The Impact of Inflammation on the Etiopathogenesis of Benign Salivary Gland Tumors: A Scoping Review
Abstract
:1. Introduction
Chronic Inflammation and Tumorigenesis
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Results
4. Discussion
4.1. Angiogenesis Factors
4.2. IgG4
4.3. Pro-Inflammatory Molecules
4.4. Oxidative Stress
4.5. Cell Surface and Adhesion Molecules/Tumor Stem Cells
4.6. Cytokines and Lymphocytes
4.7. SOX-10
4.8. Proteomic Analysis
4.9. Miscellaneous
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Shah, J.; Bhuvanesh, S.; Patel, S.; Wong, R. Jatin Shah’s Head and Neck Surgery and Oncology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 7, pp. 489–555. [Google Scholar]
- Skálová, A.; Hyrcza, M.D.; Leivo, I. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Salivary Glands. Head Neck Pathol. 2022, 16, 40–53. [Google Scholar] [CrossRef]
- Zhan, K.Y.; Khaja, S.F.; Flack, A.B.; Day, T.A. Benign Parotid Tumors. Otolaryngol. Clin. N. Am. 2016, 49, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.J. Frequency and Histopathology by Site, Major Pathologies, Symptoms and Signs of Salivary Gland Neoplasms. Adv. Otorhinolaryngol. 2016, 78, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, H.; Liu, Y.; Zhang, X.; Qiu, Y.; Huang, D. Modifiable Factors for Benign Salivary Gland Neoplasms: A Mendelian Randomization Study. Oral. Dis. 2024, 30, 2245–2253. [Google Scholar] [CrossRef]
- Li, T.I.; Chiang, M.T.; Chiu, K.C.; Lai, C.H.; Liu, S.Y.; Shieh, Y.S. The Association of Betel Quid, Alcohol, and Cigarettes with Salivary Gland Tumor-A Case-Control Study. J. Dent. Sci. 2017, 12, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Tretiakow, D.; Skorek, A. Regarding the “Review of Surgical Techniques and Guide for Decision Making in the Treatment of Benign Parotid Tumors. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 3537–3538. [Google Scholar] [CrossRef] [PubMed]
- Tretiakow, D.; Mikaszewski, B.; Skorek, A. The Role of Fine needle Aspiration Biopsy (FNAB) in the Diagnostic Management of Parotid Gland Masses with Emphasis on Potential Pitfalls. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 2939–2940. [Google Scholar] [CrossRef]
- Nakaguro, M. Diagnostic Clues and Pitfalls in Salivary Gland Fine-Needle Aspiration Cytology. Semin. Diagn. Pathol. 2024, 41, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Reerds, S.T.H.; Van Engen-Van Grunsven, A.C.H.; van den Hoogen, F.J.A.; Takes, R.P.; Marres, H.A.M.; Honings, J. Accuracy of Parotid Gland FNA Cytology and Reliability of the Milan System for Reporting Salivary Gland Cytopathology in Clinical Practice. Cancer Cytopathol. 2021, 129, 719–728. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-Induced Tumorigenesis and Metastasis. Int. J. Mol. Sci. 2021, 22, 5421. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-Induced Cancer: Crosstalk between Tumours, Immune Cells and Microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Puchalski, M.; Tretiakow, D.; Skorek, A.; Szydłowski, K.; Stodulski, D.; Mikaszewski, B.; Odroniec, A.; Musiał, N.; Thiel, M.; Czaplewska, P.; et al. Comparison of Peptidomes Extracted from Healthy Tissue and Tumor Tissue of the Parotid Glands and Saliva Samples. Int. J. Mol. Sci. 2024, 25, 8799. [Google Scholar] [CrossRef] [PubMed]
