Neutrophils in the Spotlight—An Analysis of Neutrophil Function and Phenotype in ARDS
Abstract
:1. Introduction
1.1. Neutrophil Involvement in the Pathophysiology of Acute Respiratory Distress
1.2. Selection of the Investigated Surface Epitopes
2. Results
2.1. Demographic Data of the Included Patients
2.2. Macroscopic Properties of the Endotracheal Aspirate
2.3. Cytological Staining of the Endotracheal Aspirate
2.4. Cell Counts in Endotracheal Aspirate
2.5. Results of Flow Cytometry Measurements
2.5.1. Results of Dead or Alive Testing
2.5.2. Results of CD11b, CD66b and CD2L Expression on PMN Surfaces
2.5.3. Results of LOX-1 Expression on PMN Surfaces
2.5.4. Results of CD49d/CD29 Expression on PMN Surfaces
2.5.5. Results of fMLP-Receptor Expression on PMN Surfaces
2.6. Results of the ROS Measurements
3. Discussion
3.1. Interpretation of the Macroscopic Properties and Cytological Staining of the Endotracheal Aspirate
3.2. Results of Surface Epitope Distribution with and Without ARDS
3.2.1. Interpretation of CD11b Expression in ARDS
3.2.2. Interpretation of CD62L Expression in ARDS
3.2.3. Interpretation of CD66b Expression in ARDS
3.2.4. Interpretation of LOX-1 Expression in ARDS
3.2.5. Interpretation of fMLP-Receptor Expression in ARDS
3.2.6. Interpretation of CD49d/CD29 Expression in ARDS
3.3. Result Interpretation of ROS Measurements
3.4. Features and Limitations of the Selected Methods
3.4.1. Cell Count as Parameter for Process Optimization
3.4.2. Improving Process Quality for PMN Preparation
3.4.3. Cell Count Control as a Quality Feature
4. Materials and Methods
4.1. Vote of the Ethics Committee
4.2. Selection of the Patients
4.3. Sample Collection
4.4. Sample Preparation and Cell Isolation
4.5. Flow Cytometric Analysis of Surface Epitopes and ROS Production of PMNs
4.6. Experimental Procedure Surface Epitope Analysis
4.7. Experimental Procedure for PMN ROS Production
4.8. Flow Cytometric Measurement
4.9. Analysis of the Surface Epitope Tests
4.10. Analysis of ROS Measurements
4.11. Cell Counts in the Endotracheal Aspirate Using CASY
4.12. Cell Counts in Endotracheal Aspirate Using Flow Cytometry
4.13. Evaluation of the Flow Cytometric Data
4.14. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzano, F.; Yuste, E.; Colmenero, M.; Aranda, A.; García-Horcajadas, A.; Rivera, R.; Fernández-Mondéjar, E. Incidence of acute respiratory distress syndrome and its relation to age. J. Crit. Care 2005, 20, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.D.J.; Ware, L.B. Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes. Lancet 2022, 400, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Rubenfeld, G.D. Fifty Years of Research in ARDS. The Epidemiology of Acute Respiratory Distress Syndrome. A 50th Birthday Review. Am. J. Respir. Crit. Care Med. 2017, 195, 860–870. [Google Scholar] [CrossRef]
- Read by QxMD. Acute Respiratory Distress Syndrome: The Berlin Definition. Available online: https://read.qxmd.com/read/22797452/acute-respiratory-distress-syndrome-the-berlin-definition?redirected=slug (accessed on 9 September 2023).
