Insight into the Thermal Washing Mechanism of Sodium Lignosulfonate Alkyl/Sodium Persulfate Compound on Oily Sludge
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oxidation Effects of Oil Components During Thermal Washing Processes
2.1.1. Effect of pH on the Removal Rate of Petroleum Hydrocarbons
2.1.2. Effect of LSA Concentration on the Removal Rate of Petroleum Hydrocarbons
2.1.3. Effect of SD Concentration on the Rate of Petroleum Hydrocarbon Removal
2.1.4. Effect of Reaction System Temperature on the Petroleum Hydrocarbon Removal Rate
2.2. Infrared Spectroscopic Analysis of Oil Sludge Thermally Washed with SD/LSA
2.2.1. Reaction Between LSA and SD
2.2.2. Reaction of Petroleum Hydrocarbons with LSA and SD
2.2.3. Infrared Spectral Analysis of SD Before and After Reaction with Clean Soil
2.3. Physicochemical Characterization of Oil Hydrocarbon Components with SD/LSA
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Simulated Oily Sludge
3.3. Oxidative Degradation Experiment of Simulated Oily Sludge
3.4. Physicochemical Properties of the Reaction Between Sodium Persulfate and Sodium Lignosulfonate Alkylate
3.4.1. Infrared Characterization
3.4.2. Surface Tension Measurement
3.4.3. pH Measurement
3.4.4. Foam Stability Assessment
3.4.5. Determination of HLB Value
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teng, Q.; Zhang, D.; Yang, C. A review of the application of different treatment processes for oily sludge. Environ. Sci. Pollut. Res. 2021, 28, 121–132. [Google Scholar] [CrossRef]
- Buzmakov, S.A.; Khotyanovskaya, Y.V. Degradation and pollution of lands under the influence of oil resources exploitation. Appl. Geochem. 2020, 113, 104443. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Liang, H.; Chen, B.; Liu, Y.; Ma, Z.; Wang, Z. Characterization and treatment of oily sludge: A systematic review. Environ. Pollut. 2023, 123245. [Google Scholar] [CrossRef] [PubMed]
- Karthick, A.; Roy, B.; Chattopadhyay, P. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. J. Environ. Manag. 2019, 243, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yao, M.; Liu, L.; Qin, C.; Qin, B.; Deng, N.; Liang, C.; Yao, S. Mechanism and characteristics of oil recovery from oily sludge by sodium lignosulfonate treatment. ACS Omega 2021, 6, 25819–25827. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Ma, Y.; Liu, L.; Qin, C.; Huang, H.; Zhang, Z.; Liang, C.; Yao, S. Efficient separation and recovery of petroleum hydrocarbon from oily sludge by a combination of adsorption and demulsification. Int. J. Mol. Sci. 2022, 23, 7504. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, Q.; Bai, Y.; Li, H.; Xue, J.; Gao, Y.; Cheng, D. Optimization and mechanism of oily sludge treatment by a novel combined surfactants with activated-persulfate method. Sci. Total Environ. 2021, 800, 149525. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef]
- Bouzid, I.; Maire, J.; Brunol, E.; Caradec, S.; Fatin-Rouge, N. Compatibility of surfactants with activated-persulfate for the selective oxidation of PAH in groundwater remediation. J. Environ. Chem. Eng. 2017, 5, 6098–6106. [Google Scholar] [CrossRef]
- Trellu, C.; Oturan, N.; Pechaud, Y.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Anodic oxidation of surfactants and organic compounds entrapped in micelles-Selective degradation mechanisms and soil washing solution reuse. Water Res. 2017, 118, 1–11. [Google Scholar] [CrossRef]
- Huguenot, D.; Mousset, E.; van Hullebusch, E.D.; Oturan, M.A. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manag. 2015, 153, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Escribano, D.; De Salas, F.; Pardo, I.; Camarero, S. High-throughput screening assay for laccase engineering toward lignosulfonate valorization. Int. J. Mol. Sci. 2017, 18, 1793. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Zhao, D.; Liao, X.; Yan, X.; Huling, S.G.; Chai, T.; Tao, H. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J. Hazard. Mater. 2013, 254, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Shi, F.; You, H.; Wang, S. Integrated remediation for organic-contaminated site by forcing running-water to modify alkali-heat/persulfate via oxidation process transfer. Chemosphere 2021, 262, 128352. [Google Scholar] [CrossRef] [PubMed]