- Decock, J.; Comito, G.; Zaravinos, A. Editorial: Tumor Microenvironment, Inflammation, and Resistance to Immunotherapies. Front. Oncol. 2023, 13, 1215332. [Google Scholar] [CrossRef]
- Niu, T.; Zhou, F. Inflammation and Tumor Microenvironment. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2023, 48, 1899–1913. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Loy, A.H.C.; Putti, T.C.; Tan, L.K.S. Cyclooxygenase-2 Expression in Warthin’s Tumour. J. Laryngol. Otol. 2005, 119, 515–518. [Google Scholar] [CrossRef]
- Andreadis, D.; Epivatianos, A.; Mireas, G.; Nomikos, A.; Poulopoulos, A.; Yiotakis, J.; Barbatis, C. Immunohistochemical Detection of E-Cadherin in Certain Types of Salivary Gland Tumours. J. Laryngol. Otol. 2006, 120, 298–304. [Google Scholar] [CrossRef]
- Pantelis, A.; Wenghoefer, M.; Haas, S.; Merkelbach-Bruse, S.; Pantelis, D.; Jepsen, S.; Bootz, F.; Winter, J. Down Regulation and Nuclear Localization of Human β-Defensin-1 in Pleomorphic Adenomas of Salivary Glands. Oral. Oncol. 2009, 45, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Tampouris, A.I.; Kandiloros, D.; Giotakis, I.; Gakiopoulou, H.; Lazaris, A.C. The Role of the VEGF-C/-D/Flt-4 Autocrine Loop in the Pathogenesis of Salivary Neoplasms. Pathol. Res. Pract. 2012, 208, 151–156. [Google Scholar] [CrossRef]
- Liu, G.X.; Lan, J.; Sun, Y.; Hu, Y.J.; Jiang, G.S. Expression of the Chemokine CCL28 in Pleomorphic Adenoma and Adenolymphoma of the Human Salivary Glands. Exp. Ther. Med. 2012, 4, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Kehagias, N.; Epivatianos, A.; Sakas, L.; Andreadis, D.; Markopoulos, A.; Antoniades, K. Expression of N-Cadherin in Salivary Gland Tumors. Med. Princ. Pract. 2012, 22, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Carlesimo, M.; Mari, E.; La Pietra, M.; Orsini, D.; Pranteda, G.; Pranteda, G.; Grimaldi, M.; Arcese, A. Occurrence of Salivary Gland Tumours in Two Patients Treated with Biological Agents. Int. J. Immunopathol. Pharmacol. 2012, 25, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Jour, G.; West, K.; Ghali, V.; Shank, D.; Ephrem, G.; Wenig, B.M. Differential Expression of P16INK4A and Cyclin D1 in Benign and Malignant Salivary Gland Tumors: A Study of 44 Cases. Head Neck Pathol. 2013, 7, 224–231. [Google Scholar] [CrossRef]
- Andisheh Tadbir, A.; Khademi, B.; Malekzadeh, M.; Mardani, M.; Khademi, B. Upregulation of Serum Vascular Endothelial Growth Factor in Patients with Salivary Gland Tumor. Patholog Res. Int. 2013, 2013, 740582. [Google Scholar] [CrossRef]
- Aga, M.; Kondo, S.; Yamada, K.; Sawada-Kitamura, S.; Yagi-Nakanishi, S.; Endo, K.; Wakisaka, N.; Murono, S.; Kawano, M.; Yoshizaki, T. Warthin’s Tumor Associated with IgG4-Related Disease. Auris Nasus Larynx 2013, 40, 514–517. [Google Scholar] [CrossRef]
- Ohtomo, R.; Mori, T.; Shibata, S.; Tsuta, K.; Maeshima, A.M.; Akazawa, C.; Watabe, Y.; Honda, K.; Yamada, T.; Yoshimoto, S.; et al. SOX10 Is a Novel Marker of Acinus and Intercalated Duct Differentiation in Salivary Gland Tumors: A Clue to the Histogenesis for Tumor Diagnosis. Mod. Pathol. 2013, 26, 1041–1050. [Google Scholar] [CrossRef]
- Donadio, E.; Giusti, L.; Seccia, V.; Ciregia, F.; da Valle, Y.; Dallan, I.; Ventroni, T.; Giannaccini, G.; Sellari-Franceschini, S.; Lucacchini, A. New Insight into Benign Tumours of Major Salivary Glands by Proteomic Approach. PLoS ONE 2013, 8, e71874. [Google Scholar] [CrossRef]
