M.J.; Flores, R.R.; Zhu, Y.; Schmiechen, Z.C.; Brooks, R.W.; Trussoni, C.E.; Cui, Y.; Angelini, L.; Lee, K.A.; McGowan, S.J.; et al. An aged immune system drives senescence and ageing of solid organs. Nature 2021, 594, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Peng, M. Aging Immune System and Its Correlation with Liability to Severe Lung Complications. Front. Public Health 2021, 9, 735151. [Google Scholar] [CrossRef]
- Eitan, E.; Green, J.; Bodogai, M.; Mode, N.A.; Baek, R.; Jorgensen, M.M.; Freeman, D.W.; Witwer, K.W.; Zonderman, A.B.; Biragyn, A.; et al. Age-Related Changes in Plasma Extracellular Vesicle Characteristics and Internalization by Leukocytes. Sci. Rep. 2017, 7, 1342. [Google Scholar] [CrossRef]
- Zhang, X.; Baht, G.S.; Huang, R.; Chen, Y.H.; Molitoris, K.H.; Miller, S.E.; Kraus, V.B. Rejuvenation of neutrophils and their extracellular vesicles is associated with enhanced aged fracture healing. Aging Cell 2022, 21, e13651. [Google Scholar] [CrossRef]
- Record, M.; Subra, C.; Silvente-Poirot, S.; Poirot, M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol. 2011, 81, 1171–1182. [Google Scholar] [CrossRef]
- Zhang, X.; Hubal, M.J.; Kraus, V.B. Immune cell extracellular vesicles and their mitochondrial content decline with ageing. Immun. Ageing 2020, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Fruhbeis, C.; Helmig, S.; Tug, S.; Simon, P.; Kramer-Albers, E.M. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 2015, 4, 28239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, S.; Huebner, J.L.; Naz, S.I.; Alnemer, N.; Soderblom, E.J.; Aliferis, C.; Kraus, V.B. Immune system-related plasma extracellular vesicles in healthy aging. Front. Immunol. 2024, 15, 1355380. [Google Scholar] [CrossRef]
- Sanz-Ros, J.; Mas-Bargues, C.; Romero-Garcia, N.; Huete-Acevedo, J.; Dromant, M.; Borras, C. The Potential Use of Mitochondrial Extracellular Vesicles as Biomarkers or Therapeutical Tools. Int. J. Mol. Sci. 2023, 24, 7005. [Google Scholar] [CrossRef]
- Thomas, M.A.; Fahey, M.J.; Pugliese, B.R.; Irwin, R.M.; Antonyak, M.A.; Delco, M.L. Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles. Front. Bioeng. Biotechnol. 2022, 10, 870193. [Google Scholar] [CrossRef]
- She, Z.; Xie, M.; Hun, M.; Abdirahman, A.S.; Li, C.; Wu, F.; Luo, S.; Wan, W.; Wen, C.; Tian, J. Immunoregulatory Effects of Mitochondria Transferred by Extracellular Vesicles. Front. Immunol. 2020, 11, 628576. [Google Scholar] [CrossRef] [PubMed]
- Admyre, C.; Bohle, B.; Johansson, S.M.; Focke-Tejkl, M.; Valenta, R.; Scheynius, A.; Gabrielsson, S. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J. Allergy Clin. Immunol. 2007, 120, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekstrom, K.; Bossios, A.; Sjostrand, M.; Lee, J.J.; Lotvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.K.; Mittinty, M.M.; March, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Woolf, A.D.; Haile, L.M.; Hagins, H.; et al. Global, regional, and national burden of other musculoskeletal disorders, 1990–2020, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e670–e682. [Google Scholar] [CrossRef] [PubMed]
- United States Bone and Joint Initiative. The Burden of Musculoskeletal Diseases in the United States (BMUS); United States Bone and Joint Initiative: Rosemont, IL, USA, 2018. [Google Scholar]
