Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals
Abstract
:1. Introduction
2. Results
2.1. Biomass Characteristics
2.2. Content of Applied Metals in Plant Organs
2.3. The Effect of Metal Treatments on Physiological Parameters
2.4. The Effect of Metal Treatments on Biochemical Parameters
2.4.1. Rhizosphere
2.4.2. Roots
2.4.3. Shoots
2.5. PCA Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Pot Experiment
4.3. Gases and Reagents
4.4. Determination of Elements
4.4.1. Sample Preparation
4.4.2. Instrumentation
4.5. Physiological Parameters
4.6. Determination of Phenolic Compounds, Low-Molecular-Weight Organic Acids (LMWOAs), and Soluble Sugars
4.6.1. Extraction from Rhizosphere, Roots, and Shoots
4.6.2. Chromatographic Analyses
4.6.3. Total Phenolic Assay
4.6.4. Sugars Determination
4.7. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, M. Heavy Metal Stress in Plants: A Review. Int. J. Adv. Res. 2014, 2, 1043–1055. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha; Murtaza, G.; Dumat, C.; Shahid, M. Copper Uptake, Essentiality, Toxicity, Detoxification and Risk Assessment in Soil-Plant Environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, Z.; Wang, H.; Song, L.; Jia, S.; Ma, D. Zinc Stress Affects Ionome and Metabolome in Tea Plants. Plant Physiol. Biochem. 2017, 111, 318–328. [Google Scholar] [CrossRef]
- Fan, Y.; Jiang, T.; Chun, Z.; Wang, G.; Yang, K.; Tan, X.; Zhao, J.; Pu, S.; Luo, A. Zinc Affects the Physiology and Medicinal Components of Dendrobium Nobile Lindl. Plant Physiol. Biochem. 2021, 162, 656–666. [Google Scholar] [CrossRef]
- Merlot, S. Understanding Nickel Responses in Plants: More than Just an Interaction with Iron Homeostasis. Plant Cell Physiol. 2020, 61, 443–444. [Google Scholar] [CrossRef]
- Abou Seeda, M.A.; EL-Sayed, A.A.; Yassen, A.A.; Abou El-Nour, E.A.A.; Zaghloul, S.M.; Gad Mervat, M. Nickel, Iron and Their Diverse Role in Plants: A Review, Approaches and Future Prospective. Middle East J. Appl. Sci. 2020, 10, 196–210. [Google Scholar] [CrossRef]
- Rahman, R.; Upadhyaya, H. Aluminium Toxicity and Its Tolerance in Plant: A Review. J. Plant Biol. 2021, 64, 101–121. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metals Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 101, p. 133. [Google Scholar] [CrossRef]
- Villiers, F.; Ducruix, C.; Hugouvieux, V.; Jarno, N.; Ezan, E.; Garin, J.; Junot, C.; Bourguignon, J. Investigating the Plant Response to Cadmium Exposure by Proteomic and Metabolomic Approaches. Proteomics 2011, 11, 1650–1663. [Google Scholar] [CrossRef]
- Mishra, P.; Dubey, R.S. Excess Nickel Modulates Activities of Carbohydrate Metabolizing Enzymes and Induces Accumulation of Sugars by Upregulating Acid Invertase and Sucrose Synthase in Rice Seedlings. BioMetals 2013, 26, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Balasaraswathi, K.; Jayaveni, S.; Sridevi, J.; Sujatha, D.; Phebe Aaron, K.; Rose, C. Cr-Induced Cellular Injury and Necrosis in Glycine Max L.: Biochemical Mechanism of Oxidative Damage in Chloroplast. Plant Physiol. Biochem. 2017, 118, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Schutzendubel, A.; Polle, A. Plant Responses to Abiotic Stresses: Heavy Metal-Induced Oxidative Stress and Protection by Mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Wiese, A.H.; Bauer, E.O.; Riemenschneider, D.E. Sapflow of Hybrid Poplar (Populus nigra L. × P. Maximowiczii A. Henry ‘NM6’) during Phytoremediation of Landfill Leachate. Biomass Bioenergy 2006, 30, 784–793. [Google Scholar] [CrossRef]
- Mleczek, M.; Rutkowski, P.; Goliński, P.; Kaczmarek, Z.; Szentner, K.; Waliszewska, B.; Stolarski, M.; Szczukowski, S. Biological Diversity of Salix Taxa in Cu, Pb and Zn Phytoextraction from Soil. Int. J. Phytoremediation 2017, 19, 121–132. [Google Scholar] [CrossRef]
