Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters
Abstract
:1. Introduction
2. Results
2.1. Contractile Activity of the Diaphragm in Control
2.2. Effect of Nipecotic Acid on Contractile Activity of the Diaphragm
2.3. Effect of β-Alanine on Contractile Activity of the Diaphragm
2.4. Elimination of the Effect of β-Alanine on Nerve-Stimulated Muscle Contractions by a GABAB Receptor Blocker
2.5. Immunolocalization of GABA Transporters in Neuromuscular Preparation of Mouse Diaphragm
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obata, K. Synaptic Inhibition and γ-Aminobutyric Acid in the Mammalian Central Nervous System. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, D. GABA Receptors in Brain Development, Function, and Injury. Metab. Brain Dis. 2015, 30, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, S. GABAB Receptors and Cognitive Processing in Health and Disease. Curr. Top. Behav. Neurosci. 2022, 52, 291–329. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.; Kwak, H.; Cheong, E.; Lee, C.J. GABA Tone Regulation and Its Cognitive Functions in the Brain. Nat. Rev. Neurosci. 2023, 24, 523–539. [Google Scholar] [CrossRef]
- Topchiy, I.; Mohbat, J.; Folorunso, O.O.; Wang, Z.Z.; Lazcano-Etchebarne, C.; Engin, E. GABA System as the Cause and Effect in Early Development. Neurosci. Biobehav. Rev. 2024, 161, 105651. [Google Scholar] [CrossRef]
- Olsen, R.W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of Gamma-Aminobutyric Acid(A) Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60, 243–260. [Google Scholar] [CrossRef]
- Ghit, A.; Assal, D.; Al-Shami, A.S.; Hussein, D.E.E. GABAA Receptors: Structure, Function, Pharmacology, and Related Disorders. J. Genet. Eng. Biotechnol. 2021, 19, 123. [Google Scholar] [CrossRef]
- Bowery, N.G.; Bettler, B.; Froestl, W.; Gallagher, J.P.; Marshall, F.; Raiteri, M.; Bonner, T.I.; Enna, S.J. International Union of Pharmacology. XXXIII. Mammalian Gamma-Aminobutyric Acid(B) Receptors: Structure and Function. Pharmacol. Rev. 2002, 54, 247–264. [Google Scholar] [CrossRef]
- Fritzius, T.; Stawarski, M.; Isogai, S.; Bettler, B. Structural Basis of GABAB Receptor Regulation and Signaling. Curr. Top. Behav. Neurosci. 2022, 52, 19–37. [Google Scholar] [CrossRef]
- Scimemi, A. Structure, Function, and Plasticity of GABA Transporters. Front. Cell Neurosci. 2014, 8, 161. [Google Scholar] [CrossRef]
- Ryan, R.M.; Ingram, S.L.; Scimemi, A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front. Cell Neurosci. 2021, 15, 670346. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Danbolt, N.C. GABA and Glutamate Transporters in Brain. Front. Endocrinol. 2013, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABA Receptors in the Gastrointestinal Tract: From Motility to Inflammation. Pharmacol. Res. 2015, 93, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Malomouzh, A.; Ilyin, V.; Nikolsky, E. Components of the GABAergic Signaling in the Peripheral Cholinergic Synapses of Vertebrates: A Review. Amino Acids 2019, 51, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Malomuzh, A.I.; Nurullin, L.F.; Nikolsky, E.E. Immunohistochemical Evidence of the Presence of Metabotropic Receptors for γ-Aminobutyric Acid at the Rat Neuromuscular Junctions. Dokl. Biochem. Biophys. 2015, 463, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Nurullin, L.F.; Nikolsky, E.E.; Malomouzh, A.I. Elements of Molecular Machinery of GABAergic Signaling in the Vertebrate Cholinergic Neuromuscular Junction. Acta Histochem. 2018, 120, 298–301. [Google Scholar] [CrossRef]
