Metagenomics Reveals Sex-Based Differences in Murine Fecal Microbiota Profiles Induced by Chronic Alcohol Consumption
Abstract
:1. Introduction
2. Results
2.1. Effect of Ethanol Consumption on Fecal Bacterial Diversity in Male and Female Mice
2.2. Effect of Ethanol Consumption on the Relative Abundance of Fecal Bacteria in Male and Female Mice
2.3. Sex Differences in Bacterial Differential Abundance Induced by Chronic Alcohol Consumption
2.3.1. Bacterial Differential Abundance in the WT Female and Male Mice
2.3.2. Bacterial Differential Abundance in the TLR4-KO Female and Male Mice
3. Discussion
4. Materials and Methods
4.1. Animal Model and Alcohol Treatment
4.2. Bacterial 16S rRNA Library Construction and Sequencing
4.3. Bioinformatic Analysis
4.3.1. Data Quality Control and Filtering
4.3.2. ASV Table Generation and Taxonomic Assignment
4.3.3. Community Structure and Diversity Analyses
4.3.4. Differential Abundance Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engen, P.A.; Green, S.J.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. Curr. Rev. 2015, 37, 223–236. [Google Scholar]
- Zhang, Y.; Shen, Y.; Ning, L.; Liu, L.; Li, W.; Shi, Z.; Zheng, H.; Mei, X.; Chen, C.-Y.; Jiang, Z.; et al. Transmission of Alzheimer’s Disease-Associated Microbiota Dysbiosis and Its Impact on Cognitive Function: Evidence from Mice and Patients. Mol. Psychiatry 2023, 28, 4421–4437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Chen, Q.-G.; Chen, X.; Liu, X.-T.; Geng, F.; Zhu, M.-M.; Yan, F.-L.; Zhang, Z.-J.; Ren, Q.-G. Intestinal Dysbiosis Mediates Cognitive Impairment via the Intestine and Brain NLRP3 Inflammasome Activation in Chronic Sleep Deprivation. Brain. Behav. Immun. 2023, 108, 98–117. [Google Scholar] [CrossRef] [PubMed]
- Higarza, S.G.; Arboleya, S.; Gueimonde, M.; Gómez-Lázaro, E.; Arias, J.L.; Arias, N. Neurobehavioral Dysfunction in Non-Alcoholic Steatohepatitis Is Associated with Hyperammonemia, Gut Dysbiosis, and Metabolic and Functional Brain Regional Deficits. PLoS ONE 2019, 14, e0223019. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; McClain, C.J.; Feng, W. Microbiome Dysbiosis and Alcoholic Liver Disease. Liver Res. 2019, 3, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, C.M.; Pascual, M.; Pérez-Moraga, R.; Rodríguez-Navarro, I.; García-García, F.; Ureña-Peralta, J.R.; Guerri, C. TLR4 Deficiency Affects the Microbiome and Reduces Intestinal Dysfunctions and Inflammation in Chronic Alcohol-Fed Mice. Int. J. Mol. Sci. 2021, 22, 12830. [Google Scholar] [CrossRef]
- Bajaj, J.S. Alcohol, Liver Disease and the Gut Microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 235–246. [Google Scholar] [CrossRef]
- Blanco, A.M.; Vallés, S.L.; Pascual, M.; Guerri, C. Involvement of TLR4/Type I IL-1 Receptor Signaling in the Induction of Inflammatory Mediators and Cell Death Induced by Ethanol in Cultured Astrocytes. J. Immunol. 2005, 175, 6893–6899. [Google Scholar] [CrossRef]