- Drzewiecka, K.; Gąsecka, M.; Rutkowski, P.; Magdziak, Z.; Goliński, P.; Mleczek, M. Arsenic Forms and Their Combinations Induce Differences in Phenolic Accumulation in Ulmus laevis Pall. J. Plant Physiol. 2018, 220, 34–42. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y.; Gong, J. Physiological Mechanisms of the Tolerance Response to Manganese Stress Exhibited by Pinus massoniana, a Candidate Plant for the Phytoremediation of Mn-Contaminated Soil. Environ. Sci. Pollut. Res. 2021, 28, 45422–45433. [Google Scholar] [CrossRef]
- Gąsecka, M.; Drzewiecka, K.; Magdziak, Z.; Piechalak, A.; Budka, A.; Waliszewska, B.; Szentner, K.; Goliński, P.; Niedzielski, P.; Budzyńska, S.; et al. Arsenic Uptake, Speciation and Physiological Response of Tree Species (Acer pseudoplatanus, Betula pendula and Quercus robur) Treated with Dimethylarsinic Acid. Chemosphere 2021, 263, 127859. [Google Scholar] [CrossRef]
- Azzarello, E.; Pandolfi, C.; Pollastri, S.; Masi, E.; Mugnai, S.; Mancuso, S. The use of trees in phytoremediation. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2012, 6, 1–15. [Google Scholar] [CrossRef]
- Park, S.; Oh, S.; Han, K.-H. Large-Scale Computational Analysis of Poplar ESTs Reveals the Repertoire and Unique Features of Expressed Genes in the Poplar Genome. Mol. Breed. 2004, 14, 429–440. [Google Scholar] [CrossRef]
- Zárubová, P.; Hejcman, M.; Vondráčková, S.; Mrnka, L.; Száková, J.; Tlustoš, P. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in Wood and Bark Age Classes of Willows and Poplars Used for Phytoextraction on Soils Contaminated by Risk Elements. Environ. Sci. Pollut. Res. 2015, 22, 18801–18813. [Google Scholar] [CrossRef] [PubMed]
- Kubátová, P.; Száková, J.; Břendová, K.; Kroulíková--Vondráčková, S.; Drešlová, M.; Tlustoš, P. Effect of Tree Harvest Intervals on the Removal of Heavy Metals from a Contaminated Soil in a Field Experiment. Plant Soil Environ. 2018, 64, 132–137. [Google Scholar] [CrossRef]
- Vannucchi, F.; Francini, A.; Pierattini, E.C.; Raffaelli, A.; Sebastiani, L. Populus alba Dioctyl Phthalate Uptake from Contaminated Water. Environ. Sci. Pollut. Res. Int. 2019, 26, 25564–25572. [Google Scholar] [CrossRef] [PubMed]
- Migeon, A.; Richaud, P.; Guinet, F.; Blaudez, D.; Chalo, M. Hydroponic Screening of Poplar for Trace Element Tolerance and Accumulation. Int. J. Phytoremediation 2012, 14, 350–361. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Dach, J.; Starmans, D. Heavy metals balance in Polish and Dutch agronomy: Actual state and previsions for the future. Agric. Ecosyst. Environ. 2005, 107, 309–316. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. The Rare Earth Element (REE) Lanthanum (La) Induces Hormesis in Plants. Environ. Pollut. 2018, 238, 1044–1047. [Google Scholar] [CrossRef]
- Jalal, A.; Carlos De Oliveira Junior, J.; Santos Ribeiro, J.; Fernandes, C.; Guerra Mariano, G.; Dias, V.; Trindade, R.; Rodrigues Dos Reis, A. Hormesis in Plants: Physiological and Biochemical Responses. Ecotoxicol. Environ. Saf. 2021, 207, 111225. [Google Scholar] [CrossRef]
- Kacálková, L.; Tlustoš, P.; Száková, J. Phytoextraction of Risk Elements by Willow and Poplar Trees. Int. J. Phytoremediation 2015, 17, 414–421. [Google Scholar] [CrossRef]
- Kacálková, L.; Tlustoš, P.; Száková, J. Chromium, Nickel, Cadmium, and Lead Accumulation in Maize, Sunflower, Willow, and Poplar. Polish J. Environ. Stud. 2014, 23, 753–761. [Google Scholar]
- Souri, Z.; Cardoso, A.A.; Da-Silva, C.J.; De Oliveira, L.M.; Dari, B.; Sihi, D.; Karimi, N. Heavy Metals and Photosynthesis: Recent Developments. In Photosynthesis, Productivity and Environmental Stress; Wiley: Hoboken, NJ, USA, 2019; pp. 107–134. [Google Scholar] [CrossRef]
- Chandra, R.; Kang, H. Mixed Heavy Metal Stress on Photosynthesis, Transpiration Rate, and Chlorophyll Content in Poplar Hybrids. Forest Sci. Technol. 2016, 12, 55–61. [Google Scholar] [CrossRef]