- Leyland, K.M.; Gates, L.S.; Sanchez-Santos, M.T.; Nevitt, M.C.; Felson, D.; Jones, G.; Jordan, J.M.; Judge, A.; Prieto-Alhambra, D.; Yoshimura, N.; et al. Knee osteoarthritis and time-to all-cause mortality in six community-based cohorts: An international meta-analysis of individual participant-level data. Aging Clin. Exp. Res. 2021, 33, 529–545. [Google Scholar] [CrossRef]
- Swain, S.; Coupland, C.; Strauss, V.; Mallen, C.; Kuo, C.F.; Sarmanova, A.; Bierma-Zeinstra, S.M.A.; Englund, M.; Prieto-Alhambra, D.; Doherty, M.; et al. Clustering of comorbidities and associated outcomes in people with osteoarthritis-A UK Clinical Practice Research Datalink study. Osteoarthr. Cartil. 2022, 30, 702–713. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef]
- Zhang, X.; Huebner, J.L.; Kraus, V.B. Extracellular Vesicles as Biological Indicators and Potential Sources of Autologous Therapeutics in Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 8351. [Google Scholar] [CrossRef]
- Domenis, R.; Zanutel, R.; Caponnetto, F.; Toffoletto, B.; Cifu, A.; Pistis, C.; Di Benedetto, P.; Causero, A.; Pozzi, M.; Bassini, F.; et al. Characterization of the Proinflammatory Profile of Synovial Fluid-Derived Exosomes of Patients with Osteoarthritis. Mediat. Inflamm. 2017, 2017, 4814987. [Google Scholar] [CrossRef]
- Kato, T.; Miyaki, S.; Ishitobi, H.; Nakamura, Y.; Nakasa, T.; Lotz, M.K.; Ochi, M. Exosomes from IL-1beta stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res. Ther. 2014, 16, R163. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, C.; Migliorino, R.; Leone, A.; Budillon, A. Large extracellular vesicles: Size matters in tumor progression. Cytokine Growth Factor. Rev. 2020, 51, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, D.; Gorshkova, A.; Tyshchuk, E.; Grebenkina, P.; Zementova, M.; Kogan, I.; Totolian, A. Large Extracellular Vesicles Derived from Natural Killer Cells Affect the Functions of Monocytes. Int. J. Mol. Sci. 2024, 25, 9478. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.D.; Mekhedov, E.; Kaur, S.; Roberts, D.D.; Zimmerberg, J. Endothelial cells release microvesicles that harbour multivesicular bodies and secrete exosomes. J. Extracell. Biol. 2023, 2, e79. [Google Scholar]
- Rai, A.; Fang, H.; Claridge, B.; Simpson, R.J.; Greening, D.W. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J. Extracell. Vesicles 2021, 10, e12164. [Google Scholar] [CrossRef]
- Ahmadzada, T.; Vijayan, A.; Vafaee, F.; Azimi, A.; Reid, G.; Clarke, S.; Kao, S.; Grau, G.E.; Hosseini-Beheshti, E. Small and Large Extracellular Vesicles Derived from Pleural Mesothelioma Cell Lines Offer Biomarker Potential. Cancers 2023, 15, 2364. [Google Scholar] [CrossRef]
- Zhang, X.; Hsueh, M.F.; Huebner, J.L.; Kraus, V.B. TNF-alpha Carried by Plasma Extracellular Vesicles Predicts Knee Osteoarthritis Progression. Front. Immunol. 2021, 12, 758386. [Google Scholar] [CrossRef]
- Aibaidula, A.Z.; Fain, C.E.; Garcia, L.C.; Wier, A.; Bouchal, S.M.; Bauman, M.M.; Jung, M.Y.; Sarkaria, J.N.; Johnson, A.J.; Parney, I.F. Spectral flow cytometry identifies distinct nonneoplastic plasma extracellular vesicle phenotype in glioblastoma patients. Neuro-Oncol. Adv. 2023, 5, vdad082. [Google Scholar] [CrossRef]