- Tomashefski, J.F. Pulmonary pathology of acute respiratory distress syndrome. Clin. Chest Med. 2000, 21, 435–466. [Google Scholar] [CrossRef] [PubMed]
- Katzenstein, A.L.; Bloor, C.M.; Leibow, A.A. Diffuse alveolar damage—The role of oxygen, shock, and related factors. A review. Am. J. Pathol. 1976, 85, 209–228. [Google Scholar] [PubMed]
- Dal Nogare, A.R. Adult respiratory distress syndrome. Am. J. Med. Sci. 1989, 298, 413–430. [Google Scholar] [CrossRef]
- Parikh, S.M.; Mammoto, T.; Schultz, A.; Yuan, H.-T.; Christiani, D.; Karumanchi, S.A.; Sukhatme, V.P. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med. 2006, 3, e46. [Google Scholar] [CrossRef]
- Newman, W.; Beall, L.D.; Carson, C.W.; Hunder, G.G.; Graben, N.; Randhawa, Z.I.; Gopal, T.V.; Wiener-Kronish, J.; Matthay, M.A. Soluble E-selectin is found in supernatants of activated endothelial cells and is elevated in the serum of patients with septic shock. J. Immunol. 1993, 150, 644–654. [Google Scholar] [CrossRef]
- Yang, S.-C.; Tsai, Y.-F.; Pan, Y.-L.; Hwang, T.-L. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomed. J. 2021, 44, 439–446. [Google Scholar] [CrossRef]
- Segel, G.B.; Halterman, M.W.; Lichtman, M.A. The paradox of the neutrophil’s role in tissue injury. J. Leukoc. Biol. 2011, 89, 359–372. [Google Scholar] [CrossRef]
- Lin, W.-C.; Fessler, M.B. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell. Mol. Life Sci. 2021, 78, 4095–4124. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil Extracellular Traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef] [PubMed]
- Reiss, L.K.; Schuppert, A.; Uhlig, S. Inflammatory processes during acute respiratory distress syndrome: A complex system. Curr. Opin. Crit. Care 2018, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Folkesson, H.G.; Clerici, C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol. Rev. 2002, 82, 569–600. [Google Scholar] [CrossRef] [PubMed]
- Salton, F.; Confalonieri, P.; Campisciano, G.; Cifaldi, R.; Rizzardi, C.; Generali, D.; Pozzan, R.; Tavano, S.; Bozzi, C.; Lapadula, G.; et al. Cytokine Profiles as Potential Prognostic and Therapeutic Markers in SARS-CoV-2-Induced ARDS. J. Clin. Med. 2022, 11, 2951. [Google Scholar] [CrossRef]
- Ranjbar, M.; Cusack, R.P.; Whetstone, C.E.; Brister, D.L.; Wattie, J.; Wiltshire, L.; Alsaji, N.; Le Roux, J.; Cheng, E.; Srinathan, T.; et al. Immune Response Dynamics and Biomarkers in COVID-19 Patients. Int. J. Mol. Sci. 2024, 25, 6427. [Google Scholar] [CrossRef]
- Harless, W.W.; Lewis, B.; Qorri, B.; Abdulkhalek, S.; Szewczuk, M.R. Novel Therapeutic Target Critical for SARS-CoV-2 Infectivity and Induction of the Cytokine Release Syndrome. Cells 2023, 12, 1332. [Google Scholar] [CrossRef]
- Kraus, R.F.; Gruber, M.A. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front. Immunol. 2021, 12, 767175. [Google Scholar] [CrossRef]
- Lakschevitz, F.S.; Hassanpour, S.; Rubin, A.; Fine, N.; Sun, C.; Glogauer, M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp. Cell Res. 2016, 342, 200–209. [Google Scholar] [CrossRef]
- Akhmedov, A.; Sawamura, T.; Chen, C.-H.; Kraler, S.; Vdovenko, D.; Lüscher, T.F. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): A crucial driver of atherosclerotic cardiovascular disease. Eur. Heart J. 2021, 42, 1797–1807. [Google Scholar] [CrossRef]