- Giannakoula, A.; Therios, I.; Chatzissavvidis, C. Effect of Lead and Copper on Photosynthetic Apparatus in Citrus (Citrus aurantium L.) Plants. the Role of Antioxidants in Oxidative Damage as a Response to Heavy Metal Stress. Plants 2021, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.E.A.; Castro, P.R.C.; Azevedo, R.A. Hormesis in Plants under Cd Exposure: From Toxic to Beneficial Element? J. Hazard. Mater. 2020, 384, 121434. [Google Scholar] [CrossRef]
- Agathokleous, E. The Rise and Fall of Photosynthesis: Hormetic Dose Response in Plants. J. For. Res. 2021, 32, 889–898. [Google Scholar] [CrossRef]
- Cedergreen, N.; Olesen, C.F. Can Glyphosate Stimulate Photosynthesis? Pestic. Biochem. Physiol. 2010, 96, 140–148. [Google Scholar] [CrossRef]
- Ciscato, M.; Vangronsveld, J.; Valcke, R. Effects of Heavy Metals on the Fast Chlorophyll Fluorescence Induction Kinetics of Photosystem II: A Comparative Study. Z. Fur Naturforschung Sect. C J. Biosci. 1999, 54, 735–739. [Google Scholar] [CrossRef]
- Chen, H.; Song, L.; Zhang, H.; Wang, J.; Wang, Y.; Zhang, H. Cu and Zn Stress Affect the Photosynthetic and Antioxidative Systems of Alfalfa (Medicago Sativa). J. Plant Interact. 2022, 17, 695–704. [Google Scholar] [CrossRef]
- Gan, T.; Yin, G.; Zhao, N.; Tan, X.; Wang, Y. A Sensitive Response Index Selection for Rapid Assessment of Heavy Metals Toxicity to the Photosynthesis of Chlorella pyrenoidosa Based on Rapid Chlorophyll Fluorescence Induction Kinetics. Toxics 2023, 11, 468. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, D.; Soni, V. Performance of Chlorophyll a Fluorescence Parameters in Lemna minor under Heavy Metal Stress Induced by Various Concentration of Copper. Sci. Reports 2022, 12, 10620. [Google Scholar] [CrossRef]
- Sha, S.; Cheng, M.; Hu, K.; Zhang, W.; Yang, Y.; Xu, Q. Toxic effects of Pb on Spirodela polyrhiza (L.): Subcellular distribution, chemical forms, morphological and physiological disorders. Ecotoxicol. Environ. Saf. 2019, 181, 146–154. [Google Scholar] [CrossRef]
- Jiang, H.X.; Chen, L.S.; Zheng, J.G.; Han, S.; Tang, N.; Smith, B.R. Aluminum-Induced Effects on Photosystem II Photochemistry in Citrus Leaves Assessed by the Chlorophyll a Fluorescence Transient. Tree Physiol. 2008, 28, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Oukarroum, A.; Barhoumi, L.; Samadani, M.; Dewez, D. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L. Biomed Res. Int. 2015, 2015, 501326. [Google Scholar] [CrossRef] [PubMed]
- Salminen, J.P.; Karonen, M. Chemical Ecology of Tannins and Other Phenolics: We Need a Change in Approach. Funct. Ecol. 2011, 25, 325–338. [Google Scholar] [CrossRef]
- Kısa, D.; Elmastaş, M.; Öztürk, L.; Kayır, Ö. Responses of the Phenolic Compounds of Zea mays under Heavy Metal Stress. Appl. Biol. Chem. 2016, 59, 813–820. [Google Scholar] [CrossRef]
- Chen, S.; Lin, R.; Lu, H.; Wang, Q.; Yang, J.; Liu, J.; Yan, C. Effects of Phenolic Acids on Free Radical Scavenging and Heavy Metal Bioavailability in Kandelia obovata under Cadmium and Zinc Stress. Chemosphere 2020, 249, 126341. [Google Scholar] [CrossRef]
- Vidal, C.; Ruiz, A.; Ortiz, J.; Larama, G.; Perez, R.; Santander, C.; Ademar Avelar Ferreira, P.; Cornejo, P. Antioxidant Responses of Phenolic Compounds and Immobilization of Copper in Imperata cylindrica, a Plant with Potential Use for Bioremediation of Cu Contaminated Environments. Plants 2020, 9, 1397. [Google Scholar] [CrossRef]
- Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E.; Smith, J.L. Sorption of Tannin and Related Phenolic Compounds and Effects on Soluble-N in Soil. Soil Biol. Biochem. 2009, 41, 2002–2010. [Google Scholar] [CrossRef]