- Ianez, R.C.F.; Coutinho-Camillo, C.M.; Buim, M.E.; Pinto, C.A.L.; Soares, F.A.; Lourenço, S.V. CD24 and CD44 in Salivary Gland Pleomorphic Adenoma and in Human Salivary Gland Morphogenesis: Differential Markers of Glandular Structure or Stem Cell Indicators? Histopathology 2013, 62, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Karbanová, J.; Laco, J.; Marzesco, A.M.; Janich, P.; Voborníková, M.; Mokrý, J.; Fargeas, C.A.; Huttner, W.B.; Corbeil, D. Human PROMININ-1 (CD133) Is Detected in Both Neoplastic and Non-Neoplastic Salivary Gland Diseases and Released into Saliva in a Ubiquitinated Form. PLoS ONE 2014, 9, e98927. [Google Scholar] [CrossRef]
- Reshma, V.; Rao, K.; Priya, N.; Umadevi, H.; Smitha, T.; Sheethal, H. Expression of Maspin in Benign and Malignant Salivary Gland Tumors: An Immunohistochemical Study. Indian J. Dent. Res. 2014, 25, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Aga, M.; Kondo, S.; Yamada, K.; Wakisaka, N.; Yagi-Nakanishi, S.; Tsuji, A.; Endo, K.; Murono, S.; Ito, M.; Muramatsu, M.; et al. Immunoglobulin Class Switching to IgG4 in Warthin Tumor and Analysis of Serum IgG4 Levels and IgG4-Positive Plasma Cells in the Tumor. Hum. Pathol. 2014, 45, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Faur, A.C.; Lazar, E.; Cornianu, M. Vascular Endothelial Growth Factor (VEGF) Expression and Microvascular Density in Salivary Gland Tumours. APMIS 2014, 122, 418–426. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Takizawa, Y.; Hayasaka, T.; Masaki, N.; Kusama, Y.; Su, J.; Mineta, H.; Setou, M. Increased Phosphatidylcholine (16:0/16:0) in the Folliculus Lymphaticus of Warthin Tumor. Anal. Bioanal. Chem. 2014, 406, 5815–5825. [Google Scholar] [CrossRef]
- Andisheh-Tadbir, A.; Ashraf, M.J.; Khademi, B.; Ahmadi, S. Clinical Implication of CD166 Expression in Salivary Gland Tumor. Tumor Biol. 2015, 36, 2793–2799. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Zhang, Y.; Wang, L.; Liu, Y.; Fan, L.; Zhu, J.; Xu, X.; Huang, G.; Li, X.; et al. PRDMI Expression on the Epithelial Component but Not on Ectopic Lymphoid Tissues of Warthin Tumour. Oral Dis. 2015, 21, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Haghshenas, M.R.; Khademi, B.; Faghih, Z.; Ghaderi, A.; Erfani, N. Immune Regulatory Cells and IL17-Producing Lymphocytes in Patients with Benign and Malignant Salivary Gland Tumors. Immunol. Lett. 2015, 164, 109–116. [Google Scholar] [CrossRef]
- Jaafari-Ashkavandi, Z.; Ashraf, M.J.; Nazhvani, A.D.; Azizi, Z. Caveolin-1 Overexpression in Benign and Malignant Salivary Gland Tumors. Tumor Biol. 2016, 37, 1863–1869. [Google Scholar] [CrossRef]
- Fonseca, F.P.; Bingle, L.; Santos-Silva, A.R.; Lopes, M.A.; de Almeida, O.P.; de Andrade, B.A.B.; Mariano, F.V.; Kowalski, L.P.; Rangel, A.L.C.A.; Martins, M.D.; et al. Semaphorins and Neuropilins Expression in Salivary Gland Tumors. J. Oral Pathol. Med. 2016, 45, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Khademi, B.; Tajvarpour, M.; Mojtahedi, Z.; Haghshenas, M.R.; Erfani, N. T-Helper Type 1 and 2 Cytokine Levels in Patients with Benign and Malignant Salivary Gland Tumors. Iran. J. Immunol. 2016, 13, 9–15. [Google Scholar] [PubMed]