- Lominchar, M.A.; Lorenzo, D.; Romero, A.; Santos, A. Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. J. Chem. Technol. Biotechnol. 2018, 93, 1270–1278. [Google Scholar] [CrossRef]
- Xu, J.-C.; Yang, L.-H.; Yuan, J.-X.; Li, S.-Q.; Peng, K.-M.; Lu, L.-J.; Huang, X.-F.; Liu, J. Coupling surfactants with ISCO for remediating of NAPLs: Recent progress and application challenges. Chemosphere 2022, 303, 135004. [Google Scholar] [CrossRef]
- Ruwoldt, J. A critical review of the physicochemical properties of lignosulfonates: Chemical structure and behavior in aqueous solution, at surfaces and interfaces. Surfaces 2020, 3, 622–648. [Google Scholar] [CrossRef]
- Javanbakht, G.; Goual, L. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks. J. Contam. Hydrol. 2016, 185, 61–73. [Google Scholar] [CrossRef]
- Alwadani, N.; Fatehi, P. Synthetic and lignin-based surfactants: Challenges and opportunities. Carbon Resour. Convers. 2018, 1, 126–138. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, M.; Yang, D.; Qiu, X. Effects of pH on aggregation behavior of sodium lignosulfonate (NaLS) in concentrated solutions. J. Polym. Res. 2015, 22, 50. [Google Scholar] [CrossRef]
- Davaritouchaee, M.; Hiscox, W.C.; Terrell, E.; Mancini, R.J.; Chen, S. Mechanistic studies of milled and Kraft lignin oxidation by radical species. Green Chem. 2020, 22, 1182–1197. [Google Scholar] [CrossRef]
- Madad, N.; Chebil, L.; Sanchez, C.; Ghoul, M. Effect of molecular weight distribution on chemical, structural and physicochemical properties of sodium lignosulfonates. RASAYAN J. Chem. 2011, 4, 189–202. [Google Scholar]
- Rudyk, S. Relationships between SARA fractions of conventional oil, heavy oil, natural bitumen and residues. Fuel 2018, 216, 330–340. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, M.; Yang, D.; Qiu, X. Effects of concentration and temperature on the rheological behavior of concentrated sodium lignosulfonate (NaLS) solutions. Holzforschung 2015, 69, 265–271. [Google Scholar] [CrossRef]
- Li, H.; Deng, Y.; Ye, H.; Xiao, L.; Qiu, X. Effect of Temperature on Polyelectrolyte Expansion of Lignosulfonate. BioResources 2015, 10, 575–587. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, G.; Deng, J.; Dong, M.; Murugadoss, V.; Liu, C.; Shao, Q.; Wu, S.; Guo, Z. Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chem. Lett. Rev. 2019, 12, 235–243. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Zhang, L.; Hou, Q. Characterization and comparison of lignin derived from corncob residues to better understand its potential applications. Int. J. Biol. Macromol. 2019, 134, 20–27. [Google Scholar] [CrossRef]
- Priyanto, S.; Pramudono, B.; Kusworo, T.D.; Aji, H.A.; Untoro, E.; Ratu, P. Synthesis Study of Surfactants Sodium Ligno Sulphonate (SLS) from Biomass Waste Using Fourier Transform Infra Red (FTIR). In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; p. 03030. [Google Scholar]
- Mukhamatdinov, I.I.; Sitnov, S.A.; Slavkina, O.V.; Bugaev, K.A.; Laikov, A.V.; Vakhin, A.V. The aquathermolysis of heavy oil from Riphean-Vendian complex with iron-based catalyst: FT-IR spectroscopy data. Pet. Sci. Technol. 2019, 37, 1410–1416. [Google Scholar] [CrossRef]
- Zojaji, I.; Esfandiarian, A.; Taheri-Shakib, J. Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy. Adv. Colloid Interface Sci. 2021, 289, 102314. [Google Scholar] [CrossRef]
- Li, Q.; Sun, D.; Chen, F.; Xu, H.; Xu, Z. New insights into interaction between oil and solid during hydrothermal treatment of oily sludge. J. Hazard. Mater. 2024, 471, 134358. [Google Scholar] [CrossRef] [PubMed]
- Aroke, U.; Abdulkarim, A.; Ogubunka, R. Fourier-transform infrared characterization of kaolin, granite, bentonite and barite. ATBU J. Environ. Technol. 2013, 6, 42–53. [Google Scholar]
- Chinese Industry Standard SY/T 5119-2016. Available online: https://www.doc88.com/p-9915935769799.html (accessed on 24 October 2024).