- Cesco, S.; Mimmo, T.; Tonon, G.; Tomasi, N.; Pinton, R.; Terzano, R.; Neumann, G.; Weisskopf, L.; Renella, G.; Landi, L.; et al. Plant-Borne Flavonoids Released into the Rhizosphere: Impact on Soil Bio-Activities Related to Plant Nutrition. A Review. Biol. Fertil. Soils 2012, 48, 123–149. [Google Scholar] [CrossRef]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial Interactions in the Rhizosphere: Beneficial Influences of Plant Growth-Promoting Rhizobacteria on Nutrient Acquisition Process. A Review. Biol. Fertil. Soils 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-Radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian Prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Andreasen, M.F.; Landbo, A.K.; Christensen, L.P.; Hansen, A.; Meyer, A.S. Antioxidant Effects of Phenolic Rye (Secale cereale L.) Extracts, Monomeric Hydroxycinnamates, and Ferulic Acid Dehydrodimers on Human Low-Density Lipoproteins. J. Agric. Food Chem. 2001, 49, 4090–4096. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Klejdus, B.; Hedbavny, J.; Bačkor, M. Effect of Copper and Salicylic Acid on Phenolic Metabolites and Free Amino Acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci. 2010, 178, 307–311. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Reports 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of Salinity Stress on the Physiological Characteristics, Phenolic Compounds and Antioxidant Activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef]
- Wani, A.B.; Chadar, H.; Wani, A.H.; Singh, S.; Upadhyay, N. Salicylic Acid to Decrease Plant Stress. Environ. Chem. Lett. 2016, 15, 101–123. [Google Scholar] [CrossRef]
- Drzewiecka, K.; Mleczek, M.; Gasecka, M.; Magdziak, Z.; Goliński, P. Changes in Salix viminalis L. Cv. ‘Cannabina’ Morphology and Physiology in Response to Nickel Ions—Hydroponic Investigations. J. Hazard. Mater. 2012, 217, 429–438. [Google Scholar] [CrossRef]
- Gąsecka, M.; Mleczek, M.; Drzewiceka, K.; Magdziak, Z.; Rissmann, I.; Chadzinikolau, T.; Golinski, P. Physiological and Morphological Changes in Salix viminalis L. as a Result of Plant Exposure to Copper. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2012, 47, 548–557. [Google Scholar] [CrossRef]
- Drzewiecka, K.; Mleczek, M.; Gąsecka, M.; Magdziak, Z.; Goliński, P.; Chadzinikolau, T. Copper Phytoextraction with Salix purpurea × Viminalis under Various Ca/Mg Ratios. Part 2. Effect on Organic Acid, Phenolics and Salicylic Acid Contents. Acta Physiol. Plant. 2014, 36, 903–913. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, S.; Miao, Y.; Wu, F.; Zhang, G. Changes of Organic Acid Exudation and Rhizosphere pH in Rice Plants under Chromium Stress. Environ. Pollut. 2008, 155, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Cao, X.; Tan, C.; Deng, Y.; Cai, R.; Peng, X.; Bai, J. Analysis of the Effect of Cadmium Stress on Root Exudates of Sedum Plumbizincicola Based on Metabolomics. Ecotoxicol. Environ. Saf. 2020, 205, 111152. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.H.; Roy, S.K.; Choudhury, A.R.; Kwon, S.J.; Choi, J.Y.; Rahman, M.A.; Katsube-Tanaka, T.; Shiraiwa, T.; Lee, M.S.; Cho, K.; et al. Proteome Changes Reveal the Protective Roles of Exogenous Citric Acid in Alleviating Cu Toxicity in Brassica napus L. Int. J. Mol. Sci. 2021, 22, 5879. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.; Alvear, M.; Borie, F.; Aguilera, P.; Ginocchio, R.; Cornejo, P. Influence of Copper on Root Exudate Patterns in Some Metallophytes and Agricultural Plants. Ecotoxicol. Environ. Saf. 2012, 75, 8–15. [Google Scholar] [CrossRef]
- Yang, L.T.; Qi, Y.P.; Jiang, H.X.; Chen, L.S. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants. Biomed Res. Int. 2013, 2013, 173682. [Google Scholar] [CrossRef]
- Huang, S.; Jia, X.; Zhao, Y.; Chang, Y.; Bai, B. Response of Robinia pseudoacacia L. Rhizosphere Microenvironment to Cd and Pb Contamination and Elevated Temperature. Appl. Soil Ecol. 2016, 108, 269–277. [Google Scholar] [CrossRef]
- Javed, M.T.; Saleem, M.H.; Aslam, S.; Rehman, M.; Iqbal, N.; Begum, R.; Ali, S.; Alsahli, A.A.; Alyemeni, M.N.; Wijaya, L. Elucidating Silicon-Mediated Distinct Morpho-Physio-Biochemical Attributes and Organic Acid Exudation Patterns of Cadmium Stressed Ajwain (Trachyspermum ammi L.). Plant Physiol. Biochem. 2020, 157, 23–37. [Google Scholar] [CrossRef]