- Kim, J.; Song, J.S.; Roh, J.L.; Choi, S.H.; Nam, S.Y.; Kim, S.Y.; Cho, K.J. Increased Immunoglobulin G4-Positive Plasma Cells in Lymphadenoma of the Salivary Gland: An Immunohistochemical Comparison among Lymphoepithelial Lesions. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Haghshenas, M.R.; Khademi, B.; Ashraf, M.J.; Ghaderi, A.; Erfani, N. Helper and Cytotoxic T-Cell Subsets (Th1, Th2, Tc1, and Tc2) in Benign and Malignant Salivary Gland Tumors. Oral. Dis. 2016, 22, 566–572. [Google Scholar] [CrossRef]
- Zare, R.; Malekzadeh, M.; Hashemi, M.; Khademi, B.; Andishe-Tadbir, A. Investigation of IL-33 Serum Levels in Patients with Benign and Malignant Salivary Gland Tumors. Cancer Biomark. 2018, 23, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Sowa, P.; Misiolek, M.; Orecka, B.; Czecior, E.; Adamczyk-Sowa, M. Serum Levels of Selected Adipocytokines in Benign and Malignant Parotid Gland Tumor Patients. Cytokine 2018, 106, 40–44. [Google Scholar] [CrossRef]
- Sowa, P.; Misiolek, M.; Pasinski, B.; Bartosz, G.; Soszynski, M.; Adamczyk-Sowa, M.; Sadowska-Bartosz, I. Oxidative Stress Markers Patients with Parotid Gland Tumors: A Pilot Study. Biomed. Res. Int. 2018, 2018, 4340871. [Google Scholar] [CrossRef]
- Błochowiak, K.J.; Sokalski, J.; Bodnar, M.B.; Trzybulska, D.; Marszałek, A.K.; Witmanowski, H. Expression of VEGF165b, VEGFR1, VEGFR2 and CD34 in Benign and Malignant Tumors of Parotid Glands. Adv. Clin. Exp. Med. 2018, 27, 83–90. [Google Scholar] [CrossRef]
- Tenório, J.D.R.; da Silva, L.P.; Xavier, M.G.D.A.; Santana, T.; do Nascimento, G.J.F.; Sobral, A.P.V. Differential Expression of Cyclooxygenase-2 and Cyclin D1 in Salivary Gland Tumors. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 2341–2347. [Google Scholar] [CrossRef]
- Andisheh-Tadbir, A.; Ashraf, M.J.; Gudarzi, A.; Zare, R. Evaluation of Glypican-3 Expression in Benign and Malignant Salivary Gland Tumors. J. Oral Biol. Craniofac Res. 2019, 9, 63–66. [Google Scholar] [CrossRef]
- Aslan, F.; Küçük, Ü. RANK and RANKL Expression in Salivary Gland Tumors. Ear Nose Throat J. 2020, 99, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Baněčková, M.; Uro-Coste, E.; Ptáková, N.; Šteiner, P.; Stanowska, O.; Benincasa, G.; Colella, G.; Vondrák, J.; Michal, M.; Leivo, I.; et al. What Is Hiding behind S100 Protein and SOX10 Positive Oncocytomas? Oncocytic Pleomorphic Adenoma and Myoepithelioma with Novel Gene Fusions in a Subset of Cases. Hum. Pathol. 2020, 103, 52–62. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.P.; de Sousa Lopes, M.L.D.; Sarmento, A.S.C.; de Albuquerque Borges, M.; de Moura, S.R.S.; Sobral, A.P.V.; de Souza, L.B. Increased Expression of ALDH-1 Is Associated with Clinical Parameters of Salivary Glands Neoplasms. Exp. Mol. Pathol. 2020, 117, 104552. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, K.; Oishi, N.; Kawai, M.; Odate, T.; Tahara, I.; Inoue, T.; Kasai, K.; Kondo, T. Expressions of Cxcl12, Cxcl10 and Ccl18 in Warthin Tumors Characterized Pathologically by Having a Lymphoid Stroma with Germinal Centers. Histol. Histopathol. 2021, 36, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kurose, N.; Guo, X.; Shioya, A.; Kitamura, M.; Tsuji, H.; Yamada, S. The Potential Role of Follicular Helper T Cells and Helper T Cells Type 1 in Warthin Tumour. Pathol. Res. Pract. 2021, 220, 153386. [Google Scholar] [CrossRef]