- Fernandez-Lizarbe, S.; Pascual, M.; Guerri, C. Critical Role of TLR4 Response in the Activation of Microglia Induced by Ethanol. J. Immunol. 2009, 183, 4733–4744. [Google Scholar] [CrossRef]
- Pascual, M.; Montesinos, J.; Marcos, M.; Torres, J.; Costa-Alba, P.; García-García, F.; Laso, F.; Guerri, C. Gender Differences in the Inflammatory Cytokine and Chemokine Profiles Induced by Binge Ethanol Drinking in Adolescence. Addict. Biol. 2017, 22, 1829–1841. [Google Scholar] [CrossRef]
- Frosali, S.; Pagliari, D.; Gambassi, G.; Landolfi, R.; Pandolfi, F.; Cianci, R. How the Intricate Interaction Among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J. Immunol. Res. 2015, 2015, 489821. [Google Scholar] [CrossRef] [PubMed]
- Caputi, V.; Giron, M.C. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson’s Disease. Int. J. Mol. Sci. 2018, 19, 1689. [Google Scholar] [CrossRef] [PubMed]
- Bäumler, A.J.; Sperandio, V. Interactions Between the Microbiota and Pathogenic Bacteria in the Gut. Nature 2016, 535, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact Sequence Variants Should Replace Operational Taxonomic Units in Marker-Gene Data Analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- Perpiñá-Clérigues, C.; Mellado, S.; Català-Senent, J.F.; Ibáñez, F.; Costa, P.; Marcos, M.; Guerri, C.; García-García, F.; Pascual, M. Lipidomic Landscape of Circulating Extracellular Vesicles Isolated from Adolescents Exposed to Ethanol Intoxication: A Sex Difference Study. Biol. Sex Differ. 2023, 14, 22. [Google Scholar] [CrossRef]
- Perpiñá-Clérigues, C.; Mellado, S.; Galiana-Roselló, C.; Fernández-Regueras, M.; Marcos, M.; García-García, F.; Pascual, M. Novel Insight into the Lipid Network of Plasma Extracellular Vesicles Reveal Sex-Based Differences in the Lipidomic Profile of Alcohol Use Disorder Patients. Biol. Sex Differ. 2024, 15, 10. [Google Scholar] [CrossRef]
- Wang, X.; Quinn, P.J. Endotoxins: Lipopolysaccharides of Gram-Negative Bacteria. In Endotoxins: Structure, Function and Recognition; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-9078-2. [Google Scholar]
- Li, Z.; Zhu, G.; Lei, X.; Tang, L.; Kong, G.; Shen, M.; Zhang, L.; Song, L. Genetic Support of the Causal Association Between Gut Microbiome and COVID-19: A Bidirectional Mendelian Randomization Study. Front. Immunol. 2023, 14, 1217615. [Google Scholar] [CrossRef]
- Bang, S.; Shin, Y.-H.; Ma, X.; Park, S.-M.; Graham, D.B.; Xavier, R.J.; Clardy, J. A Cardiolipin from Muribaculum Intestinale Induces Antigen-Specific Cytokine Responses. J. Am. Chem. Soc. 2023, 145, 23422–23426. [Google Scholar] [CrossRef]
- Gong, X.; Liu, L.; Li, X.; Xiong, J.; Xu, J.; Mao, D.; Liu, L. Neuroprotection of Cannabidiol in Epileptic Rats: Gut Microbiome and Metabolome Sequencing. Front. Nutr. 2022, 9, 1028459. [Google Scholar] [CrossRef]