- Tahjib-Ul-arif, M.; Zahan, M.I.; Karim, M.M.; Imran, S.; Hunter, C.T.; Islam, M.S.; Mia, M.A.; Hannan, M.A.; Rhaman, M.S.; Hossain, M.A.; et al. Citric Acid-Mediated Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 7235. [Google Scholar] [CrossRef]
- Rauser, W.E. Structure and Function of Metal Chelators Produced by Plants: The Case for Organic Acids, Amino Acids, Phytin, and Metallothioneins. Cell Biochem. Biophys. 1999, 31, 19–48. [Google Scholar] [CrossRef]
- Tan, P.; Zeng, C.; Wan, C.; Liu, Z.; Dong, X.; Peng, J.; Lin, H.; Li, M.; Liu, Z.; Yan, M. Metabolic Profiles of Brassica juncea Roots in Response to Cadmium Stress. Metabolites 2021, 11, 383. [Google Scholar] [CrossRef]
- Eissa, M.A.; Roshdy, N.M.K. Nitrogen Fertilization: Effect on Cd-Phytoextraction by the Halophytic Plant Quail Bush [Atriplex lentiformis (Torr.) S. Wats]. South Afr. J. Bot. 2018, 115, 126–131. [Google Scholar] [CrossRef]
- Li, X.; Gitau, M.M.; Han, S.; Fu, J.; Xie, Y. Effects of Cadmium-Resistant Fungi Aspergillus aculeatus on Metabolic Profiles of Bermudagrass [Cynodondactylon (L.)Pers.] under Cd Stress. Plant Physiol. Biochem. 2017, 114, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Magdziak, Z.; Gąsecka, M.; Waliszewska, B.; Zborowska, M.; Mocek, A.; Cichy, W.J.; Mazela, B.; Kozubik, T.; Mocek-Płóciniak, A.; Niedzielski, P.; et al. The Influence of Environmental Condition on the Creation of Organic Compounds in Pinus sylvestris L. Rhizosphere, Roots and Needles. Trees Struct. Funct. 2021, 35, 441–457. [Google Scholar] [CrossRef]
- Luo, Z.; Baldock, J.; Wang, E. Modelling the Dynamic Physical Protection of Soil Organic Carbon: Insights into Carbon Predictions and Explanation of the Priming Effect. Glob. Change Biol. 2017, 23, 5273–5283. [Google Scholar] [CrossRef] [PubMed]
- Bosnić, D.; Nikolić, D.; Timotijević, G.; Pavlović, J.; Vaculík, M.; Samardžić, J.; Nikolić, M. Silicon Alleviates Copper (Cu) Toxicity in Cucumber by Increased Cu-Binding Capacity. Plant Soil 2019, 441, 629–641. [Google Scholar] [CrossRef]
- Wang, R.; Sun, L.; Zhang, P.; Wan, J.; Wang, Y.; Xu, J. Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents. Plant Growth Regul. 2023, 100, 85–96. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.A.; Asaf, S.; Lubna; Lee, I.J.; Kim, K.M. Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones. Plants 2019, 8, 363. [Google Scholar] [CrossRef]
- Xiong, Y.; Contento, A.L.; Nguyen, P.Q.; Bassham, D.C. Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis. Plant Physiol. 2007, 143, 291–299. [Google Scholar] [CrossRef]
- Valluru, R.; Van Den Ende, W. Plant Fructans in Stress Environments: Emerging Concepts and Future Prospects. J. Exp. Bot. 2008, 59, 2905–2916. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.J. The Relationship between Metal Toxicity and Cellular Redox Imbalance. Trends Plant Sci. 2009, 14, 43–50. [Google Scholar] [CrossRef]
- Li, C.; Cao, Y.; Li, T.; Guo, M.; Ma, X.; Zhu, Y.; Fan, J. Changes in Antioxidant System and Sucrose Metabolism in Maize Varieties Exposed to Cd. Environ. Sci. Pollut. Res. 2022, 29, 64999–65011. [Google Scholar] [CrossRef] [PubMed]
- Couée, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of Soluble Sugars in Reactive Oxygen Species Balance and Responses to Oxidative Stress in Plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.L.; Curatti, L. Origin of Sucrose Metabolism in Higher Plants: When, How and Why? Trends Plant Sci. 2003, 8, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble Sugars—Metabolism, Sensing and Abiotic Stress: A Complex Network in the Life of Plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Keunen, E.; Peshev, D.; Vangronsveld, J.; Van Den Ende, W.; Cuypers, A. Plant Sugars Are Crucial Players in the Oxidative Challenge during Abiotic Stress: Extending the Traditional Concept. Plant Cell Environ. 2013, 36, 1242–1255. [Google Scholar] [CrossRef]
- Peshev, D.; Vergauwen, R.; Moglia, A.; Hideg, É.; Van Den Ende, W. Towards Understanding Vacuolar Antioxidant Mechanisms: A Role for Fructans? J. Exp. Bot. 2013, 64, 1025–1038. [Google Scholar] [CrossRef]