- Sakurai, K.; Sawamura, T. Stress and vascular responses: Endothelial dysfunction via lectin-like oxidized low-density lipoprotein receptor-1: Close relationships with oxidative stress. J. Pharmacol. Sci. 2003, 91, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Futosi, K.; Fodor, S.; Mócsai, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 2013, 17, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Zhou, M.; Mócsai, A.; Lowell, C. Resting murine neutrophils express functional alpha 4 integrins that signal through Src family kinases. J. Immunol. 2001, 166, 4115–4123. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef]
- Kraus, R.F.; Gruber, M.A.; Kieninger, M. The influence of extracellular tissue on neutrophil function and its possible linkage to inflammatory diseases. Immun. Inflamm. Dis. 2021, 9, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Pugin, J.; Verghese, G.; Widmer, M.C.; Matthay, M.A. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit. Care Med. 1999, 27, 304–312. [Google Scholar] [CrossRef]
- Baker, D.; Amor, S.; Kang, A.S.; Schmierer, K.; Giovannoni, G. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Mult. Scler. Relat. Disord. 2020, 43, 102174. [Google Scholar] [CrossRef]
- Cox, R.A.; Burke, A.S.; Traber, D.L.; Herndon, D.N.; Hawkins, H.K. Production of pro-inflammatory polypeptides by airway mucous glands and its potential significance. Pulm. Pharmacol. Ther. 2007, 20, 172–177. [Google Scholar] [CrossRef]
- Basbaum, C.B.; Finkbeiner, W.E. Airway secretion: A cell-specific analysis. Horm. Metab. Res. = Horm. Stoffwechselforschung = Horm. Metab. 1988, 20, 661–667. [Google Scholar] [CrossRef]
- Sengeløv, H.; Kjeldsen, L.; Diamond, M.S.; Springer, T.A.; Borregaard, N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J. Clin. Investig. 1993, 92, 1467–1476. [Google Scholar] [CrossRef]
- Brodie, S.J.; de la Rosa, C.; Howe, J.G.; Crouch, J.; Travis, W.D.; Diem, K. Pediatric AIDS-associated lymphocytic interstitial pneumonia and pulmonary arterio-occlusive disease: Role of VCAM-1/VLA-4 adhesion pathway and human herpesviruses. Am. J. Pathol. 1999, 154, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.-H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef] [PubMed]
- Simms, H.H.; D’Amico, R. Increased PMN CD11b/CD18 expression following post-traumatic ARDS. J. Surg. Res. 1991, 50, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Chollet-Martin, S.; Jourdain, B.; Gibert, C.; Elbim, C.; Chastre, J.; Gougerot-Pocidalo, M.A. Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS. Am. J. Respir. Crit. Care Med. 1996, 154, 594–601. [Google Scholar] [CrossRef]
- Sabatier, F.; Bretelle, F.; D’ercole, C.; Boubli, L.; Sampol, J.; Dignat-George, F. Neutrophil activation in preeclampsia and isolated intrauterine growth restriction. Am. J. Obstet. Gynecol. 2000, 183, 1558–1563. [Google Scholar] [CrossRef]
- Kuhns, D.B.; Long Priel, D.A.; Gallin, J.I. Loss of L-selectin (CD62L) on human neutrophils following exudation in vivo. Cell. Immunol. 1995, 164, 306–310. [Google Scholar] [CrossRef]
- Stockfelt, M.; Christenson, K.; Andersson, A.; Björkman, L.; Padra, M.; Brundin, B.; Ganguly, K.; Asgeirsdottir, H.; Lindén, S.; Qvarfordt, I.; et al. Increased CD11b and Decreased CD62L in Blood and Airway Neutrophils from Long-Term Smokers with and without COPD. J. Innate Immun. 2020, 12, 480–489. [Google Scholar] [CrossRef]
- Skubitz, K.M.; Campbell, K.D.; Skubitz, A.P. CD66a, CD66b, CD66c, and CD66d each independently stimulate neutrophils. J. Leukoc. Biol. 1996, 60, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Eades-Perner, A.-M.; Thompson, J.; van der Putten, H.; Zimmermann, W. Mice Transgenic for the Human CGM6 Gene Express Its Product, the Granulocyte Marker CD66b, Exclusively in Granulocytes. Blood 1998, 91, 663–672. [Google Scholar] [CrossRef]
