Comprehensive Clinical Genetics, Molecular and Pathological Evaluation Efficiently Assist Diagnostics and Therapy Selection in Breast Cancer Patients with Hereditary Genetic Background
Abstract
:1. Introduction
2. Results
2.1. Detection Rate and Spectrum of Pathogenic/Likely Pathogenic Variants in HBOC-Associated Genes in Hungarian Patients
2.2. Double Mutations in HBOC Predisposition Genes Among Breast and Ovarian Cancer Patients
2.3. Association of P/LP Variants with Clinicopathological Parameters and Family History of Cancer
2.4. Secondary Genetic Findings
2.5. Analytical Performance of Hereditary Cancer Panel Testing
3. Discussion
4. Methods and Materials
4.1. Patients and Clinical Genetic Workflow
4.2. Molecular Genetics Testing and Splice Effect Detection
4.3. Molecular Genetics and Bioinformatics Analyses
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stadler, Z.K.; Maio, A.; Chakravarty, D.; Kemel, Y.; Sheehan, M.; Salo-Mullen, E.; Tkachuk, K.; Fong, C.J.; Nguyen, B.; Erakky, A.; et al. Therapeutic Implications of Germline Testing in Patients with Advanced Cancers. J. Clin. Oncol. 2021, 39, 2698–2709. [Google Scholar] [CrossRef]
- Daly, M.B.; Pal, T.; Berry, M.P.; Buys, S.S.; Dickson, P.; Domchek, S.M.; Elkhanany, A.; Friedman, S.; Goggins, M.; Hutton, M.L.; et al. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Hanson, H.; Kulkarni, A.; Loong, L.; Kavanaugh, G.; Torr, B.; Allen, S.; Ahmed, M.; Antoniou, A.C.; Cleaver, R.; Dabir, T.; et al. UK Consensus Recommendations for Clinical Management of Cancer Risk for Women with Germline Pathogenic Variants in Cancer Predisposition Genes: RAD51C, RAD51D, BRIP1 and PALB2. J. Med. Genet. 2023, 60, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Arzanova, E.; Mayrovitz, H.N. The Epidemiology of Breast Cancer. In Breast Cancer; Mayrovitz, H.N., Ed.; Exon Publications: Brisbane, QLD, Australia, 2022; ISBN 978-0-645-33203-2. [Google Scholar]
- Kenessey, I.; Szőke, G.; Dobozi, M.; Szatmári, I.; Wéber, A.; Fogarassy, G.; Nagy, P.; Kásler, M.; Polgár, C.; Vathy-Fogarassy, Á. Comparison of Cancer Survival Trends in Hungary in the Periods 2001-2005 and 2011-2015 according to a Population-Based Cancer Registry. Pathol. Oncol. Res. 2022, 28, 1610668. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Easton, D.F. Models of Genetic Susceptibility to Breast Cancer. Oncogene 2006, 25, 5898–5905. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Pharoah, P.D.P.; McMullan, G.; Day, N.E.; Stratton, M.R.; Peto, J.; Ponder, B.J.; Easton, D.F. A Comprehensive Model for Familial Breast Cancer Incorporating BRCA1, BRCA2 and Other Genes. Br. J. Cancer 2002, 86, 76–83. [Google Scholar] [CrossRef]
- Wendt, C.; Margolin, S. Identifying Breast Cancer Susceptibility Genes—a Review of the Genetic Background in Familial Breast Cancer. Acta Oncol. 2019, 58, 135–146. [Google Scholar] [CrossRef]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef]
- Weiss, J.M.; Gupta, S.; Burke, C.A.; Axell, L.; Chen, L.-M.; Chung, D.C.; Clayback, K.M.; Dallas, S.; Felder, S.; Gbolahan, O.; et al. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 1.2021. J. Natl. Compr. Cancer Netw. 2021, 19, 1122–1132. [Google Scholar]
- Brock, P.; Geurts, J.L.; Van Galen, P.; Blouch, E.; Welch, J.; Kunz, A.; Desrosiers, L.; Gauerke, J.; Hyde, S. Hereditary Endocrine Tumours: Current State-Of-The-Art and Research Opportunities: Challenges and Opportunities in Genetic Counseling for Hereditary Endocrine Neoplasia Syndromes. Endocr. Relat. Cancer 2020, 27, T65–T75. [Google Scholar] [CrossRef] [PubMed]
- Patócs, A.; Nagy, P.; Papp, J.; Bozsik, A.; Antal, B.; Grolmusz, V.K.; Pócza, T.; Butz, H. Cost-Effectiveness of Genetic Testing of Endocrine Tumor Patients Using a Comprehensive Hereditary Cancer Gene Panel. J. Clin. Endocrinol. Metab. 2024, 109, 3220–3233. [Google Scholar] [CrossRef] [PubMed]
- Illumina TruSight Hereditary Cancer Panel. Target 113 Cancer-Associated Genes. Available online: https://www.illumina.com/products/by-type/clinical-research-products/trusight-cancer-hereditary.html (accessed on 16 July 2024).