- Albrecht, M.; Hummitzsch, L.; Rusch, R.; Hess, K.; Steinfath, M.; Cremer, J.; Lichte, F.; Fandrich, F.; Berndt, R.; Zitta, K. Characterization of large extracellular vesicles (L-EV) derived from human regulatory macrophages (Mreg): Novel mediators in wound healing and angiogenesis? J. Transl. Med. 2023, 21, 61. [Google Scholar] [CrossRef]
- Thery, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009, 9, 581–593. [Google Scholar] [CrossRef]
- Phinney, D.G.; Di Giuseppe, M.; Njah, J.; Sala, E.; Shiva, S.; St Croix, C.M.; Stolz, D.B.; Watkins, S.C.; Di, Y.P.; Leikauf, G.D.; et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 2015, 6, 8472. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, S.; Naz, S.I.; Jain, V.; Soderblom, E.J.; Aliferis, C.; Kraus, V.B. Comprehensive characterization of pathogenic synovial fluid extracellular vesicles from knee osteoarthritis. Clin. Immunol. 2023, 257, 109812. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrugger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Hou, X.; Li, Y.; Zhang, J.; Bai, W.; Qian, H.; Sun, Z. Extracellular vesicles: Opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J. Nanobiotechnol. 2024, 22, 487. [Google Scholar] [CrossRef] [PubMed]
- Ter-Ovanesyan, D.; Norman, M.; Lazarovits, R.; Trieu, W.; Lee, J.H.; Church, G.M.; Walt, D.R. Framework for rapid comparison of extracellular vesicle isolation methods. Elife 2021, 10, e70725. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, D.E.; Tahir, M.; Faheem, M.; Alves, W.; Correa, B.L.; Andrade, G.R.; Larsen, M.R.; Oliveira, G.P., Jr.; Pereira, R.W. Comparison of Four Purification Methods on Serum Extracellular Vesicle Recovery, Size Distribution, and Proteomics. Proteomes 2023, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Brennan, K.; Martin, K.; FitzGerald, S.P.; O’Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.; Mc Gee, M.M. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci. Rep. 2020, 10, 1039. [Google Scholar] [CrossRef]
- Pang, B.; Zhu, Y.; Ni, J.; Ruan, J.; Thompson, J.; Malouf, D.; Bucci, J.; Graham, P.; Li, Y. Quality Assessment and Comparison of Plasma-Derived Extracellular Vesicles Separated by Three Commercial Kits for Prostate Cancer Diagnosis. Int. J. Nanomed. 2020, 15, 10241–10256. [Google Scholar] [CrossRef]
- Vann, C.G.; Zhang, X.; Khodabukus, A.; Orenduff, M.C.; Chen, Y.H.; Corcoran, D.L.; Truskey, G.A.; Bursac, N.; Kraus, V.B. Differential microRNA profiles of intramuscular and secreted extracellular vesicles in human tissue-engineered muscle. Front. Physiol. 2022, 13, 937899. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Waas, M.; Snarrenberg, S.T.; Littrell, J.; Jones Lipinski, R.A.; Hansen, P.A.; Corbett, J.A.; Gundry, R.L. SurfaceGenie: A web-based application for prioritizing cell-type-specific marker candidates. Bioinformatics 2020, 36, 3447–3456. [Google Scholar] [CrossRef]
- Thul, P.J.; Akesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Bjork, L.; Breckels, L.M.; et al. A subcellular map of the human proteome. Science 2017, 356, eaal3321. [Google Scholar] [CrossRef]
- Tabula Sapiens, C.; Jones, R.C.; Karkanias, J.; Krasnow, M.A.; Pisco, A.O.; Quake, S.R.; Salzman, J.; Yosef, N.; Bulthaup, B.; Brown, P.; et al. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science 2022, 376, eabl4896. [Google Scholar] [CrossRef]
- Chanzuckerberg Initiative. (n.d.). CZ CELLxGENE Discover. Retrieved (2022). Available online: https://cellxgene.cziscience.com/ (accessed on 27 September 2022).