- European Council. Council Directive 1999/105/EC of 22 December 1999 on the Marketing of Forest Reproductive Material. Off. J. Eur. Communities 2000, 11, 17–40. [Google Scholar]
- Barabasz, A.; Krämer, U.; Hanikenne, M.; Rudzka, J.; Antosiewicz, D.M. Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply. J. Exp. Bot. 2010, 61, 3057–3067. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wdowczyk, A.; Wiatkowska, B.; Szymańska-Pulikowska, A. Assessment of heavy metal contamination of agricultural soils in Poland using contamination indicators. Ecol. Indic. 2023, 156, 111161. [Google Scholar] [CrossRef]
- Proch, J.; Różewska, A.; Orłowska, A.; Niedzielski, P. Influence of Brewing Method on the Content of Selected Elements in Yerba Mate (Ilex paraguarensis) Infusions. Foods 2023, 12, 1072. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 12, pp. 321–362. [Google Scholar]
- Baziramakenga, R.; Simar, R.R.; Leroux, G.D. Determination of organic acids in soil extracts by ion chromatography. Soil Biol. Biochem. 1995, 27, 349–356. [Google Scholar] [CrossRef]
- Gąsecka, M.; Krzymińska-Bródka, A.; Magdziak, Z.; Czuchaj, P.; Bykowska, J. Phenolic Compounds and Organic Acid Composition of Syringa vulgaris L. Flowers Infusions. Molecules 2023, 28, 5159. [Google Scholar] [CrossRef] [PubMed]
- Borowiak, K.; Gąsecka, M.; Mleczek, M.; Dąbrowski, J.; Chadzinikolau, T.; Magdziak, Z.; Goliński, P.; Rutkowski, P.; Kozubik, T. Photosynthetic Activity in Relation to Chlorophylls, Carbohydrates, Phenolics and Growth of a Hybrid Salix purpurea × Triandra × Viminalis 2 at Various Zn Concentrations. Acta Physiol. Plant. 2015, 37, 155. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Rennes, A.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
Element [mg kg−1 DW] | Control | Treatment | ||||
---|---|---|---|---|---|---|
Pb | Zn | Cu | Al | Ni | ||
Roots | ||||||
Pb | 5.71 b ± 0.30 | 109.8 a ± 11.59 | 2.61 b ± 0.03 | 3.99 b ± 0.58 | 3.54 b ± 0.21 | 2.81 b ± 0.08 |
Zn | 50.08 bc ± 2.46 | 47.53 bc ± 3.28 | 83.11 a ± 4.11 | 44.08 bc ± 1.91 | 54.15 b ± 5.90 | 39.24 c ± 1.24 |
Cu | 11.79 b ± 0.38 | 10.66 b ± 0.53 | 10.90 b ± 0.49 | 73.78 a ± 2.22 | 9.84 b ± 0.58 | 8.45 b ± 0.66 |
Al | 612.2 c ± 32.10 | 566.1 c ± 16.20 | 537.8 c ± 53.00 | 886.6 b ± 16.90 | 1301 a ± 42.60 | 539.9 c ± 20.80 |
Ni | 1.92 b ± 0.10 | 1.14 c ± 0.05 | 1.09 c ± 0.08 | 1.50 bc ± 0.06 | 1.32 c ± 0.06 | 17.56 a ± 0.49 |
rods | ||||||
Pb | bdl | 0.88 a ± 0.14 | bdl | 0.31 b ± 0.06 | bdl | bdl |
Zn | 42.55 bc ± 1.92 | 47.13 b ± 3.98 | 58.05 a ± 7.77 | 38.17 c ± 4.57 | 49.48 b ± 5.10 | 47.41 b ± 5.54 |
Cu | 2.99 b ± 0.33 | 2.17 c ± 0.09 | 3.12 b ± 0.40 | 3.811 a ± 0.50 | 2.41 c ± 0.36 | 2.45 c ± 0.33 |
Al | 24.69 a ± 1.79 | 22.75 a ± 1.81 | 23.94 a ± 2.85 | 26.13 a ± 3.59 | 26.94 a ± 3.48 | 25.00 a ± 1.12 |
Ni | 0.14 b ± 0.03 | 0.18 b ± 0.02 | 0.20 b ± 0.04 | 0.17 b ± 0.04 | 0.14 b ± 0.02 | 1.21 a ± 0.23 |
shoots | ||||||
Pb | bdl | 0.49 a ± 0.08 | bdl | bdl | bdl | bdl |
Zn | 78.42 b ± 9.03 | 63.55 b ± 3.33 | 140.65 a ± 13.96 | 68.03 b ± 13.06 | 74.22 b ± 11.69 | 76.18 b ± 9.75 |
Cu | 4.28 b ± 0.88 | 3.24 c ± 0.50 | 3.20 c ± 0.41 | 5.34 a ± 0.61 | 3.08 c ± 0.80 | 3.12 c ± 0.41 |
Al | 36.53 b ± 1.51 | 32.74 b ± 3.17 | 32.98 b ± 2.97 | 41.91 b ± 6.10 | 61.99 a ± 9.77 | 33.47 b ± 2.88 |
Ni | 0.37 b ± 0.06 | 0.23 b ± 0.05 | 0.24 b ± 0.08 | 0.46 b ± 0.16 | 0.23 b ± 0.01 | 2.14 ab ± 0.68 |
Parameter | Control | Treatment | ||||
---|---|---|---|---|---|---|
Pb | Zn | Cu | Al | Ni | ||
A [μmol m−2 s−1] | 13.48 b ± 0.66 | 11.98 c ± 0.98 | 15.45 a ± 0.86 | 15.53 a ± 1.23 | 14.58 a ± 0.80 | 12.73 bc ± 0.70 |
gs [mol m−2 s−1] | 0.28 ab ± 0.07 | 0.29 a ± 0.05 | 0.21 c ± 0.02 | 0.23 bc ± 0.05 | 0.26 a–c ± 0.04 | 0.247 a–c ± 0.05 |
E [mmol m−2 s−1] | 2.49 a ± 0.20 | 2.31 ab ± 0.17 | 2.34 ab ± 0.12 | 2.13 b ± 0.18 | 2.33 ab ± 0.27 | 2.288 ab ± 0.21 |
Ci [vpm] | 230.4 a ± 20.60 | 235.9 a ± 9.20 | 217.5 a ± 20.18 | 216.7 a ± 11.00 | 231.6 a ± 17.60 | 231.2 a ± 13.40 |