- Chen, B.; Zhang, G.; Li, X.; Ren, C.; Wang, Y.; Li, K.; Mok, H.; Cao, L.; Wen, L.; Jia, M.; et al. Comparison of BRCA versus Non-BRCA Germline Mutations and Associated Somatic Mutation Profiles in Patients with Unselected Breast Cancer. Aging 2020, 12, 3140–3155. [Google Scholar] [CrossRef] [PubMed]
- Guindalini, R.S.C.; Viana, D.V.; Kitajima, J.P.F.W.; Rocha, V.M.; López, R.V.M.; Zheng, Y.; Freitas, É.; Monteiro, F.P.M.; Valim, A.; Schlesinger, D.; et al. Detection of Germline Variants in Brazilian Breast Cancer Patients Using Multigene Panel Testing. Sci. Rep. 2022, 12, 4190. [Google Scholar] [CrossRef] [PubMed]
- Kratz, C.P.; Freycon, C.; Maxwell, K.N.; Nichols, K.E.; Schiffman, J.D.; Evans, D.G.; Achatz, M.I.; Savage, S.A.; Weitzel, J.N.; Garber, J.E.; et al. Analysis of the Li-Fraumeni Spectrum Based on an International Germline TP53 Variant Data Set: An International Agency for Research on Cancer TP53 Database Analysis. JAMA Oncol. 2021, 7, 1800–1805. [Google Scholar] [CrossRef]
- Miller, D.T.; Lee, K.; Chung, W.K.; Gordon, A.S.; Herman, G.E.; Klein, T.E.; Stewart, D.R.; Amendola, L.M.; Adelman, K.; Bale, S.J.; et al. ACMG SF v3.0 List for Reporting of Secondary Findings in Clinical Exome and Genome Sequencing: A Policy Statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1381–1390. [Google Scholar] [CrossRef]
- Bilyalov, A.; Nikolaev, S.; Shigapova, L.; Khatkov, I.; Danishevich, A.; Zhukova, L.; Smolin, S.; Titova, M.; Lisica, T.; Bodunova, N.; et al. Application of Multigene Panels Testing for Hereditary Cancer Syndromes. Biology 2022, 11, 1461. [Google Scholar] [CrossRef]
- Bozsik, A.; Pócza, T.; Papp, J.; Vaszkó, T.; Butz, H.; Patócs, A.; Oláh, E. Complex Characterization of Germline Large Genomic Rearrangements of the BRCA1 and BRCA2 Genes in High-Risk Breast Cancer Patients-Novel Variants from a Large National Center. Int. J. Mol. Sci. 2020, 21, 4650. [Google Scholar] [CrossRef]
- Tischkowitz, M.; Balmaña, J.; Foulkes, W.D.; James, P.; Ngeow, J.; Schmutzler, R.; Voian, N.; Wick, M.J.; Stewart, D.R.; Pal, T.; et al. Management of Individuals with Germline Variants in PALB2: A Clinical Practice Resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1416–1423. [Google Scholar] [CrossRef]
- Butz, H.; Nagy, P.; Papp, J.; Bozsik, A.; Grolmusz, V.K.; Pócza, T.; Oláh, E.; Patócs, A. PALB2 Variants Extend the Mutational Profile of Hungarian Patients with Breast and Ovarian Cancer. Cancers 2023, 15, 4350. [Google Scholar] [CrossRef]
- Hu, C.; Polley, E.C.; Yadav, S.; Lilyquist, J.; Shimelis, H.; Na, J.; Hart, S.N.; Goldgar, D.E.; Shah, S.; Pesaran, T.; et al. The Contribution of Germline Predisposition Gene Mutations to Clinical Subtypes of Invasive Breast Cancer From a Clinical Genetic Testing Cohort. J. Natl. Cancer Inst. 2020, 112, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020, 38, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.M.; Robson, M.E.; Ventz, S.; Santa-Maria, C.A.; Nanda, R.; Marcom, P.K.; Shah, P.D.; Ballinger, T.J.; Yang, E.S.; Vinayak, S.; et al. TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. J. Clin. Oncol. 2020, 38, 4274–4282. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, K.C.; Frone, M.N.; Wegman-Ostrosky, T.; Khincha, P.P.; Kim, J.; Amadou, A.; Santiago, K.M.; Fortes, F.P.; Lemonnier, N.; Mirabello, L.; et al. Variable Population Prevalence Estimates of Germline TP53 Variants: A gnomAD-Based Analysis. Hum. Mutat. 2019, 40, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.; Woodward, E.R.; Bajalica-Lagercrantz, S.; Oliveira, C.; Frebourg, T. Germline TP53 Testing in Breast Cancers: Why, When and How? Cancers 2020, 12, 3762. [Google Scholar] [CrossRef]