- Mahida, R.Y.; Matsumoto, S.; Matthay, M.A. Extracellular Vesicles in ARDS: New Insights into Pathogenesis with Novel Clinical Applications. In Annual Update in Intensive Care and Emergency Medicine 2020; Springer: Cham, Switzerland, 2020; pp. 53–65. [Google Scholar] [CrossRef]
- Bastarache, J.A.; Fremont, R.D.; Kropski, J.A.; Bossert, F.R.; Ware, L.B. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am. J. Physiology. Lung Cell. Mol. Physiol. 2009, 297, L1035–L1041. [Google Scholar] [CrossRef]
- Sun, X.; Singleton, P.A.; Letsiou, E.; Zhao, J.; Belvitch, P.; Sammani, S.; Chiang, E.T.; Moreno-Vinasco, L.; Wade, M.S.; Zhou, T.; et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am. J. Respir. Cell Mol. Biol. 2012, 47, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, S.; Müller, M.; Tan, G.L.A.; Pasion, K.A.; Hohlfeld, J.M.; Herrera, V.L.M.; Ruiz-Opazo, N. “Rogue” neutrophil-subset DEspR+CD11b+/CD66b+ immunotype is an actionable therapeutic target for neutrophilic inflammation-mediated tissue injury—Studies in human, macaque and rat LPS-inflammation models. Front. Immunol. 2022, 13, 1008390. [Google Scholar] [CrossRef]
- Hu, M.; Lin, X.; Du, Q.; Miller, E.J.; Wang, P.; Simms, H.H. Regulation of polymorphonuclear leukocyte apoptosis: Role of lung endothelium-epithelium bilayer transmigration. Am. J. Physiology. Lung Cell. Mol. Physiol. 2005, 288, L266–L274. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Masaki, T.; Sawamura, T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: Implications in endothelial dysfunction and atherosclerosis. Pharmacol. Ther. 2002, 95, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and atherosclerosis. Mediat. Inflamm. 2013, 2013, 152786. [Google Scholar] [CrossRef]
- Peyneau, M.; Granger, V.; Wicky, P.-H.; Khelifi-Touhami, D.; Timsit, J.-F.; Lescure, F.-X.; Yazdanpanah, Y.; Tran-Dinh, A.; Montravers, P.; Monteiro, R.C.; et al. Innate immune deficiencies are associated with severity and poor prognosis in patients with COVID-19. Sci. Rep. 2022, 12, 638. [Google Scholar] [CrossRef]
- Korkmaz, F.T.; Shenoy, A.T.; Symer, E.M.; Baird, L.A.; Odom, C.V.; Arafa, E.I.; Dimbo, E.L.; Na, E.; Molina-Arocho, W.; Brudner, M.; et al. Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury. JCI Insight 2022, 7, e149955. [Google Scholar] [CrossRef]
- Combadière, B.; Adam, L.; Guillou, N.; Quentric, P.; Rosenbaum, P.; Dorgham, K.; Bonduelle, O.; Parizot, C.; Sauce, D.; Mayaux, J.; et al. LOX-1-Expressing Immature Neutrophils Identify Critically-Ill COVID-19 Patients at Risk of Thrombotic Complications. Front. Immunol. 2021, 12, 752612. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, C.; Li, P.; Liu, Q.; Li, H.; Yu, C.; Deng, X.; Wang, J. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front. Immunol. 2023, 14, 1112196. [Google Scholar] [CrossRef]
- Yen, Y.-T.; Liao, F.; Hsiao, C.-H.; Kao, C.-L.; Chen, Y.-C.; Wu-Hsieh, B.A. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J. Virol. 2006, 80, 2684–2693. [Google Scholar] [CrossRef]
- Liu, Z.; Long, W.; Tu, M.; Chen, S.; Huang, Y.; Wang, S.; Zhou, W.; Chen, D.; Zhou, L.; Wang, M.; et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Liu, S.; Rose, D.M.; Schlaepfer, D.D.; McDonald, H.; Ginsberg, M.H. Phosphorylation of the integrin alpha 4 cytoplasmic domain regulates paxillin binding. J. Biol. Chem. 2001, 276, 40903–40909. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T. Leukocyte Adhesion Molecules. In Encyclopedia of Immunobiology, 3rd ed.; Ratcliffe, M.J.H., Ed.; Elsevier Science & Technology Books; Academic Press [Imprint]: Cambridge, MA, USA; Elsevier [Distributor]: San Diego, CA, USA; Saint Louis, MO, USA, 2016; pp. 505–511. ISBN 978-0-08-092152-5. [Google Scholar]