ETR_PAR100 [μmol m−2 s−1] | 18.95 a ± 1.09 | 17.85 ab ± 1.39 | 16.92 ab ± 0.79 | 18.28 ab ± 1.79 | 16.22 b ± 1.14 | 17.52 ab ± 0.95 |
ETR_PAR200 [μmol m−2 s−1] | 26.51 ab ± 7.73 | 26.25 ab ± 1.90 | 24.79 bc ± 1.39 | 28.35 a ± 2.32 | 23.35 c ± 1.45 | 24.80 bc ± 1.16 |
ETR_PAR300 [μmol m−2 s−1] | 35.46 bc ± 2.84 | 37.53 b ± 1.30 | 33.79 cd ± 1.16 | 42.06 a ± 1.95 | 32.54 d ± 2.17 | 37.92 b ± 2.30 |
ETR_PAR50 [μmol m−2 s−1] | 52.12 b ± 5.07 | 52.03 b ± 1.78 | 45.87 c ± 2.10 | 63.22 a ± 4.14 | 46.71 c ± 2.15 | 50.21 bc ± 2.57 |
ETR max1000 [μmol m−2 s−1] | 60.33 b ± 5.79 | 63.50 b ± 3.30 | 54.00 c ± 3.51 | 81.50 a ± 5.65 | 62.58 b ± 2.78 | 63.83 b ± 2.27 |
Fv/Fo | 4.936 a ± 0.12 | 4.94 a ± 0.29 | 4.75 a ± 0.43 | 4.65 a ± 0.29 | 5.01 a ± 0.32 | 4.63 a ± 0.29 |
Mo or RC/ABS | 0.69 b ± 0.07 | 0.70 b ± 0.04 | 0.82 a ± 0.04 | 0.53 c ± 0.07 | 0.76 ab ± 0.06 | 0.68 b ± 0.05 |
ABS/RC | 1.70 ab ± 0.21 | 1.84 ab ± 0.18 | 2.07 a ± 0.11 | 1.58 b ± 0.23 | 1.99 a ± 0.21 | 1.93 ab ± 0.22 |
TRo/RC | 1.41 ab ± 0.17 | 1.53 ab ± 0.15 | 1.71 a ± 0.10 | 1.30 b ± 0.20 | 1.66 a ± 0.17 | 1.58 ab ± 0.19 |
ETo/RC | 0.72 a ± 0.11 | 0.83 a ± 0.12 | 0.89 a ± 0.08 | 0.77 a ± 0.14 | 0.90 a ± 0.12 | 0.91 a ± 0.16 |
DIo/RC | 0.29 b ± 0.04 | 0.31 ab ± 0.03 | 0.36 a ± 0.03 | 0.28 b ± 0.03 | 0.33 ab ± 0.05 | 0.34 ab ± 0.30 |
TRo/ABS | 0.83 a ± 0.01 | 0.83 a ± 0.01 | 0.82 a ± 0.01 | 0.82 a ± 0.01 | 0.83 a ± 0.01 | 0.82 a ± 0.01 |
ETo/ABS | 0.43 c ± 0.02 | 0.45 a–c ± 0.02 | 0.43 bc ± 0.02 | 0.48 a ± 0.03 | 0.45 a–c ± 0.02 | 0.47 ab ± 0.03 |
DIo/ABS | 0.17 a ± 0.01 | 0.17 a ± 0.01 | 0.18 a ± 0.01 | 0.18 a ± 0.01 | 0.17 a ± 0.01 | 0.18 a ± 0.01 |
ETo/TRo | 0.51 c ± 0.02 | 0.54 bc ± 0.02 | 0.52 c ± 0.02 | 0.59 a ± 0.03 | 0.54 bc ± 0.02 | 0.57 ab ± 0.03 |
Compound [µg g−1 DW] | Control | Treatment | ||||
---|---|---|---|---|---|---|
Pb | Zn | Cu | Al | Ni | ||
TP | 31.20 a ± 2.53 | 21.24 cd ± 0.66 | 21.75 b–d ± 0.45 | 24.55 b ± 0.41 | 19.49 d ± 0.51 | 24.02 bc ± 0.19 |
Citric a. | 1.46 b ± 0.06 | 1.13 c ± 0.06 | 1.08 c ± 0.04 | 1.57 b ± 0.12 | 2.71 a ± 0.03 | 0.39 d ± 0.01 |
Succinic a. | 2.11 c ± 0.05 | 2.13 c ± 0.21 | 1.70 d ± 0.06 | 6.75 a ± 0.34 | 4.91 b ± 0.21 | 1.00 e ± 0.05 |
Compound | Control | Treatment | ||||
---|---|---|---|---|---|---|
Pb | Zn | Cu | Al | Ni | ||
TP [mg g−1 GAE FW] | 0.12 d ± 0.004 | 0.13 c ± 0.002 | 0.12 d ± 0.002 | 0.19 a ± 0.004 | 0.14 b ± 0.004 | 0.12 d ± 0.001 |
Phenolic profile [µg g−1 FW]: | ||||||
Gallic a. | bdl | bdl | bdl | 1.58 a ± 0.03 | bdl | bdl |
Vanillic a. | bdl | bdl | bdl | 0.29 a ± 0.003 | bdl | bdl |
Syringic a. | bdl | 1.84 a ± 0.02 | bdl | 0.63 b ± 0.01 | bdl | bdl |
p-Coumaric a. | 0.12 c ± 0.004 | 0.15 b ± 0.003 | 0.10 c ± 0.003 | 1.41 a ± 0.03 | 0.11 c ± 0.003 | 0.10 c ± 0.003 |
Ferulic a. | bdl | bdl | bdl | 0.25 a ± 0.005 | bdl | bdl |
Catechin | 0.95 a ± 0.02 | bdl | 0.75 b ± 0.01 | bdl | 0.31 c ± 0.006 | bdl |
Rutin | bdl | 0.17 a ± 0.005 | bdl | bdl | bdl | bdl |
LMWOAs [µg g−1 FW]: | ||||||
Malonic a. | 0.38 b ± 0.02 | 0.34 b ± 0.02 | bdl | 7.99 a ± 0.13 | bdl | bdl |
Lactic a. | 0.18 b ± 0.01 | 0.18 b ± 0.004 | 0.29 a ± 0.01 | bdl | 0.10 d ± 0.007 | 0.13 c ± 0.004 |
Citric a. | 9.69 a ± 0.42 | 3.39 c ± 0.24 | 1.58 d ± 0.08 | 6.09 b ± 0.68 | 5.76 b ± 0.11 | bdl |
Malic a. | bdl | bdl | bdl | bdl | bdl | 0.24 a ± 0.02 |
Succinic a. | 20.61 a ± 0.53 | 7.03 c ± 0.73 | 4.53 d ± 0.06 | 5.95 c ± 0.02 | 11.19 b ± 0.54 | 10.08 b ± 0.78 |
Compound | Control | Treatment | ||||
---|---|---|---|---|---|---|
Pb | Zn | Cu | Al | Ni | ||
TP [mg g−1 GAE FW] | 6.77 c ± 0.29 | 8.46 b ± 0.30 | 8.53 b ± 0.35 | 8.79 ab ± 0.20 | 8.94 ab ± 0.23 | 9.22 a ± 0.34 |
Phenolic profile [µg g−1 FW]: | ||||||
Gallic a. | 3.87 a ± 0.24 | 1.23 d ± 0.21 | 1.44 d ± 0.20 | 3.01 b ± 0.43 | 3.27 b ± 0.59 | 1.95 c ± 0.26 |
Protocatechuic a. | 9.91 d ± 4.10 | 15.96 d ± 2.80 | 23.47 c ± 3.96 | 62.41 a ± 10.51 | 26.79 c ± 4.98 | 52.89 b ± 4.37 |
4-HBA | 26.01 a ± 2.17 | 18.64 b ± 2.96 | 17.53 b ± 2.36 | 13.70 c ± 1.01 | 14.23 c ± 1.47 | bdl |