- Butz, H.; Bozsik, A.; Grolmusz, V.; Szőcs, E.; Papp, J.; Patócs, A. Challenging Interpretation of Germline TP53 Variants Based on the Experience of a National Comprehensive Cancer Centre. Sci. Rep. 2023, 13, 14259. [Google Scholar] [CrossRef]
- Frebourg, T.; Bajalica Lagercrantz, S.; Oliveira, C.; Magenheim, R.; Evans, D.G. European Reference Network GENTURIS Guidelines for the Li-Fraumeni and Heritable TP53-Related Cancer Syndromes. Eur. J. Hum. Genet. 2020, 28, 1379–1386. [Google Scholar] [CrossRef]
- Roberts, M.E.; Jackson, S.A.; Susswein, L.R.; Zeinomar, N.; Ma, X.; Marshall, M.L.; Stettner, A.R.; Milewski, B.; Xu, Z.; Solomon, B.D.; et al. MSH6 and PMS2 Germ-Line Pathogenic Variants Implicated in Lynch Syndrome Are Associated with Breast Cancer. Genet. Med. 2018, 20, 1167–1174. [Google Scholar] [CrossRef]
- Stoll, J.; Rosenthal, E.; Cummings, S.; Willmott, J.; Bernhisel, R.; Kupfer, S.S. No Evidence of Increased Risk of Breast Cancer in Women with Lynch Syndrome Identified by Multigene Panel Testing. JCO Precis. Oncol. 2020, 4, 51–60. [Google Scholar] [CrossRef]
- Wang, X.; Brzosowicz, J.P.; Park, J.Y. Response to Roberts et al. 2018: Cohort Ascertainment and Methods of Analysis Impact the Association between Cancer and Genetic Predisposition—the Tale of Breast Cancer Risk and Lynch Syndrome Genes MSH6/PMS2. Genet. Med. 2019, 21, 2156–2157. [Google Scholar] [CrossRef]
- Ten Broeke, S.W.; Suerink, M.; Nielsen, M. Response to Roberts et al. 2018: Is Breast Cancer Truly Caused by MSH6 and PMS2 Variants or Is It Simply Due to a High Prevalence of These Variants in the Population? Genet. Med. 2019, 21, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Couch, F.J.; Shimelis, H.; Hu, C.; Hart, S.N.; Polley, E.C.; Na, J.; Hallberg, E.; Moore, R.; Thomas, A.; Lilyquist, J.; et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol. 2017, 3, 1190. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.J.; Da Silva, E.M.; Marra, A.; Gazzo, A.M.; Selenica, P.; Rai, V.K.; Mandelker, D.; Pareja, F.; Misyura, M.; D’Alfonso, T.M.; et al. Morphologic and Genomic Characteristics of Breast Cancers Occurring in Individuals with Lynch Syndrome. Clin. Cancer Res. 2022, 28, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Lerner-Ellis, J.; Mighton, C.; Lazaro, C.; Watkins, N.; Di Gioacchino, V.; Wong, A.; Chang, M.C.; Charames, G.S. Multigene Panel Testing for Hereditary Breast and Ovarian Cancer in the Province of Ontario. J. Cancer Res. Clin. Oncol. 2021, 147, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Susswein, L.R.; Marshall, M.L.; Nusbaum, R.; Vogel Postula, K.J.; Weissman, S.M.; Yackowski, L.; Vaccari, E.M.; Bissonnette, J.; Booker, J.K.; Cremona, M.L.; et al. Pathogenic and Likely Pathogenic Variant Prevalence among the First 10,000 Patients Referred for next-Generation Cancer Panel Testing. Genet. Med. 2016, 18, 823–832. [Google Scholar] [CrossRef]