- Chou, C.H.; Jain, V.; Gibson, J.; Attarian, D.E.; Haraden, C.A.; Yohn, C.B.; Laberge, R.M.; Gregory, S.; Kraus, V.B. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 2020, 10, 10868. [Google Scholar] [CrossRef] [PubMed]
- Rosemblatt, M.; Vuillet-Gaugler, M.H.; Leroy, C.; Coulombel, L. Coexpression of two fibronectin receptors, VLA-4 and VLA-5, by immature human erythroblastic precursor cells. J. Clin. Investig. 1991, 87, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Hui, A.Y.; McCarty, W.J.; Masuda, K.; Firestein, G.S.; Sah, R.L. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 15–37. [Google Scholar] [CrossRef]
- de Lange-Brokaar, B.J.; Ioan-Facsinay, A.; van Osch, G.J.; Zuurmond, A.M.; Schoones, J.; Toes, R.E.; Huizinga, T.W.; Kloppenburg, M. Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review. Osteoarthr. Cartil. 2012, 20, 1484–1499. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Zhou, S.; Li, S.; Kuang, L.; Chen, H.; Luo, X.; Ouyang, J.; He, M.; Du, X.; Chen, L. Exosomes: Roles and therapeutic potential in osteoarthritis. Bone Res. 2020, 8, 25. [Google Scholar] [CrossRef]
- Lust, G.; Burton-Wurster, N.; Leipold, H. Fibronectin as a marker for osteoarthritis. J. Rheumatol. 1987, 14, 28–29. [Google Scholar]
- Ding, L.; Guo, D.; Homandberg, G.A. Fibronectin fragments mediate matrix metalloproteinase upregulation and cartilage damage through proline rich tyrosine kinase 2, c-src, NF-kappaB and protein kinase Cdelta. Osteoarthr. Cartil. 2009, 17, 1385–1392. [Google Scholar] [CrossRef]
- Sofat, N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int. J. Exp. Pathol. 2009, 90, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Homandberg, G.A.; Meyers, R.; Xie, D.L. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J. Biol. Chem. 1992, 267, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.; Duggan, K.; Buck, C.; Beckerle, M.C.; Burridge, K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature 1986, 320, 531–533. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, G.; Cai, Y.; Monkley, S.J.; Critchley, D.R.; Sheetz, M.P. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat. Cell Biol. 2008, 10, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Jiang, S.; Wang, R.; Zhang, Y.; Dong, J.; Li, Y. Mechanistic Insight Into the Roles of Integrins in Osteoarthritis. Front. Cell Dev. Biol. 2021, 9, 693484. [Google Scholar] [CrossRef]
- Zhen, G.; Guo, Q.; Li, Y.; Wu, C.; Zhu, S.; Wang, R.; Guo, X.E.; Kim, B.C.; Huang, J.; Hu, Y.; et al. Mechanical stress determines the configuration of TGFbeta activation in articular cartilage. Nat. Commun. 2021, 12, 1706. [Google Scholar] [CrossRef]
- Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic Variants in the FGB and FGG Genes Mapping in the Beta and Gamma Nodules of the Fibrinogen Molecule in Congenital Quantitative Fibrinogen Disorders Associated with a Thrombotic Phenotype. Int. J. Mol. Sci. 2020, 21, 4616. [Google Scholar] [CrossRef]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef]