Sinapic a. | 4.20 a ± 0.27 | 1.89 b ± 0.40 | 2.08 b ± 0.75 | 4.46 a ± 0.24 | 4.20 a ± 0.46 | 4.69 a ± 0.94 |
Vanillic a. | 3.95 bc ± 0.28 | 3.34 c ± 0.55 | 4.43 bc ± 0.46 | 5.55 b ± 0.41 | 9.58 a ± 1.63 | 8.84 a ± 2.09 |
Syringic a. | 8.08 d ± 0.46 | 25.52 c ± 6.42 | 18.89 c ± 4.15 | 50.99 a ± 8.00 | 34.45 b ± 3.19 | 49.14 a ± 9.57 |
t-Cinnamic a. | 19.82 c ± 1.41 | 27.87 c ± 6.16 | 23.94 c ± 4.24 | 60.73 a ± 9.18 | 42.40 b ± 7.90 | 42.19 b ± 8.38 |
2,5-DHBA | 65.37 ab ± 7.21 | 24.50 c ± 5.95 | 14.38 c ± 1.74 | 78.02 a ± 22.14 | 52.69 b ± 6.87 | bdl |
Chlorogenic a. | 12.80 b ± 1.20 | 4.73 c ± 1.51 | 3.36 c ± 0.52 | 12.66 b ± 2.33 | 16.27 b ± 2.64 | 33.25 a ± 9.80 |
Caffeic acid | 3.85 c ± 0.52 | 2.64 c ± 0.88 | 3.10 c ± 1.05 | 15.44 b ± 2.97 | 11.01 b ± 4.75 | 24.16 a ± 6.26 |
p-Coumaric a. | 14.03 b ± 1.00 | 8.29 c ± 2.23 | 4.77 c ± 1.79 | 15.00 b ± 4.49 | 14.78 b ± 1.93 | 20.86 a ± 5.61 |
Ferulic a. | 20.11 a ± 2.90 | 5.39 c ± 1.75 | 4.83 c ± 1.17 | 17.08 ab ± 5.57 | 14.41 b ± 1.80 | 15.63 ab ± 3.61 |
Rutin | 56.37 c ± 5.30 | 22.96 c ± 4.67 | 38.63 c ± 4.22 | 124.4 b ± 32.77 | 149.1 b ± 19.60 | 210.4 a ± 39.86 |
Catechin | 9.02 d ± 0.68 | 2.13 e ± 0.33 | 1.79 e ± 0.29 | 12.55 c ± 2.75 | 19.18 a ± 3.69 | 15.92 b ± 7.58 |
Quercetin | 29.65 b ± 3.87 | 11.57 c ± 3.46 | 22.82 bc ± 6.80 | 35.19 b ± 8.08 | 40.18 b ± 6.51 | 68.86 a ± 27.72 |
Kaempferol | 5.35 c ± 1.00 | 6.29 c ± 1.63 | 21.26 b ± 3.64 | 32.24 a ± 4.69 | 19.43 b ± 6.52 | 26.20 b ± 5.37 |
Salicylic a. | 0.31 c ± 0.07 | 0.87 b ± 0.28 | 0.77 b ± 0.14 | 1.21 a ± 0.35 | 0.42 c ± 0.08 | 0.26 c ± 0.06 |
LMWOAs [µg g−1 FW]: | ||||||
Oxalic a. | 3.60 b ± 0.84 | 2.07 c ± 0.70 | 0.98 d ± 0.32 | 3.05 b ± 0.57 | 5.61 a ± 0.98 | 3.99 b ± 0.66 |
Malonic a. | 137.0 b ± 51.21 | 13.84 c ± 4.38 | 25.92 c ± 13.16 | 60.30 c ± 13.47 | 7.43 c ± 0.95 | 296.5 a ± 63.49 |
Lactic a. | 7.49 ab ± 2.91 | 11.17 a ± 5.07 | 9.15 ab ± 1.76 | 12.02 a ± 2.78 | 5.24 b ± 1.36 | 9.39 ab ± 0.68 |
Citric a. | 2787 a ± 591.6 | 1071 c ± 414.9 | 1113 c ± 351.7 | 2853 a ± 441.8 | 1764 b ± 149.0 | 2767 a ± 439.6 |
Acetic a. | 13.35 a ± 4.21 | 6.13 b ± 2.40 | 4.69 b ± 1.75 | 13.87 a ± 4.22 | 4.27 b ± 1.81 | 6.21 b ± 1.28 |
Malic a. | bdl | 16.94 c ± 3.50 | 32.69 b ± 5.46 | 41.08 a ± 5.02 | 43.23 a ± 8.06 | 13.33 c ± 2.38 |
Succinic a. | 2130 ab ± 444.2 | 1682 bc ± 772.2 | 1538 bc ± 307.5 | 2544 a ± 439.1 | 1206 c ± 334.2 | 1934 a–c ± 459.0 |
Fumaric a. | 1.39 a ± 0.18 | 0.81 b ± 0.24 | 0.70 b ± 0.14 | 1.47 a ± 0.34 | 0.86 b ± 0.19 | 1.71 a ± 0.29 |
Sugars [mg g−1 FW]: | ||||||
Fructose | 1.74 c ± 0.15 | 3.40 a ± 0.50 | 3.13 a ± 0.52 | 2.43 b ± 0.36 | 3.66 a ± 0.40 | 3.05 a ± 0.55 |
Glucose | 2.36 b ± 0.26 | 2.60 b ± 0.43 | 1.77 c ± 0.15 | 3.34 a ± 0.53 | 1.63 c ± 0.28 | 2.09 bc ± 0.15 |
Sucrose | 2.52 d ± 0.25 | 4.63 c ± 0.90 | 4.14 c ± 0.40 | 4.46 c ± 0.75 | 7.61 a ± 0.76 | 6.09 b ± 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gąsecka, M.; Drzewiecka, K.; Magdziak, Z.; Krzesiński, W.; Proch, J.; Niedzielski, P. Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals. Int. J. Mol. Sci. 2024, 25, 12520. https://doi.org/10.3390/ijms252312520
Gąsecka M, Drzewiecka K, Magdziak Z, Krzesiński W, Proch J, Niedzielski P. Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals. International Journal of Molecular Sciences. 2024; 25(23):12520. https://doi.org/10.3390/ijms252312520
Chicago/Turabian StyleGąsecka, Monika, Kinga Drzewiecka, Zuzanna Magdziak, Włodzimierz Krzesiński, Jędrzej Proch, and Przemysław Niedzielski. 2024. "Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals" International Journal of Molecular Sciences 25, no. 23: 12520. https://doi.org/10.3390/ijms252312520
APA StyleGąsecka, M., Drzewiecka, K., Magdziak, Z., Krzesiński, W., Proch, J., & Niedzielski, P. (2024). Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals. International Journal of Molecular Sciences, 25(23), 12520. https://doi.org/10.3390/ijms252312520