- Malomouzh, A.I.; Petrov, K.A.; Nurullin, L.F.; Nikolsky, E.E. Metabotropic GABAB Receptors Mediate GABA Inhibition of Acetylcholine Release in the Rat Neuromuscular Junction. J. Neurochem. 2015, 135, 1149–1160. [Google Scholar] [CrossRef]
- Lenina, O.; Petrov, K.; Kovyazina, I.; Malomouzh, A. Enhancement of Mouse Diaphragm Contractility in the Presence of Antagonists of GABAA and GABAB Receptors. Exp. Physiol. 2019, 104, 1004–1010. [Google Scholar] [CrossRef]
- Fedorov, N.S.; Malomouzh, A.I.; Petrov, A.M. Effects of Membrane Cholesterol-Targeting Chemicals on Skeletal Muscle Contractions Evoked by Direct and Indirect Stimulation. J. Muscle Res. Cell Motil. 2024, 45, 221–231. [Google Scholar] [CrossRef]
- Gafurova, C.R.; Tsentsevitsky, A.N.; Fedorov, N.S.; Khaziev, A.N.; Malomouzh, A.I.; Petrov, A.M. Β2-Adrenergic Regulation of the Neuromuscular Transmission and Its Lipid-Dependent Switch. Mol. Neurobiol. 2024, 61, 6805–6821. [Google Scholar] [CrossRef]
- Schousboe, A.; Thorbek, P.; Hertz, L.; Krogsgaard-Larsen, P. Effects of GABA Analogues of Restricted Conformation on GABA Transport in Astrocytes and Brain Cortex Slices and on GABA Receptor Binding. J. Neurochem. 1979, 33, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Schousboe, A.; Sarup, A.; Larsson, O.M.; White, H.S. GABA Transporters as Drug Targets for Modulation of GABAergic Activity. Biochem. Pharmacol. 2004, 68, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Kumar, P.; Bhatia, R.; Mehta, V.; Kumar, B.; Akhtar, M.J. Nipecotic Acid as Potential Lead Molecule for the Development of GABA Uptake Inhibitors; Structural Insights and Design Strategies. Eur. J. Med. Chem. 2022, 234, 114269. [Google Scholar] [CrossRef] [PubMed]
- Abbot, E.L.; Grenade, D.S.; Kennedy, D.J.; Gatfield, K.M.; Thwaites, D.T. Vigabatrin Transport across the Human Intestinal Epithelial (Caco-2) Brush-Border Membrane Is via the H+ -Coupled Amino-Acid Transporter hPAT1. Br. J. Pharmacol. 2006, 147, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Moldavan, M.; Cravetchi, O.; Allen, C.N. GABA Transporters Regulate Tonic and Synaptic GABAA Receptor-Mediated Currents in the Suprachiasmatic Nucleus Neurons. J. Neurophysiol. 2017, 118, 3092–3106. [Google Scholar] [CrossRef]
- Borden, L.A. GABA Transporter Heterogeneity: Pharmacology and Cellular Localization. Neurochem. Int. 1996, 29, 335–356. [Google Scholar] [CrossRef]
- Rossi, D.J.; Hamann, M.; Attwell, D. Multiple Modes of GABAergic Inhibition of Rat Cerebellar Granule Cells. J. Physiol. 2003, 548, 97–110. [Google Scholar] [CrossRef]
- Suñol, C.; Babot, Z.; Cristòfol, R.; Sonnewald, U.; Waagepetersen, H.S.; Schousboe, A. A Possible Role of the Non-GAT1 GABA Transporters in Transfer of GABA from GABAergic to Glutamatergic Neurons in Mouse Cerebellar Neuronal Cultures. Neurochem. Res. 2010, 35, 1384–1390. [Google Scholar] [CrossRef]
- Hudgson, P.; Weightman, D. Baclofen in the Treatment of Spasticity. Br. Med. J. 1971, 4, 15–17. [Google Scholar] [CrossRef]
- Wilkinson, M.; Grovestine, D.; Hamilton, J.T. Flunitrazepam binding sites in rat diaphragm. Receptors for direct neuromuscular effects of benzodiazepines? Can. J. Physiol. Pharmacol. 1982, 60, 1003–1005. [Google Scholar] [CrossRef]