- Sahin, A.; Kars, A.; Kilic, K.; Ucar, H.B.; Sakat, M.S. Efficacy of the Systemic Immune Inflammation Index in Malignant and Benign Parotid Neoplasms. Cureus 2022, 14, e31878. [Google Scholar] [CrossRef]
- Haghshenas, M.R.; Erfani, N.; Khansalar, S.; Khademi, B.; Ashraf, M.J.; Razmkhah, M.; Ghaderi, A. Proteomics Study of Mesenchymal Stem Cell-Like Cells Obtained from Tumor Microenvironment of Patients with Malignant and Benign Salivary Gland Tumors. Cell J. 2022, 24, 196–203. [Google Scholar] [CrossRef]
- Laohavisudhi, F.; Chunchai, T.; Ketchaikosol, N.; Thosaporn, W.; Chattipakorn, N.; Chattipakorn, S.C. Evaluation of CD44s, CD44v6, CXCR2, CXCL1, and IL-1β in Benign and Malignant Tumors of Salivary Glands. Diagnostics 2022, 12, 1275. [Google Scholar] [CrossRef]
- Gaonkar, P.P.; Patankar, S.R.; Sridharan, G. Assessment of Angiogenesis Using Endoglin in Salivary Gland Tumors—An Immunohistochemical Study. J. Cancer Res. Ther. 2022, 18, 623–628. [Google Scholar] [CrossRef]
- Abbate, V.; Barone, S.; Orabona, G.D.; Bonavolontà, P.; Galdiero, M.R.; Cristinziano, L.; Modestino, L.; Iaconetta, G.; Califano, L. Role of Inflammation in Benign Salivary Gland Tumor Etiopathogenesis: An Evaluation through the Blood Inflammatory Biomarkers. Eurasian J. Med. Oncol. 2022, 6, 150–155. [Google Scholar] [CrossRef]
- Sowa, P.; Kasperczyk, S.; Dadok, A.; Misiołek, M.; Adamczyk-Sowa, M. Low-Intensity Whole-Body Oxidative Stress in Patients Withparotid Gland Tumors. Otolaryngol. Pol. 2022, 77, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, Z.; Khan, M.M.; Tariq, S.F.; Alam, S.; Arbab, K.N.; Khan, A.A.; Khalid, N.; Abdullah, L.; Jabbar, R. Association of Vascular Endothelial Growth Factor (VEGF) in Salivary Gland Tumors. Pak. J. Med. Health Sci. 2023, 17, 156–159. [Google Scholar] [CrossRef]
- Abbate, V.; Barone, S.; Borriello, G.; Troise, S.; Bonavolontà, P.; Pacella, D.; Vaira, L.A.; Turri-Zanoni, M.; Cuéllar, C.N.; Califano, L.; et al. Diagnostic Performance of Inflammatory Biomarkers and Cytological Analysis in Salivary Gland Tumors. Head Neck 2023, 45, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Tateda, Y.; Suzuki, T.; Sato, T.; Izuhara, K.; Ise, K.; Shimada, H.; Murakami, K.; Murakami, K.; Nakamura, Y.; Ohta, N. Expression of Periostin in Benign Salivary Gland Tumors. Tohoku J. Exp. Med. 2024, 262, 105–113. [Google Scholar] [CrossRef]
- Ghalehbandi, S.; Yuzugulen, J.; Pranjol, M.Z.I.; Pourgholami, M.H. The Role of VEGF in Cancer-Induced Angiogenesis and Research Progress of Drugs Targeting VEGF. Eur. J. Pharmacol. 2023, 949, 175586. [Google Scholar] [CrossRef]
- Heloterä, H.; Kaarniranta, K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022, 11, 3453. [Google Scholar] [CrossRef]
- Rossi, E.; Sanz-Rodriguez, F.; Eleno, N.; Düwell, A.; Blanco, F.J.; Langa, C.; Botella, L.M.; Cabañas, C.; Lopez-Novoa, J.M.; Bernabeu, C. Endothelial Endoglin Is Involved in Inflammation: Role in Leukocyte Adhesion and Transmigration. Blood 2013, 121, 403–415. [Google Scholar] [CrossRef]
- Meurer, S.K.; Weiskirchen, R. Endoglin: An “Accessory” Receptor Regulating Blood Cell Development and Inflammation. Int. J. Mol. Sci. 2020, 21, 9247. [Google Scholar] [CrossRef]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative Stress and Its Role in Cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among Smoking, Oxidative Stress, Inflammation, Macromolecular Damage, and Cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Wigner, P.; Grębowski, R.; Bijak, M.; Saluk-Bijak, J.; Szemraj, J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int. J. Mol. Sci. 2021, 22, 4483. [Google Scholar] [CrossRef] [PubMed]