- Tissino, E.; Benedetti, D.; Herman, S.E.M.; ten Hacken, E.; Ahn, I.E.; Chaffee, K.G.; Rossi, F.M.; Dal Bo, M.; Bulian, P.; Bomben, R.; et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J. Exp. Med. 2018, 215, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.X.; Hagmann, W.K. VLA-4 antagonists: Potent inhibitors of lymphocyte migration. Med. Res. Rev. 2003, 23, 369–392. [Google Scholar] [CrossRef]
- Leitinger, B.; Hohenester, E. Mammalian collagen receptors. Matrix Biol. 2007, 26, 146–155. [Google Scholar] [CrossRef]
- Leitinger, B. Transmembrane collagen receptors. Annu. Rev. Cell Dev. Biol. 2011, 27, 265–290. [Google Scholar] [CrossRef]
- Kaczyńska, K.; Jampolska, M.; Wojciechowski, P.; Sulejczak, D.; Andrzejewski, K.; Zając, D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals 2023, 16, 192. [Google Scholar] [CrossRef]
- Windsor, A.C.; Mullen, P.G.; Fowler, A.A.; Sugerman, H.J. Role of the neutrophil in adult respiratory distress syndrome. Br. J. Surg. 1993, 80, 10–17. [Google Scholar] [CrossRef]
- Domnich, M.; Riedesel, J.; Pylaeva, E.; Kürten, C.H.L.; Buer, J.; Lang, S.; Jablonska, J. Oral Neutrophils: Underestimated Players in Oral Cancer. Front. Immunol. 2020, 11, 565683. [Google Scholar] [CrossRef]
- Rijkschroeff, P.; Jansen, I.D.C.; van der Weijden, F.A.; Keijser, B.J.F.; Loos, B.G.; Nicu, E.A. Oral polymorphonuclear neutrophil characteristics in relation to oral health: A cross-sectional, observational clinical study. Int. J. Oral Sci. 2016, 8, 191–198. [Google Scholar] [CrossRef]
- Sookhai, S.; Wang, J.J.; McCourt, M.; Kirwan, W.; Bouchier-Hayes, D.; Redmond, P. A novel therapeutic strategy for attenuating neutrophil-mediated lung injury in vivo. Ann. Surg. 2002, 235, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Hundhammer, T.; Gruber, M.; Wittmann, S. Paralytic Impact of Centrifugation on Human Neutrophils. Biomedicines 2022, 10, 2896. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A. Activation of neutrophils by interleukins-1 and -2 and tumor necrosis factors. Immunol. Ser. 1992, 57, 417–436. [Google Scholar] [PubMed]
- Rastorfer, I.I. Untersuchung des Alterseinflusses auf die Funktionalität von Neutrophilen Granulozyten und T-Zellen. Ph.D. Dissertation, Universität Regensburg, Regensburg, Germany, 2023. [Google Scholar]
- Doblinger, N.; Bredthauer, A.; Mohrez, M.; Hähnel, V.; Graf, B.; Gruber, M.; Ahrens, N. Impact of hydroxyethyl starch and modified fluid gelatin on granulocyte phenotype and function. Transfusion 2019, 59, 2121–2130. [Google Scholar] [CrossRef]
Number of Study Participants Without ARDS | n = 12 |
---|---|
Median age | 65.5 years |
Age Range | 38–76 years |
Sex | n = 3 female, n = 9 male |
VV-ECMO | n = 0 |
VA-ECMO | n = 2 |
Dialysis | n = 0 |
Number of Study Participants: Patient Group (with ARDS) | n = 10 |
---|---|
Median Age | 54.5 years |
Age Range | 44–84 years |
Sex | n = 7 female, n = 3 male |
VV-ECMO | n = 3 |
VA-ECMO | n = 0 |
Dialysis | n = 4 |
CASY | Homogenization Filtering Pipetting Loss Cell Isolation | Flow Cytometry |
---|---|---|
Native sample Endotracheal aspirate | Prepared Sample Aspirate | |
Cell content: 262/µL | > | Cell content: 11/µL |
Surface Epitopes | Coupled Dye | Product and Manufacturer |
---|---|---|