- Ju, T.; Kong, J.Y.; Stothard, P.; Willing, B.P. Defining the Role of Parasutterella, a Previously Uncharacterized Member of the Core Gut Microbiota. ISME J. 2019, 13, 1520–1534. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Wu, S.; Lu, N.; Wang, Y.; Liu, H.; Dong, L.; Liu, T.; Shen, X. Parasutterella, in Association with Irritable Bowel Syndrome and Intestinal Chronic Inflammation. J. Gastroenterol. Hepatol. 2018, 33, 1844–1852. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhong, W.; Li, H.; Li, Q.; Qiu, Y.; Zheng, X.; Chen, H.; Zhao, X.; Zhang, S.; Zhou, Z.; et al. Alteration of Bile Acid Metabolism in the Rat Induced by Chronic Ethanol Consumption. FASEB J. 2013, 27, 3583–3593. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Shimizu, H.; Hagio, M.; Fukiya, S.; Watanabe, M.; Tanaka, Y.; Joe, G.-H.; Iwaya, H.; Yoshitsugu, R.; Kikuchi, K.; et al. 12α-Hydroxylated Bile Acid Induces Hepatic Steatosis with Dysbiosis in Rats. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158811. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of Fecal Microbial Communities in Patients with Liver Cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef]
- Sehgal, R.; Bedi, O.; Trehanpati, N. Role of Microbiota in Pathogenesis and Management of Viral Hepatitis. Front. Cell. Infect. Microbiol. 2020, 10, 341. [Google Scholar] [CrossRef]
- Ma, T.; Shen, X.; Shi, X.; Sakandar, H.A.; Quan, K.; Li, Y.; Jin, H.; Kwok, L.-Y.; Zhang, H.; Sun, Z. Targeting Gut Microbiota and Metabolism as the Major Probiotic Mechanism—An Evidence-Based Review. Trends Food Sci. Technol. 2023, 138, 178–198. [Google Scholar] [CrossRef]
- Li, J.; Sung, C.Y.J.; Lee, N.; Ni, Y.; Pihlajamäki, J.; Panagiotou, G.; El-Nezami, H. Probiotics Modulated Gut Microbiota Suppresses Hepatocellular Carcinoma Growth in Mice. Proc. Natl. Acad. Sci. USA 2016, 113, E1306–E1315. [Google Scholar] [CrossRef]
- Anshory, M.; Effendi, R.M.R.A.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Nijsten, T.E.C.; Nouwen, J.L.; Thio, H.B. Butyrate Properties in Immune-Related Diseases: Friend or Foe? Fermentation 2023, 9, 205. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Z.; Zhu, C.; Mou, H.; Kong, Q. Nondigestible Carbohydrates, Butyrate, and Butyrate-Producing Bacteria. Crit. Rev. Food Sci. Nutr. 2019, 59, S130–S152. [Google Scholar] [CrossRef]
- Bjørkhaug, S.T.; Aanes, H.; Neupane, S.P.; Bramness, J.G.; Malvik, S.; Henriksen, C.; Skar, V.; Medhus, A.W.; Valeur, J. Characterization of Gut Microbiota Composition and Functions in Patients with Chronic Alcohol Overconsumption. Gut Microbes 2019, 10, 663–675. [Google Scholar] [CrossRef]
- Kozik, A.J.; Nakatsu, C.H.; Chun, H.; Jones-Hall, Y.L. Age, Sex, and TNF Associated Differences in the Gut Microbiota of Mice and Their Impact on Acute TNBS Colitis. Exp. Mol. Pathol. 2017, 103, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, N.; Nam, R.H.; Sohn, S.H.; Lee, S.M.; Choi, D.; Yoon, H.; Kim, Y.S.; Lee, H.S.; Lee, D.H. Probiotics Reduce Repeated Water Avoidance Stress-Induced Colonic Microinflammation in Wistar Rats in a Sex-Specific Manner. PLoS ONE 2017, 12, e0188992. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, G.; Giordano, M.; Nunnari, G.; Bertino, G.; Malaguarnera, M. Gut Microbiota in Alcoholic Liver Disease: Pathogenetic Role and Therapeutic Perspectives. World J. Gastroenterol. 2014, 20, 16639–16648. [Google Scholar] [CrossRef] [PubMed]