- Kaszak, I.; Witkowska-Piłaszewicz, O.; Niewiadomska, Z.; Dworecka-Kaszak, B.; Toka, F.N.; Jurka, P. Role of Cadherins in Cancer-A Review. Int. J. Mol. Sci. 2020, 21, 7624. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Chang, C.C.; Wang, C.S.; Lin, K.H. Association between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development. Cells 2021, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front. Immunol. 2020, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tan, Y.; Li, F.; Han, Y.; Zhang, S.; Lin, X. CD44: A Cancer Stem Cell Marker and Therapeutic Target in Leukemia Treatment. Front. Immunol. 2024, 15, 1354992. [Google Scholar] [CrossRef]
- Hou, W.; Kong, L.; Hou, Z.; Ji, H. CD44 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Gastric Cancer. BMC Med. Genom. 2022, 15, 225. [Google Scholar] [CrossRef]
- Mesrati, M.H.; Syafruddin, S.E.; Mohtar, M.A.; Syahir, A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021, 11, 1850. [Google Scholar] [CrossRef]
- Cushing, K.; Higgins, P.D.R. Management of Crohn Disease: A Review. JAMA 2021, 325, 69–80. [Google Scholar] [CrossRef]
- Briani, C.; Visentin, A. Therapeutic Monoclonal Antibody Therapies in Chronic Autoimmune Demyelinating Neuropathies. Neurotherapeutics 2022, 19, 874–884. [Google Scholar] [CrossRef]
- Maximus, P.S.; Al Achkar, Z.; Hamid, P.F.; Hasnain, S.S.; Peralta, C.A. Adipocytokines: Are They the Theory of Everything? Cytokine 2020, 133, 155144. [Google Scholar] [CrossRef]
- Sy, A.L.; Hoang, M.P. SOX10. J. Clin. Pathol. 2023, 76, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Bancaro, N.; Calì, B.; Troiani, M.; Elia, A.R.; Arzola, R.A.; Attanasio, G.; Lai, P.; Crespo, M.; Gurel, B.; Pereira, R.; et al. Apolipoprotein E Induces Pathogenic Senescent-like Myeloid Cells in Prostate Cancer. Cancer Cell 2023, 41, 602–619.e11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.R.; Mao, X.R.; Wang, X.F.; Zheng, Y.; Wang, Y.P.; Zhou, Y.N. Role of Annexin A Family in Tumorigenesis and Chemoresistance of Gastric Cancer. Neoplasma 2022, 69, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Ji, X.; Yan, L.; Lian, S.; Chen, Z.; Luo, Y. Roles of S100A8, S100A9 and S100A12 in Infection, Inflammation and Immunity. Immunology 2024, 171, 365–376. [Google Scholar] [CrossRef]
- Ghosh, S.K.; McCormick, T.S.; Weinberg, A. Human Beta Defensins and Cancer: Contradictions and Common Ground. Front. Oncol. 2019, 9, 314. [Google Scholar] [CrossRef]
- Tang, S.; Ling, Z.; Jiang, J.; Gu, X.; Leng, Y.; Wei, C.; Cheng, H.; Li, X. Integrating the Tumor-Suppressive Activity of Maspin with P53 in Retuning the Epithelial Homeostasis: A Working Hypothesis and Applicable Prospects. Front. Oncol. 2022, 12, 1037794. [Google Scholar] [CrossRef]
- Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the Tumor Microenvironment: From Cancer Progression to Treatment. Prog. Lipid Res. 2020, 80, 101055. [Google Scholar] [CrossRef]