- Zhao, M.; Liu, D.; Li, Z.; Du, H.; Wang, J.; Chen, K.; Kong, X.; Li, J. Inspection for desorption behavior and desorption mechanism of oily sludge by thermodynamics and kinetics analysis. J. Taiwan Inst. Chem. Eng. 2018, 93, 226–233. [Google Scholar] [CrossRef]
- Nie, S.; Liu, X.; Wu, Z.; Zhan, L.; Yin, G.; Yao, S.; Song, H.; Wang, S. Kinetics study of oxidation of the lignin model compounds by chlorine dioxide. Chem. Eng. J. 2014, 241, 410–417. [Google Scholar] [CrossRef]
- Shi, L.; Ge, J.; Nie, S.; Qin, C.; Yao, S. Effect of lignin structure on adsorbable organic halogens formation in chlorine dioxide bleaching. R. Soc. Open Sci. 2019, 6, 182024. [Google Scholar] [CrossRef]
- Song, X.; Chen, F.; Liu, S. A lignin-containing hemicellulose-based hydrogel and its adsorption behavior. BioResources 2016, 11, 6378–6392. [Google Scholar] [CrossRef]
- Zhang, X.; Song, F.; Taxipalati, M.; Wei, W.; Feng, F. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters. PLoS ONE 2014, 9, e114845. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Sun, H.; Yan, X.; Wang, G.; Zhou, Y.; Zhang, J. Synthesis and physiochemical performance evaluation of novel sulphobetaine zwitterionic surfactants from lignin for enhanced oil recovery. J. Mol. Liq. 2018, 249, 73–82. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Liu, H.; Zhu, L.; Xie, Y.; Ren, C.; Mo, X.; Liu, X.; Liang, C.; Deng, G.; Yao, S.; et al. Insight into the Thermal Washing Mechanism of Sodium Lignosulfonate Alkyl/Sodium Persulfate Compound on Oily Sludge. Int. J. Mol. Sci. 2024, 25, 12542. https://doi.org/10.3390/ijms252312542
Ma Y, Liu H, Zhu L, Xie Y, Ren C, Mo X, Liu X, Liang C, Deng G, Yao S, et al. Insight into the Thermal Washing Mechanism of Sodium Lignosulfonate Alkyl/Sodium Persulfate Compound on Oily Sludge. International Journal of Molecular Sciences. 2024; 25(23):12542. https://doi.org/10.3390/ijms252312542
Chicago/Turabian StyleMa, Yun, Hui Liu, Liuli Zhu, Yi Xie, Chuanqi Ren, Xiaorong Mo, Xiaoying Liu, Chen Liang, Gang Deng, Shuangquan Yao, and et al. 2024. "Insight into the Thermal Washing Mechanism of Sodium Lignosulfonate Alkyl/Sodium Persulfate Compound on Oily Sludge" International Journal of Molecular Sciences 25, no. 23: 12542. https://doi.org/10.3390/ijms252312542
APA StyleMa, Y., Liu, H., Zhu, L., Xie, Y., Ren, C., Mo, X., Liu, X., Liang, C., Deng, G., Yao, S., & Qin, C. (2024). Insight into the Thermal Washing Mechanism of Sodium Lignosulfonate Alkyl/Sodium Persulfate Compound on Oily Sludge. International Journal of Molecular Sciences, 25(23), 12542. https://doi.org/10.3390/ijms252312542