- Petit, G.; Luminet, O.; Uva, M.C.d.S.; Monhonval, P.; Leclercq, S.; Spilliaert, Q.; Zammit, F.; Maurage, P.; de Timary, P. Gender Differences in Affects and Craving in Alcohol-Dependence: A Study During Alcohol Detoxification. Alcohol. Clin. Exp. Res. 2017, 41, 421–431. [Google Scholar] [CrossRef]
- Leclercq, S.; Stärkel, P.; Delzenne, N.M.; de Timary, P. The Gut Microbiota: A New Target in the Management of Alcohol Dependence? Alcohol 2019, 74, 105–111. [Google Scholar] [CrossRef]
- Mitchell, M.R.; Potenza, M.N. Importance of Sex Differences in Impulse Control and Addictions. Front. Psychiatry 2015, 6, 24. [Google Scholar] [CrossRef]
- Dukić, M.; Radonjić, T.; Jovanović, I.; Zdravković, M.; Todorović, Z.; Kraišnik, N.; Aranđelović, B.; Mandić, O.; Popadić, V.; Nikolić, N.; et al. Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. Int. J. Mol. Sci. 2023, 24, 3735. [Google Scholar] [CrossRef]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Shi, L.; Du, X.; Zuo, B.; Hu, J.; Cao, W. Qige Huxin Formula Attenuates Isoprenaline-Induced Cardiac Fibrosis in Mice via Modulating Gut Microbiota and Protecting Intestinal Integrity. Evid.-Based Complement. Altern. Med. ECAM 2022, 2022, 2894659. [Google Scholar] [CrossRef]
- Jung, S.-J.; Hwang, J.-H.; Park, E.-O.; Lee, S.-O.; Chung, Y.-J.; Chung, M.-J.; Lim, S.; Lim, T.-J.; Ha, Y.; Park, B.-H.; et al. Regulation of Alcohol and Acetaldehyde Metabolism by a Mixture of Lactobacillus and Bifidobacterium Species in Human. Nutrients 2021, 13, 1875. [Google Scholar] [CrossRef]
- Dubinkina, V.B.; Tyakht, A.V.; Odintsova, V.Y.; Yarygin, K.S.; Kovarsky, B.A.; Pavlenko, A.V.; Ischenko, D.S.; Popenko, A.S.; Alexeev, D.G.; Taraskina, A.Y.; et al. Links of Gut Microbiota Composition with Alcohol Dependence Syndrome and Alcoholic Liver Disease. Microbiome 2017, 5, 141. [Google Scholar] [CrossRef] [PubMed]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.-H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the Classification of Cultured and Uncultured Bacteria and Archaea Using 16S rRNA Gene Sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pu, J.; Lu, S.; Bai, X.; Wu, Y.; Jin, D.; Cheng, Y.; Zhang, G.; Zhu, W.; Luo, X.; et al. Species-Level Analysis of Human Gut Microbiota With Metataxonomics. Front. Microbiol. 2020, 11, 2029. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Unno, T.; Kim, B.-Y.; Park, M.-S. Sex Differences in Gut Microbiota. World J. Mens Health 2020, 38, 48–60. [Google Scholar] [CrossRef]
- Pascual, M.; Montesinos, J.; Montagud-Romero, S.; Forteza, J.; Rodríguez-Arias, M.; Miñarro, J.; Guerri, C. TLR4 Response Mediates Ethanol-Induced Neurodevelopment Alterations in a Model of Fetal Alcohol Spectrum Disorders. J. Neuroinflamm. 2017, 14, 145. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
Differentially Abundant Taxa | |||
---|---|---|---|
Comparison | Under-Represented | Non Diff-Represented | Over-Represented |