- Kim, J.W.; Jeong, M.H.; Yu, H.T.; Park, Y.J.; Kim, H.S.; Chung, K.H. Fibrinogen on extracellular vesicles derived from polyhexamethylene guanidine phosphate-exposed mice induces inflammatory effects via integrin beta. Ecotoxicol. Environ. Saf. 2023, 252, 114600. [Google Scholar] [CrossRef]
- Flick, M.J.; LaJeunesse, C.M.; Talmage, K.E.; Witte, D.P.; Palumbo, J.S.; Pinkerton, M.D.; Thornton, S.; Degen, J.L. Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin alphaMbeta2 binding motif. J. Clin. Investig. 2007, 117, 3224–3235. [Google Scholar] [CrossRef]
- Marty, I.; Peclat, V.; Kirdaite, G.; Salvi, R.; So, A.; Busso, N. Amelioration of collagen-induced arthritis by thrombin inhibition. J. Clin. Investig. 2001, 107, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Kumavat, R.; Kumar, V.; Biswas, S. Differential Expression of Fibrinogen Alpha and Its Potential Involvement in Osteoarthritis Pathogenesis. Mol. Biotechnol. 2024, 1–11. [Google Scholar] [CrossRef]
- Hsueh, M.F.; Zhang, X.; Wellman, S.S.; Bolognesi, M.P.; Kraus, V.B. Synergistic Roles of Macrophages and Neutrophils in Osteoarthritis Progression. Arthritis Rheumatol. 2021, 73, 89–99. [Google Scholar] [CrossRef]
- Carnino, J.M.; Lee, H.; Jin, Y. Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: A review and comparison of different methods. Respir. Res. 2019, 20, 240. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Jordan, J.M.; Doherty, M.; Wilson, A.G.; Moskowitz, R.; Hochberg, M.; Loeser, R.; Hooper, M.; Renner, J.B.; Crane, M.M.; et al. The Genetics of Generalized Osteoarthritis (GOGO) study: Study design and evaluation of osteoarthritis phenotypes. Osteoarthr. Cartil. 2007, 15, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, L.; Jiang, T.; Zhang, D.; He, D.; Nie, H. TNFalpha promotes Th17 cell differentiation through IL-6 and IL-1beta produced by monocytes in rheumatoid arthritis. J. Immunol. Res. 2014, 2014, 385352. [Google Scholar] [CrossRef]
- Gichoya, J.W.; Banerjee, I.; Bhimireddy, A.R.; Burns, J.L.; Celi, L.A.; Chen, L.C.; Correa, R.; Dullerud, N.; Ghassemi, M.; Huang, S.C.; et al. AI recognition of patient race in medical imaging: A modelling study. Lancet Digit. Health 2022, 4, e406–e414. [Google Scholar] [CrossRef]
- Gulati, G.; Upshaw, J.; Wessler, B.S.; Brazil, R.J.; Nelson, J.; van Klaveren, D.; Lundquist, C.M.; Park, J.G.; McGinnes, H.; Steyerberg, E.W.; et al. Generalizability of Cardiovascular Disease Clinical Prediction Models: 158 Independent External Validations of 104 Unique Models. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e008487. [Google Scholar] [CrossRef]