- Macklin, S.; Durand, N.; Atwal, P.; Hines, S. Observed Frequency and Challenges of Variant Reclassification in a Hereditary Cancer Clinic. Genet. Med. 2018, 20, 346–350. [Google Scholar] [CrossRef]
- Mighton, C.; Charames, G.S.; Wang, M.; Zakoor, K.-R.; Wong, A.; Shickh, S.; Watkins, N.; Lebo, M.S.; Bombard, Y.; Lerner-Ellis, J. Variant Classification Changes over Time in BRCA1 and BRCA2. Genet. Med. 2019, 21, 2248–2254. [Google Scholar] [CrossRef]
- Singer, J.; Irmisch, A.; Ruscheweyh, H.-J.; Singer, F.; Toussaint, N.C.; Levesque, M.P.; Stekhoven, D.J.; Beerenwinkel, N. Bioinformatics for Precision Oncology. Brief. Bioinform. 2019, 20, 778–788. [Google Scholar] [CrossRef]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E. ACMG Clinical Laboratory Standards for Next-Generation Sequencing. Genet. Med. 2013, 15, 733–747. [Google Scholar] [CrossRef]
- McGuigan, A.; Whitworth, J.; Andreou, A.; Hearn, T.; Ambrose, J.C.; Arumugam, P.; Bevers, R.; Bleda, M.; Boardman-Pretty, F.; Genomics England Research Consortium; et al. Multilocus Inherited Neoplasia Allele Syndrome (MINAS): An Update. Eur. J. Hum. Genet. 2022, 30, 265–270. [Google Scholar] [CrossRef]
- Whitworth, J.; Skytte, A.-B.; Sunde, L.; Lim, D.H.; Arends, M.J.; Happerfield, L.; Frayling, I.M.; Van Minkelen, R.; Woodward, E.R.; Tischkowitz, M.D.; et al. Multilocus Inherited Neoplasia Alleles Syndrome: A Case Series and Review. JAMA Oncol. 2016, 2, 373. [Google Scholar] [CrossRef]
- Cavaillé, M.; Uhrhammer, N.; Privat, M.; Ponelle-Chachuat, F.; Gay-Bellile, M.; Lepage, M.; Viala, S.; Bidet, Y.; Bignon, Y.-J. Feedback of Extended Panel Sequencing in 1530 Patients Referred for Suspicion of Hereditary Predisposition to Adult Cancers. Clin. Genet. 2021, 99, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Nambot, S.; Sawka, C.; Bertolone, G.; Cosset, E.; Goussot, V.; Derangère, V.; Boidot, R.; Baurand, A.; Robert, M.; Coutant, C.; et al. Incidental Findings in a Series of 2500 Gene Panel Tests for a Genetic Predisposition to Cancer: Results and Impact on Patients. Eur. J. Med. Genet. 2021, 64, 104196. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, E.; Iacoboni, D.; Holle, J.; Michalski, S.T.; Esplin, E.D.; Yang, S.; Ouyang, K. Expanded Gene Panel Use for Women with Breast Cancer: Identification and Intervention Beyond Breast Cancer Risk. Ann. Surg. Oncol. 2017, 24, 3060–3066. [Google Scholar] [CrossRef] [PubMed]
- Dubsky, P.; Jackisch, C.; Im, S.-A.; Hunt, K.K.; Li, C.-F.; Unger, S.; Paluch-Shimon, S. BRCA Genetic Testing and Counseling in Breast Cancer: How Do We Meet Our Patients’ Needs? NPJ Breast Cancer 2024, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Kast, K.; John, E.M.; Hopper, J.L.; Andrieu, N.; Noguès, C.; Mouret-Fourme, E.; Lasset, C.; Fricker, J.-P.; Berthet, P.; Mari, V.; et al. Associations of Height, Body Mass Index, and Weight Gain with Breast Cancer Risk in Carriers of a Pathogenic Variant in BRCA1 or BRCA2: The BRCA1 and BRCA2 Cohort Consortium. Breast Cancer Res. 2023, 25, 72. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Antoniou, A.C.; Mooij, T.M.; Hooning, M.J.; Heemskerk-Gerritsen, B.A.; Noguès, C.; Laborde, L.; Breysse, E.; Stoppa-Lyonnet, D.; Gauthier-Villars, M.; et al. Risk-Reducing Salpingo-Oophorectomy, Natural Menopause, and Breast Cancer Risk: An International Prospective Cohort of BRCA1 and BRCA2 Mutation Carriers. Breast Cancer Res. 2020, 22, 8. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical Standards for the Interpretation and Reporting of Constitutional Copy-Number Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef]