CD11b | PE | PE anti-human CD11b Clone: ICRF44 150 µg/mL BioLegend, San Diego, CA, USA |
CD62L | FITC | FITC anti-human CD62L Clone: DREG-56 BioLegend, San Diego, CA, USA |
CD66b | APC | APC anti-human CD66b Clone: G10F5 200 µg/mL BioLegend, San Diego, CA, USA |
LOX-1 | APC | APC Anti-human, LOX-1 Antibody Clone: REA1188 Miltenyl Biotec, Bergisch Gladbach, Deutschland |
CD49d | PE | PE anti-human alpha 4/CD49d Clone: #7.2R Biotechne, Minneapolis, MN, USA |
CD29 | FITC | FITC anti-human integrin beta 1/CD29 Clone: TS2/16 Thermo Fisher Scientific, Waltham, MA, USA |
fMLP-Receptor | APC | APC Anti-human, fMLP receptor Antibody Clone: REA169 Miltenyl Biotec, Bergisch Gladbach, Deutschland |
One Preparation Each for Blood and Secretion | Blank Value | CD11b (PE) + CD62L (FITC) + CD66b (APC) | LOX-1 (APC) | CD49d (PE) + CD29 (FITC) + FMLP-R (APC) |
---|---|---|---|---|
1. PMNs | 20 µL PMNs of blood /100 µL PMNs of aspirate | 20 µL PMNs of blood /100 µL PMNs of aspirate | 20 µL PMNs of blood /100 µL PMNs of aspirate | 20 µL PMNs of blood /100 µL PMNs of aspirate |
2. PBS (+CaMg, 4 °C) to isolated PMNs from blood | 50 µL | 50 µL | 50 µL | 50 µL |
3. 5 µL AB each | - | 5 µL AB each | 5 µL AB each | 5 µL AB each |
4. Incubate (15 min in the dark at 4 °C) | X | X | X | X |
5. +PBS | 2 mL | 2 mL | 2 mL | 2 mL |
6. Centrifuge at 4 °C for 3 min and 425 g | X | X | X | X |
7. PBS (+CaMg, 4 °C + darkness) | 250 µL PBS | 250 µL PBS | 250 µL PBS | 250 µL PBS |
8. Fluorescent measurements | X | X | X | X |
One Preparation Each for Blood and Aspirate | Blank Value | TNFα + FMLP | PMA |
---|---|---|---|
1. PBS (4 °C) | 500 µL (PMNs of blood) /420 µL (PMNs of aspirate) | 500 µL (PMNs of blood) /420 µL (PMNs of aspirate) | 500 µL (PMNs of blood) /420 µL (PMNs of aspirate) |
2. PMNs | 20 µL (PMNs of blood) /100 µL (PMNs of aspirate) | 20 µL (PMNs of blood) /100 µL (PMNs of aspirate) | 20 µL (PMNs of blood) /100 µL (PMNs of aspirate) |
3. +DHR | 5 µL | 5 µL | 5 µL |
4. +SNARF | 5 µL | 5 µL | 5 µL |
5. +TNFα | - | 5 µL | - |
6. Incubate for 10 min at 37 °C | X | X | X |
7. +FMLP | - | 5 µL | - |
8. +PMA | - | - | 5 µL |
8. Incubate for 20 min at 37 °C | X | X | X |
9. 4 °C until measurement, +PI | 5 µL | 5 µL | 5 µL |
10. Flow cytometric measurement | X | X | X |
Substance | Final Concentration |
---|---|
DHR | 1 µm |
SNARF | 100 nM |
TNFα | 15 nM |
FMLP | 100 nM |
PMA | 100 nM |
PI | 15 µM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraus, R.F.; Ott, L.; Utpatel, K.; Kees, M.G.; Gruber, M.A.; Bitzinger, D. Neutrophils in the Spotlight—An Analysis of Neutrophil Function and Phenotype in ARDS. Int. J. Mol. Sci. 2024, 25, 12547. https://doi.org/10.3390/ijms252312547
Kraus RF, Ott L, Utpatel K, Kees MG, Gruber MA, Bitzinger D. Neutrophils in the Spotlight—An Analysis of Neutrophil Function and Phenotype in ARDS. International Journal of Molecular Sciences. 2024; 25(23):12547. https://doi.org/10.3390/ijms252312547
Chicago/Turabian StyleKraus, Richard F., Lisa Ott, Kirsten Utpatel, Martin G. Kees, Michael A. Gruber, and Diane Bitzinger. 2024. "Neutrophils in the Spotlight—An Analysis of Neutrophil Function and Phenotype in ARDS" International Journal of Molecular Sciences 25, no. 23: 12547. https://doi.org/10.3390/ijms252312547
APA StyleKraus, R. F., Ott, L., Utpatel, K., Kees, M. G., Gruber, M. A., & Bitzinger, D. (2024). Neutrophils in the Spotlight—An Analysis of Neutrophil Function and Phenotype in ARDS. International Journal of Molecular Sciences, 25(23), 12547. https://doi.org/10.3390/ijms252312547