Peptide Name | Gene Name | Protein Name | Peptide Sequence | SPC | Accession Number | Protein Position(s) | Plasma vs. SF Spearman R Value | Indicating Knee rOA Severity |
---|---|---|---|---|---|---|---|---|
ADIPOQ__2 | ADIPOQ | Adiponectin | GDIGETGVPGAEGPR | 1 | Q15848 | Q15848 (78–92) | 0.9511 | |
AMBP__25 | AMBP | Protein AMBP | VVAQGVGIPEDSIFTMADR | 1 | P02760 | P02760 (167–185) | 0.8152 | Yes (in plasma, JSN) |
ANXA1__7 | ANXA1 | Annexin A1 | GGPGSAVSPYPTFNPSSDVAALHK | 1 | P04083 | P04083 (30–53) | 0.9701 | |
APOA1__17 | APOA1 | Apolipoprotein A-I | EQLGPVTQEFWDNLEK | 1 | P02647 | P02647 (86–101) | 0.7908 | |
ATRN__3 | ATRN | Attractin | CTWLIEGQPNR | 4 | O75882 | O75882 (158–168) | 0.8627 | |
CD163__14 | CD163 | Scavenger receptor cysteine-rich type 1 protein M130 | QLGCGSALK | 4 | Q86VB7 | Q86VB7 (413–421) | 0.9858 | |
DSC3 | DSC3 | Desmocollin-3 | IPIEDKDLINTANWR | 3 | Q14574 | Q14574 (376–390) | 0.9178 | |
FGA__25 | FGA | Fibrinogen alpha chain | GDFSSANNR | 1 | P02671 | P02671 (115–123) | 0.9889 | |
FGA__3ox | FGA | Fibrinogen alpha chain | AQLVDMKR | 1 | P02671 | P02671 (161–168) | 0.8382 | |
FGA__55ox | FGA | Fibrinogen alpha chain | MKGLIDEVNQDFTNR | 1 | P02671 | P02671 (70–84) | 0.5799 | Yes (in SF, OST) |
FGA__56ox | FGA | Fibrinogen alpha chain | MKGLIDEVNQDFTNRINK | 1 | P02671 | P02671 (70–87) | 0.8833 | |
FGA__6 | FGA | Fibrinogen alpha chain | DNTYNRVSEDLR | 1 | P02671 | P02671 (124–135) | 0.5649 | |
FGA__86 | FGA | Fibrinogen alpha chain | SYKMADEAGSEADHEGTHSTKR | 1 | P02671 | P02671 (600–621) | 0.9191 | |
FGB__23 | FGB | Fibrinogen beta chain | HQLYIDETVNSNIPTNLR | 1 | P02675 | P02675 (179–196) | 0.6397 | Yes (in SF, OST) |
FGB__35ox | FGB | Fibrinogen beta chain | MGPTELLIEMEDWKGDKVK | 1 | P02675 | P02675 (335–353) | 0.5589 | Yes (in SF, OST) |
FGB__35ox.1 | FGB | Fibrinogen beta chain | MGPTELLIEMEDWKGDKVK | 1 | P02675 | P02675 (335–353) | 0.8016 | |
FGB__46 | FGB | Fibrinogen beta chain | QGFGNVATNTDGKNYCGLPGEYWLGNDKISQLTR | 1 | P02675 | P02675 (301–334) | 0.6003 | Yes (in SF, OST) |
FGB__55ox | FGB | Fibrinogen beta chain | TMTIHNGMFFSTYDRDNDGWLTSDPRK | 1 | P02675 | P02675 (396–422) | 0.6253 | |
FGB__67 | FGB | Fibrinogen beta chain | YQISVNKYR | 1 | P02675 | P02675 (368–376) | 0.5434 | |
FGB__68ox | FGB | Fibrinogen beta chain | YYWGGQYTWDMAK | 1 | P02675 | P02675 (446–458) | 0.5589 | |
FGG__47 | FGG | Fibrinogen gamma chain | RLDGSVDFKK | 1 | P02679 | P02679 (223–232) | 0.5073 | Yes (in SF, OST) |
FGG__48 | FGG | Fibrinogen gamma chain | TRWYSMK | 1 | P02679 | P02679 (400–406) | 0.6007 | |
IGHD__1 | IGHD | Immunoglobulin heavy constant delta | STTFWAWSVLR | 1 | P01880 | P01880 (331–341) | 0.9619 | |
IGHM__9 | IGHM | Immunoglobulin heavy constant mu | ESDWLGQSMFTCR | 1 | P01871 | P01871 (186–198) | 0.9940 | |
IGHM__9ox | IGHM | Immunoglobulin heavy constant mu | ESDWLGQSMFTCR | 1 | P01871 | P01871 (186–198) | 0.9938 | |