Prospective Cohort | Retrospective Cohort | |||||
---|---|---|---|---|---|---|
Probands Meeting NCCN 2021.2 Criteria for HBOC | Probands Not Meeting NCCN 2021.2 Criteria for HBOC | |||||
Number (n) | Percentage (%) | Number (n) | Percentage (%) | Number (n) | Percentage (%) | |
Gender | ||||||
Female | 440 | 95.03% | 46 | 92% | 47 | 100% |
Male | 23 | 4.97% | 4 | 8% | 0 | 0% |
Cancer type | ||||||
Breast | 407 | 87.9% | 46 | 92% | 44 | 93.62% |
Male breast | 6 | 1.3% | 0 | 0% | 0 | 0% |
Ovarian | 26 | 5.62% | 0 | 0% | 3 | 6.38% |
Pancreatic | 15 | 3.24% | 0 | 0% | 0 | 0% |
Prostate | 9 | 1.94% | 4 | 8% | 0 | 0% |
Age of onset | ||||||
≤40 years | 107 | 23.11% | 0 | 0% | 19 | 40.43% |
>40 years | 355 | 76.67% | 50 | 100% | 28 | 59.57% |
not available | 1 | 0.22% | 0 | 0% | 0 | 0% |
Gene Symbol | Variant Name HGVS, cDNA § | Variant Name HGVS, Protein | Variant Type | NCBI ClinVar Database Class | ACMG Classification | Applied ACMG Criteria | Number of Patients | Variant Allele Frequency (per Patient) |
---|---|---|---|---|---|---|---|---|
ATM | c.1564_1565del | p.(Glu522Ilefs*43) | FS | P | P | PM3, PVS1, PM2, PP5 | 1 | 0.54 |
ATM | c.5318del | p.(Lys1773Serfs*3) | FS | P | P | PVS1, PM2, PP5 | 1 | 0.50 |
ATM | c.5932G>T | p.(Glu1978*) | NS | P | P | PM3, PS3, PVS1, PM2, PP5 | 1 | 0.40 |
ATM | c.6095G>A | p.(Arg2032Lys) | Mis | P/LP | P | PM3, PS3, PM2, PP3, PP5 | 3 | 0.52–0.55 |
ATM | c.7096G>T | p.(Glu2366*) | NS | P/LP | P | PM3, PS3, PVS1, PM2, PP5 | 1 | 0.42 |
BARD1 | c.1690C>T ∆ | p.(Gln564*) | NS | Confl. (15 P; 1 VUS) | P | PS4, PS3, PVS1, PM2, PP5 | 2 | 0.41–0.38 |
BARD1 | c.1932_1933del | p.(Cys645*) | FS | P/LP | P | PS4, PVS1, PM2, PP5 | 1 | 0.51 |
BARD1 | c.2300_2301del | p.(Val767Aspfs*4) | FS | P/LP | P | PS3, PS4, PVS1, PM2, PP5 | 1 | 0.54 |
BRCA1 | c.181T>G | p.(Cys61Gly) | Mis | P | P | PS3, PS4, PP1, PM2, PM5, PP3, PM1, PP5 | 7 | 0.40–0.56 |
BRCA1 | c.3700_3704del | p.(Val1234Glnfs*8) | FS | P | P | PS4, PP1, PVS1, PM2, PP5 | 1 | 0.50 |
BRCA1 | c.3756_3759del | p.(Ser1253Argfs*10) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.49 |
BRCA1 | c.3901_3902del | p.(Ser1301*) | NS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.50 |
BRCA1 | c.3968_3971del | p.(Gln1323Argfs*12) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.47 |
BRCA1 | c.416dup | p.(Ser140Glufs*2) | FS | P | P | PVS1, PM2, PP5 | 1 | 0.58 |
BRCA1 | c.4986+4A>T | p.(?) | Splice | P/LP | P | PS3, PS4, PM2, PP3, PP5 | 1 | 0.55 |
BRCA1 | c.5251C>T | p.(Arg1751*) | NS | P | P | PS3, PS4, PVS1, PM2, PP5 | 2 | 0.40–0.50 |
BRCA1 | c.5266dup | p.(Gln1756Profs*74) | FS | P | P | PS4, PS3, PVS1, PM2, PP5 | 10 | 0.44–0.56 |
BRCA1 | c.5346G>A | p.(Trp1782*) | NS | P | P | PS3, PS4, PVS1, PM2, PP5 | 1 | 0.44 |
BRCA1 | c.5407-1G>A | p.(?) | Splice | P | P | PS3, PS4, PVS1, PM2, PP5 | 1 | 0.47 |
BRCA1 | c.68_69del | p.(Glu23Valfs*17) | FS | P | P | PS4, PS3, PVS1, PM2, PP5 | 1 | 0.61 |
BRCA2 | c.1542_1543del | p.(Glu514Aspfs*12) | FS | no data | LP | PVS1, PM2 | 1 | 0.52 |
BRCA2 | c.1813dup | p.(Ile605Asnfs*11) | FS | P | P | PM3, PVS1, PM2, PP5 | 1 | 0.52 |