- Chiou, L.C.; Chang, C.C. Pharmacological relevance of peripheral type benzodiazepine receptors on motor nerve and skeletal muscle. Br. J. Pharmacol. 1994, 112, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Kaplita, P.V.; Waters, D.H.; Triggle, D.J. Gamma-Aminobutyric Acid Action in Guinea-Pig Ileal Myenteric Plexus. Eur. J. Pharmacol. 1982, 79, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Minocha, A.; Galligan, J.J. Excitatory and Inhibitory Responses Mediated by GABAA and GABAB Receptors in Guinea Pig Distal Colon. Eur. J. Pharmacol. 1993, 230, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Parkman, H.P.; Stapelfeldt, W.H.; Williams, C.L.; Lennon, V.A.; Szurszewski, J.H. Enteric GABA-Containing Nerves Projecting to the Guinea-Pig Inferior Mesenteric Ganglion Modulate Acetylcholine Release. J. Physiol. 1993, 471, 191–207. [Google Scholar] [CrossRef]
- Sanes, J.R.; Lichtman, J.W. Induction, Assembly, Maturation and Maintenance of a Postsynaptic Apparatus. Nat. Rev. Neurosci. 2001, 2, 791–805. [Google Scholar] [CrossRef]
- Petrov, K.A.; Proskurina, S.E.; Krejci, E. Cholinesterases in Tripartite Neuromuscular Synapse. Front. Mol. Neurosci. 2021, 14, 811220. [Google Scholar] [CrossRef]
- Sousa-Soares, C.; Noronha-Matos, J.B.; Correia-de-Sá, P. Purinergic Tuning of the Tripartite Neuromuscular Synapse. Mol. Neurobiol. 2023, 60, 4084–4104. [Google Scholar] [CrossRef]
- Hatazawa, Y.; Senoo, N.; Tadaishi, M.; Ogawa, Y.; Ezaki, O.; Kamei, Y.; Miura, S. Metabolomic Analysis of the Skeletal Muscle of Mice Overexpressing PGC-1α. PLoS ONE 2015, 10, e0129084. [Google Scholar] [CrossRef]
- Roberts, L.D.; Ashmore, T.; McNally, B.D.; Murfitt, S.A.; Fernandez, B.O.; Feelisch, M.; Lindsay, R.; Siervo, M.; Williams, E.A.; Murray, A.J.; et al. Inorganic Nitrate Mimics Exercise-Stimulated Muscular Fiber-Type Switching and Myokine and γ-Aminobutyric Acid Release. Diabetes 2017, 66, 674–688. [Google Scholar] [CrossRef]
- Sibgatullina, G.V.; Malomouzh, A.I. GABA in Developing Rat Skeletal Muscle and Motor Neurons. Protoplasma 2020, 257, 1009–1015. [Google Scholar] [CrossRef]
- Sibgatullina, G.; Al Ebrahim, R.; Gilizhdinova, K.; Tokmakova, A.; Malomouzh, A. Differentiation of Myoblasts in Culture: Focus on Serum and Gamma-Aminobutyric Acid. Cells Tissues Organs 2024, 213, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Ben Achour, S.; Pascual, O. Glia: The Many Ways to Modulate Synaptic Plasticity. Neurochem. Int. 2010, 57, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.K.; Petersen, A.V.; Perrier, J.-F. How Do Glial Cells Contribute to Motor Control? Curr. Pharm. Des. 2013, 19, 4385–4399. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Koirala, S.; Ko, C.-P. Synapse-Glia Interactions at the Vertebrate Neuromuscular Junction. Neuroscientist 2005, 11, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Gould, T.W.; Ko, C.-P.; Willison, H.; Robitaille, R. Perisynaptic Schwann Cells: Guardians of Neuromuscular Junction Integrity and Function in Health and Disease. Cold Spring Harb. Perspect. Biol. 2024, a041362. [Google Scholar] [CrossRef]
- Yoon, B.-E.; Lee, C.J. GABA as a Rising Gliotransmitter. Front. Neural Circuits 2014, 8, 141. [Google Scholar] [CrossRef]
- Christensen, R.K.; Delgado-Lezama, R.; Russo, R.E.; Lind, B.L.; Alcocer, E.L.; Rath, M.F.; Fabbiani, G.; Schmitt, N.; Lauritzen, M.; Petersen, A.V.; et al. Spinal Dorsal Horn Astrocytes Release GABA in Response to Synaptic Activation. J. Physiol. 2018, 596, 4983–4994. [Google Scholar] [CrossRef]