MBL2__1 | MBL2 | Mannose-binding protein C | ALQTEMAR | 1 | P11226 | P11226 (114–121) | 0.9765 | |
MYH9__6 | MYH9 | Myosin-9 | QTLENERGELANEVK | 1 | P35579 | P35579 (1220–1234) | 0.7950 | |
SPTB__12 | SPTB | Spectrin beta chain, erythrocytic | QLMDEKPQFTALVSQK | 1 | P11277 | P11277 (1338–1353) | 0.9935 | |
TLN1__6 | TLN1 | Talin-1 | EVANSTANLVK | 1 | Q9Y490 | Q9Y4G6 (1533–1543); Q9Y490 (1531–1541) | 0.6008 | Yes (in plasma, OST) |
(A) Individual Predictors | ||||
Variables | % of Total EVs | % of Gated LEVs | % of Gated MEVs | % of Gated SEVs |
FGA+ Subpopulation | 0.671 (0.435, 0.868) | 0.671 (0.465, 0.852) | 0.620 (0.416, 0.814) | 0.556 (0.349, 0.74) |
FGB+ Subpopulation | 0.644 (0.442, 0.833) | 0.655 (0.479, 0.845) | 0.590 (0.435, 0.868) | 0.563 (0.403, 0.731) |
FGG+ Subpopulation | 0.627 (0.361, 0.835) | 0.711 (0.457, 0.889) | 0.565 (0.377, 0.745) | 0.639 (0.46, 0.845) |
TLN1+ Subpopulation | 0.653 (0.453, 0.840) | 0.678 (0.479, 0.857) | 0.606 (0.421, 0.805) | 0.604 (0.436, 0.794) |
AMBP+ Subpopulation | 0.630 (0.347, 0.841) | 0.655 (0.460, 0.847) | 0.463 (0.220, 0.585) | 0.697 (0.462, 0.857) |
(B) Combination of Individual Predictors with Same Surface Markers | ||||
Variables | % of Gated LEVs % of Gated MEVs | % of Gated LEVs % of Gated MEVs % of Gated SEVs | ||
FGA+ Subpopulations | 0.694 (0.468, 0.852) | 0.690 (0.444, 0.818) | ||
FGB+ Subpopulations | 0.731 (0.523, 0.899) | 0.731 (0.485, 0.889) | ||
FGG+ Subpopulations | 0.685 (0.431, 0.824) | 0.671 (0.398, 0.768) | ||
TLN1+ Subpopulations | 0.704 (0.423, 0.851) | 0.704 (0.427, 0.820) | ||
AMBP+ Subpopulations | 0.711 (0.458, 0.876) | 0.808 (0.603, 0.929) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ma, S.; Naz, S.I.; Soderblom, E.J.; Jain, V.; Aliferis, C.; Kraus, V.B. Immune System-Related Plasma Pathogenic Extracellular Vesicle Subpopulations Predict Osteoarthritis Progression. Int. J. Mol. Sci. 2024, 25, 12504. https://doi.org/10.3390/ijms252312504
Zhang X, Ma S, Naz SI, Soderblom EJ, Jain V, Aliferis C, Kraus VB. Immune System-Related Plasma Pathogenic Extracellular Vesicle Subpopulations Predict Osteoarthritis Progression. International Journal of Molecular Sciences. 2024; 25(23):12504. https://doi.org/10.3390/ijms252312504
Chicago/Turabian StyleZhang, Xin, Sisi Ma, Syeda Iffat Naz, Erik J. Soderblom, Vaibhav Jain, Constantin Aliferis, and Virginia Byers Kraus. 2024. "Immune System-Related Plasma Pathogenic Extracellular Vesicle Subpopulations Predict Osteoarthritis Progression" International Journal of Molecular Sciences 25, no. 23: 12504. https://doi.org/10.3390/ijms252312504
APA StyleZhang, X., Ma, S., Naz, S. I., Soderblom, E. J., Jain, V., Aliferis, C., & Kraus, V. B. (2024). Immune System-Related Plasma Pathogenic Extracellular Vesicle Subpopulations Predict Osteoarthritis Progression. International Journal of Molecular Sciences, 25(23), 12504. https://doi.org/10.3390/ijms252312504