BRCA2 | c.2808_2811del | p.(Ala938Profs*21) | FS | P | P | PS4, PVS1, PS2, PM2, PP5 | 2 | 0.42–0.46 |
BRCA2 | c.3483dup | p.(Ala1162Cysfs*2) | FS | no data | LP | PVS1, PM2 | 1 | 0.29 |
BRCA2 | c.3975_3978dup | p.(Ala1327Cysfs*4) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.48 |
BRCA2 | c.5145_5146del | p.(Tyr1716*) | FS | P | LP | PVS1, PM2 | 1 | 0.53 |
BRCA2 | c.5682C>G | p.(Tyr1894*) | NS | P | P | PM3, PVS1, PM2, PP5 | 1 | 0.43 |
BRCA2 | c.5934dup | p.(Ser1979*) | NS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.41 |
BRCA2 | c.5946del | p.(Ser1982Argfs*22) | FS | P | P | PS4, PS3, PVS1, PM2, PP5 | 1 | 0.47 |
BRCA2 | c.658_659del | p.(Val220Ilefs*4) | FS | P | P | PM3, PVS1, PM2, PP5 | 2 | 0.43–0.35 |
BRCA2 | c.7806-2A>G | p.(?) | Splice | P | P | PS4, PP1, PVS1, PM2, PP5 | 1 | 0.43 |
BRCA2 | c.7913_7917del | p.(Phe2638*) | NS | P | P | PS4, PP1, PVS1, PM2, PP5 | 1 | 0.40 |
BRCA2 | c.8168A>T | p.(Asp2723Val) | Mis | P/LP | P | PS3, PS4, PM2, PM5, PP3, PM1, PP5 | 1 | 0.41 |
BRCA2 | c.8249_8251del | p.(Lys2750del) | DEL | VUS | LP | PM2, PM4, PM1 | 2 | 0.38–0.41 |
BRCA2 | c.8378G>A | p.(Gly2793Glu) | Mis | Confl. (2P, 3 LP, 2 VUS) | P | PS3, PS4, PM2, PM5, PM1, PP3, PP5 | 1 | 0.54 |
BRCA2 | c.9097dup | p.(Thr3033Asnfs*11) | FS | P | P | PM3, PVS1, PM2, PP5 | 1 | 0.65 |
BRCA2 | c.9117G>A | p.(Pro3039=) | Splice | P | LP | PS4, PS3, PM2, PP3, PP5 | 1 | 0.48 |
BRCA2 | c.9148C>T | p.(Gln3050*) | NS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.49 |
BRCA2 | c.9382C>T | p.(Arg3128*) | NS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.47 |
BRCA2 | c.9403del | p.(Leu3135Phefs*28) | FS | P | P | PS4, PVS1, PM2, PP5 | 2 | 0.60–0.44 |
BRIP1 | c.889A>T | p.(Lys297*) | NS | no data | LP | PVS1, PM2 | 1 | 0.56 |
BRIP1 | c.3525dup | p.(Ile1176Tyrfs*13) | FS | VUS | LP | PVS1, PM2, PP5 | 1 | 0.49 |
CDH1 | c.1901C>T | p.(Ala634Val) | Mis | P/LP | LP | PS4, PP1, PS3, PM2, PP5 | 1 | 0.46 |
CDKN2A | c.71G>C | p.(Arg24Pro) | Mis | P | LP | PS4, PP1, PS3, PM2, PP5 | 1 | 0.45 |
CHEK2 | c.1100del | p.(Thr367Metfs*15) | FS | Confl. (38 P, 1 VUS) | P | PS4, PVS1, PM2, PP5 | 4 | 0.47–0.55 |
CHEK2 | c.1139_1140del | p.(Leu380fs) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.68 |
CHEK2 | c.499G>A | p.(Gly167Arg) | Mis | Confl. (12 LP, 1 VUS) | P | PM3, PP1, PS3, PS1, PP3, PM2, PP5 | 1 | 0.47 |
CHEK2 | c.1421G>A | p.(Arg474His) | Mis | Confl. (2 LP, 6 VUS) | P | PS4, PM2, PM5, PM1, PP3, PP5 | 1 | 0.36 |
CHEK2 | c.277del | p.(Trp93Glyfs*17) | FS | P | P | PS4, PS3, PVS1, PM2, PP5 | 1 | 0.44 |
CHEK2 | c.434G>A | p.(Arg145Gln) | Mis | VUS | LP | PM2,PM1,PM5 | 1 | 0.44 |
CHEK2 | c.444+1G>A | p.(?) | Splice | Confl. (27 P, 2 LP, 1 VUS) | P | PM3, PS3, PVS1, PM2, PP5 | 1 | 0.50 |
MLH1 | c.870dup | p.(Phe291Ilefs*16) | FS | no data | LP | PVS1, PM2 | 1 | 0.43 |
MSH2 | c.1226_1227del | p.(Gln409Argfs*7) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.54 |
MSH2 | c.586C>T ∆ | p.(Pro196Ser) | Mis | Confl. (2 VUS, 1 LB) | LP | PP3, PM2, BP6 | 1 | 0.51 |
MSH2 | c.873_876del | p.(Thr292Leufs*8) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.40 |
MSH6 | c.3261dup ∆ | p.(Phe1088Leufs*5) | FS | P | P | PM3, PP1, PVS1, PM2, PP5 | 1 | 0.47 |
PMS2 | c.903+3A>G ¥ | p.(?) | Splice | VUS | LP ¥ | PM2, PP3, PS3 ¥ | 1 | 0.44 |
NF1 | c.3581A>G | p.(Asp1194Gly) | Mis | no data | LP | PM2,PP2,PM1,PP3 | 1 | 0.36 |