- Saunders, A.; Granger, A.J.; Sabatini, B.L. Corelease of Acetylcholine and GABA from Cholinergic Forebrain Neurons. eLife 2015, 4, e06412. [Google Scholar] [CrossRef]
- Granger, A.J.; Mulder, N.; Saunders, A.; Sabatini, B.L. Cotransmission of Acetylcholine and GABA. Neuropharmacology 2016, 100, 40–46. [Google Scholar] [CrossRef]
- Granger, A.J.; Wang, W.; Robertson, K.; El-Rifai, M.; Zanello, A.F.; Bistrong, K.; Saunders, A.; Chow, B.W.; Nuñez, V.; Turrero García, M.; et al. Cortical ChAT+ Neurons Co-Transmit Acetylcholine and GABA in a Target- and Brain-Region-Specific Manner. eLife 2020, 9, e57749. [Google Scholar] [CrossRef]
- Nair, A.; Teo, Y.Y.; Augustine, G.J.; Graf, M. A Functional Logic for Neurotransmitter Corelease in the Cholinergic Forebrain Pathway. Proc. Natl. Acad. Sci. USA 2023, 120, e2218830120. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, T.; Castagna, V.C.; Kitcher, S.R.; Torres Cadenas, L.; Di Guilmi, M.N.; Gomez Casati, M.E.; Buonfiglio, P.I.; Dalamón, V.; Katz, E.; Elgoyhen, A.B.; et al. Co-release of GABA and ACh from medial olivocochlear neurons fine tunes cochlear efferent inhibition. bioRxiv 2024, 16:2024.08.12.607644. [Google Scholar] [CrossRef]
- Łątka, K.; Kickinger, S.; Rzepka, Z.; Zaręba, P.; Latacz, G.; Siwek, A.; Wolak, M.; Stary, D.; Marcinkowska, M.; Wellendorph, P.; et al. Rational Search for Betaine/GABA Transporter 1 Inhibitors—In Vitro Evaluation of Selected Hit Compound. ACS Chem. Neurosci. 2024, 15, 4046–4054. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Kasture, A.S.; Fischer, F.P.; Sitte, H.H.; Hummel, T.; Sucic, S. A Transporter’s Doom or Destiny: SLC6A1 in Health and Disease, Novel Molecular Targets and Emerging Therapeutic Prospects. Front. Mol. Neurosci. 2024, 17, 1466694. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, J.S.; Mikkelsen, A.N.L.; Wellendorph, P. Ways of Modulating GABA Transporters to Treat Neurological Disease. Expert. Opin. Ther. Targets 2024, 28, 529–543. [Google Scholar] [CrossRef]
- Stary, D.; Bajda, M. Structural Studies of the Taurine Transporter: A Potential Biological Target from the GABA Transporter Subfamily in Cancer Therapy. Int. J. Mol. Sci. 2024, 25, 7339. [Google Scholar] [CrossRef]
- Chevessier, F.; Peter, C.; Mersdorf, U.; Girard, E.; Krejci, E.; McArdle, J.J.; Witzemann, V. A New Mouse Model for the Slow-Channel Congenital Myasthenic Syndrome Induced by the AChR εL221F Mutation. Neurobiol. Dis. 2012, 45, 851–861. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorov, N.S.; Sibgatullina, G.V.; Malomouzh, A.I. Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters. Int. J. Mol. Sci. 2024, 25, 12510. https://doi.org/10.3390/ijms252312510
Fedorov NS, Sibgatullina GV, Malomouzh AI. Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters. International Journal of Molecular Sciences. 2024; 25(23):12510. https://doi.org/10.3390/ijms252312510
Chicago/Turabian StyleFedorov, Nikita S., Guzel V. Sibgatullina, and Artem I. Malomouzh. 2024. "Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters" International Journal of Molecular Sciences 25, no. 23: 12510. https://doi.org/10.3390/ijms252312510
APA StyleFedorov, N. S., Sibgatullina, G. V., & Malomouzh, A. I. (2024). Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters. International Journal of Molecular Sciences, 25(23), 12510. https://doi.org/10.3390/ijms252312510