F-WT-Et vs. M-WT-Et | 25 | 625 | 13 |
F-WT-Et vs. F-WT | 15 | 601 | 14 |
M-WT-Et vs. M-WT | 14 | 654 | 11 |
F-WT-Et vs. F-KO-Et | 27 | 581 | 22 |
M-WT-Et vs. M-KO-Et | 15 | 642 | 37 |
ASV | BaseMean | Log2 Fold Change | p-Value | p-Adj | Phylum | |
---|---|---|---|---|---|---|
F-WT-Et vs. M-WT-Et | ASV14 | 158.7571 | −22.7539 | 2.4563 × 10−54 | 2.3532 × 10−51 | Bacteroidota |
ASV19 | 130.0756 | −22.7215 | 5.4090 × 10−48 | 2.5909 × 10−45 | Bacteroidota | |
ASV9 | 211.5929 | −23.6201 | 6.5203 × 10−34 | 2.0821 × 10−31 | Firmicutes | |
F-WT-Et vs. F-WT | ASV9 | 211.5929 | −23.2442 | 6.90612 × 10−33 | 5.3039 × 10−30 | Firmicutes |
ASV93 | 44.7947 | 23.34074 | 7.3835 × 10−32 | 2.8353 × 10−29 | Firmicutes | |
ASV34 | 91.2388 | −24.3693 | 1.3663 × 10−28 | 3.4978 × 10−26 | Firmicutes | |
M-WT-Et vs. M-WT | ASV14 | 158.7571 | 23.3235 | 6.99656 × 10−68 | 6.0380 × 10−65 | Bacteroidota |
ASV19 | 130.0756 | 23.6099 | 3.51042 × 10−61 | 1.5148 × 10−58 | Bacteroidota | |
ASV85 | 53.5526 | 23.3412 | 2.8560 × 10−41 | 8.2157 × 10−39 | Bacteroidota |
ASV | BaseMean | Log2 Fold Change | p-Value | p-Adj | Phylum | |
---|---|---|---|---|---|---|
F-WT-Et vs. F-KO-Et | ASV14 | 158.7571 | −26.1294 | 2.2666 × 10−71 | 2.2144 × 10−68 | Bacteroidota |
ASV19 | 130.0756 | −25.7657 | 2.0256 × 10−61 | 9.8949 × 10−59 | Bacteroidota | |
ASV213 | 15.5657 | 46.8328 | 3.6968 × 10−54 | 1.2039 × 10−51 | Firmicutes | |
M-WT-Et vs. M-KO-Et | ASV175 | 21.2626 | 30.5586 | 2.2029 × 10−38 | 1.6103 × 10−35 | Bacteroidota |
ASV335 | 8.7071 | 48.2812 | 6.3828 × 10−34 | 2.3329 × 10−31 | Firmicutes | |
ASV201 | 17.4193 | 47.6912 | 1.1312 × 10−32 | 2.7565 × 10−30 | Firmicutes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Pino, M.; Mellado, S.; Cuesta, C.M.; Grillo-Risco, R.; García-García, F.; Pascual, M. Metagenomics Reveals Sex-Based Differences in Murine Fecal Microbiota Profiles Induced by Chronic Alcohol Consumption. Int. J. Mol. Sci. 2024, 25, 12534. https://doi.org/10.3390/ijms252312534
Domínguez-Pino M, Mellado S, Cuesta CM, Grillo-Risco R, García-García F, Pascual M. Metagenomics Reveals Sex-Based Differences in Murine Fecal Microbiota Profiles Induced by Chronic Alcohol Consumption. International Journal of Molecular Sciences. 2024; 25(23):12534. https://doi.org/10.3390/ijms252312534
Chicago/Turabian StyleDomínguez-Pino, Manuel, Susana Mellado, Carlos M. Cuesta, Rubén Grillo-Risco, Francisco García-García, and María Pascual. 2024. "Metagenomics Reveals Sex-Based Differences in Murine Fecal Microbiota Profiles Induced by Chronic Alcohol Consumption" International Journal of Molecular Sciences 25, no. 23: 12534. https://doi.org/10.3390/ijms252312534
APA StyleDomínguez-Pino, M., Mellado, S., Cuesta, C. M., Grillo-Risco, R., García-García, F., & Pascual, M. (2024). Metagenomics Reveals Sex-Based Differences in Murine Fecal Microbiota Profiles Induced by Chronic Alcohol Consumption. International Journal of Molecular Sciences, 25(23), 12534. https://doi.org/10.3390/ijms252312534