PALB2 | c.109-2A>G | p.(?) | Splice | LP | P | PS4, PVS1, PM2, PP5 | 1 | 0.33 |
PALB2 | c.1369G>T | p.(Glu457*) | NS | P | P | PVS1, PM2, PP5 | 1 | 0.31 |
PALB2 | c.2336C>A | p.(Ser779*) | NS | P/LP | LP | PVS1, PM2 | 1 | 0.43 |
PALB2 | c.509_510del | p.(Arg170Ilefs*14) | FS | P | P | PS4, PS3, PVS1, PM2, PP5 | 2 | 0.58–0.51 |
PTEN | c.413A>G | p.(Tyr138Cys) | Mis | VUS | LP | PM1, PP2, PM2, PP3 | 1 | 0.46 |
PTEN | c.493-1G>A ∆ | p.(?) | Splice | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.59 |
RAD51C | c.405-1G>A | p.(?) | Splice | LP | P | PVS1, PM2, PP5 | 1 | 0.47 |
RAD51C | c.955C>T | p.(Arg319*) | NS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.67 |
RAD51D | c.556C>T | p.(Arg186*) | NS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.26 |
RAD51D | c.757C>T | p.(Arg253*) | NS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.50 |
RAD51D | c.898del | p.(Arg300Aspfs*10) | NS | LP | LP | PVS1, PM2, PP5 | 1 | 0.46 |
RET † | c.2410G>A | p.(Val804Met) | Mis | P/LP | P | PS4, PP1, PS3, PM2, PM5, PP3, PP5 | 1 | 0.40 |
TMEM127 † $ | c.419G>A | p.(Cys140Tyr) | Mis | VUS | P $ | PM2, PP3, PM5 | 1 | 0.48 |
TP53 | c.323_329dup ∆ | p.(Leu111Phefs*40) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.42 |
TP53 | c.473G>A | p.(Arg158His) | Mis | P/LP | P | PS3, PS4, PP1, PM1, PP2, PM2, PM5, PP3, PP5 | 1 | 0.40 |
TP53 | c.614A>G | p.(Tyr205Cys) | Mis | P | P | PS3, PS4, PP1, PM1, PP2, PM2, PM5, PP3, PP5 | 1 | 0.22 £ |
TP53 | c.902del ∆ | p.(Pro301Glnfs*44) | FS | P | P | PS4, PVS1, PM2, PP5 | 1 | 0.48 |
BRCA1 | del(ex1–20) | p.(?) | DEL | P | P | 1A, 2C-1, 3A, 4C, 5G | 1 | HZ validated by MLPA |
BRCA1 | del(ex21–22) | p.(?) | DEL | P | P | 1A, 2E, 3A, 4C, 5G | 1 | HZ validated by MLPA |
BRCA1 | del(ex5–10) | p.(?) | DEL | P | P | 1A, 2E, 3A, 4C, 5G | 1 | HZ validated by MLPA |
BRCA1 | dup(ex13) | p.(?) | DUP | P | P | 1A, 2I, 3A, 4C, 5G | 1 | HZ validated by MLPA |
CHEK2 | del(ex9–10) | p.(?) | DEL | P | P | 1A, 2E, 3A, 4C, 5G | 2 | HZ validated by MLPA |
PALB2 | del(ex9–10) | p.(?) | DEL | P | P | 1A, 2E, 3A, 4C, 5G | 1 | HZ validated by MLPA |
PALB2 | del(ex11) | p.(?) | DEL | P | P | 1A, 2E, 3A, 4C, 5G | 1 | HZ validated by MLPA |
Proband’s Genotype | Proband’s Phenotype | Cancer Cases in Family |
---|---|---|
BRCA2(NM_000059.4):c.5682C>G p.(Tyr1894Ter) BRIP1(NM_032043.3):c.3525dup p.(Ile176TyrfsTer13) | breast cancer at age 47 | 1 breast cancer at the age of 41 1 breast cancer at the age of 51 |
BRCA2(NM_000059.4):c.8249_8251del p.(Lys2750del) ATM(NM_000051.4):c.1564_1565del p.(Glu522IlefsTer43) | breast cancer at age 30 | 1 breast cancer at the age of 51 1 breast cancer > 60 years of age |
BARD1(NM_000465.2):c.1932_1933del p.(Cys645*) ATM(NM_000051.4):c.6679C>T p.(Arg2227Cys) | breast cancer at age 44 | 3 breast cancer cases between the ages of 51–60 |
BRCA1(NM_007294.4):c.5266dup p.(Gln1756Profs*74) MSH6(NM_000179.3):c.3261del p.(Phe1088Serfs*2) | breast cancer at age 23 | 1 breast cancer > 60 years of age |
CHEK2(NM_007194.4):c.499G>A p.(Gly167Arg) CHEK2(NM_007194.4):del ex9–10 p.(?) | breast cancer at age 37 | 2 breast cancer cases between the ages of 51–60 years 1 breast cancer > 60 years of age |
Prospective Cohort Probands Meeting NCCN 2021.2 Criteria for HBOC | Prospective Cohort Probands Not Meeting NCCN 2021.2 Criteria for HBOC | Retrospective Cohort Probands | |
---|---|---|---|
Female breast cancer (n) | 407 | 46 | 44 |
Age of onset (years mean ± SD) | 47.1 ± 11.0 | 56.6 ± 8.2 | 43.3 ± 9.8 |
Histology-ductal | 83% (338/407) | 84.8% (39/46) | 79.6% (35/44) |
Histology-lobular | 8% (33/407) | 8.7% (4/46) | 6.8% (3/44) |
Histology-other/mixed/unknown | 9% (36/407) | 6.5% (3/46) | 13.6% (6/44) |
LumA | 25.6% (104/407) | 34.8% (16/46) | 43.2% (19/44) |
LumB-Her2- | 21.4% (87/407) | 26.1% (12/46) | 11.4% (5/44) |
LumB-Her2+ | 13.0% (53/407) | 15.2% (7/46) | 4.5% (2/44) |
Her2+ | 7.1% (29/407) | 15.2% (7/46) | 11.4% (5/44) |
TNBC | 25.3% (103/407) | 0 | 9.1% (4/44) |
Ki-67 index (mean ± SD) | 32.7 ± 26.1 | 26.1 ± 20.8 | 22.3 ± 23.0 |
Ovarian cancer (n) | 26 | 0 | 3 |
Age of onset (years mean ± SD) | 53.4 ± 12.5 | - | 36.3 ± 12.3 |
Histology-high grade serous | 65.4% (17/26) | - | 33.3% (1/3) |
Histology-non-serous other type | 15.4% (4/26) | - | 33.3% (1/3) |
Histology not available | 19.2% (5/26) | - | 33.3% (1/3) |
Pancreatic cancer (n) | 15 | 0 | 0 |
Age of onset (years mean ± SD) | 61.0 ± 10.0 | - | - |
Histology: PDAC | 100% (15/15) | - | - |
Prostate cancer (n) | 9 | 4 | 0 |
Age of onset (years mean ± SD) | 63.6 ± 4.4 | 65.0 ± 6.4 | 0 |
Histology-Gleason score (avg ± SD) | 7.8 ± 1.1 | 6.0 ± 0 | - |
Metastatic | 66.6% (6/9) | 0% (0/4) | - |
Male breast cancer (n) | 6 | 0 | 0 |
Age of onset (years mean ± SD) | 66.2 ± 9.7 | - | - |
Histology-ductal | 100% (6/6) | - | - |
Histology-lobular | 0 | - | - |
Histology-other/mixed/unknown | 0 | - | - |
LumA | 16.7% (1/6) | - | - |
LumB-Her2- | 33.3% (2/6) | - | - |
LumB-Her2+ | 33.3% (2/6) | - | - |
Her2+ | 0 | - | - |
TNBC | 0 | - | - |
Ki-67 index (mean ± SD) | 35.6 ± 17.6 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, P.; Papp, J.; Grolmusz, V.K.; Bozsik, A.; Pócza, T.; Oláh, E.; Patócs, A.; Butz, H. Comprehensive Clinical Genetics, Molecular and Pathological Evaluation Efficiently Assist Diagnostics and Therapy Selection in Breast Cancer Patients with Hereditary Genetic Background. Int. J. Mol. Sci. 2024, 25, 12546. https://doi.org/10.3390/ijms252312546
Nagy P, Papp J, Grolmusz VK, Bozsik A, Pócza T, Oláh E, Patócs A, Butz H. Comprehensive Clinical Genetics, Molecular and Pathological Evaluation Efficiently Assist Diagnostics and Therapy Selection in Breast Cancer Patients with Hereditary Genetic Background. International Journal of Molecular Sciences. 2024; 25(23):12546. https://doi.org/10.3390/ijms252312546
Chicago/Turabian StyleNagy, Petra, János Papp, Vince Kornél Grolmusz, Anikó Bozsik, Tímea Pócza, Edit Oláh, Attila Patócs, and Henriett Butz. 2024. "Comprehensive Clinical Genetics, Molecular and Pathological Evaluation Efficiently Assist Diagnostics and Therapy Selection in Breast Cancer Patients with Hereditary Genetic Background" International Journal of Molecular Sciences 25, no. 23: 12546. https://doi.org/10.3390/ijms252312546
APA StyleNagy, P., Papp, J., Grolmusz, V. K., Bozsik, A., Pócza, T., Oláh, E., Patócs, A., & Butz, H. (2024). Comprehensive Clinical Genetics, Molecular and Pathological Evaluation Efficiently Assist Diagnostics and Therapy Selection in Breast Cancer Patients with Hereditary Genetic Background. International Journal of Molecular Sciences, 25(23), 12546. https://doi.org/10.3390/ijms252312546