- Kim, S.J. Immunological Function of Blimp-1 in Dendritic Cells and Relevance to Autoimmune Diseases. Immunol. Res. 2015, 63, 113–120. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, P.; Wu, H.; Liang, Y.; Xu, R.; Lu, H.; Chen, Q. Caveolin-1 Is a Prognostic Marker and Suppresses the Proliferation of Breast Cancer. Transl. Cancer Res. 2021, 10, 3797–3810. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Z.; Pan, X.; Zhang, J.; Wang, X.; Wang, M.; Li, H.; Yan, M.; Chen, W. Caveolin-1 Promotes Cancer Progression via Inhibiting Ferroptosis in Head and Neck Squamous Cell Carcinoma. J. Oral. Pathol. Med. 2022, 51, 52–62. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, X.; Lei, Y.; Wang, G.; Liu, M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 824208. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, Y.; Zhang, Y.; Wang, L.; Chen, G. Glypican-3 Promotes Cell Proliferation and Tumorigenesis through up-Regulation of β-Catenin Expression in Lung Squamous Cell Carcinoma. Biosci. Rep. 2019, 39, BSR20181147. [Google Scholar] [CrossRef] [PubMed]
- Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; et al. Osteoclast Differentiation by RANKL and OPG Signaling Pathways. J. Bone Miner. Metab. 2021, 39, 19–26. [Google Scholar] [CrossRef]
- De Leon-Oliva, D.; Barrena-Blázquez, S.; Jiménez-Álvarez, L.; Fraile-Martinez, O.; García-Montero, C.; López-González, L.; Torres-Carranza, D.; García-Puente, L.M.; Carranza, S.T.; Álvarez-Mon, M.Á.; et al. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. Medicina 2023, 59, 1752. [Google Scholar] [CrossRef] [PubMed]
- Dorafshan, S.; Razmi, M.; Safaei, S.; Gentilin, E.; Madjd, Z.; Ghods, R. Periostin: Biology and Function in Cancer. Cancer Cell Int. 2022, 22, 315. [Google Scholar] [CrossRef]
- Sonnenberg-Riethmacher, E.; Miehe, M.; Riethmacher, D. Periostin in Allergy and Inflammation. Front. Immunol. 2021, 12, 722170. [Google Scholar] [CrossRef]
Study | Number of Patients with Benign SGT | Studied Molecule | Effect on Benign Tumor Tissues or Serum |
---|---|---|---|
Loy et al., 2005 [20] | 21 | COX-2 | Overexpression/ upregulation |
Andreadis et al., 2006 [21] | 54 | E-cadherin | Strong overexpression |
Pantelis et al., 2008 [22] | 5 | Human beta-defensin 1/2/3 | Decreased expression of hBD-1, no significant difference regarding hBD-2 and hBD-3 |
Tampouris et al., 2011 [23] | 20 | VEGF-C/VEGF-D/ VEGFR-3 (flt-4) | All 3 strongly expressed in PA, VEGF-C/D moderately expressed or not expressed in other benign tumors flt-4 strongly expressed in all benign tumors |
Liu et al., 2012 [24] | 72 | Chemokine CCL28 | Decreased expression |
Kehagias et al., 2012 [25] | 18 | N-cadherin | Expressed in some cases of Warthin’s tumor, not expressed in other benign samples |
Carlesimo et al., 2012 [26] | 2 | TNF-alpha | Not analyzed in the tissue |
Jour et al., 2013 [27] | 14 | Cyclin D1 and p16INK4A | Almost all benign tumors expressed p16 and cyclin D1 |
Andisheh Tadbir et al., 2013 [28] | 31 | VEGF | Higher concentration in serum |
Aga et al., 2013 [29] | 1 | IgG4 | Serum and tissue levels increased |
Ohtomo et al., 2013 [30] | 14 | SOX-10 | Present in all PA, ME, absent in some of WT |
Donadio et al., 2013 [31] | 36 | 26 proteins | Characteristic separate chains of proteins for PA and WT |
Ianez et al., 2013 [32] | 101 | CD24/CD44 | CD24/CD44 positive by immunochemistry, CD44, also by PCR |
Karbanová et al., 2014 [33] | 10 | Prominin-1 (CD133) | Overexpressed |
Reshma et al., 2014 [34] | 15 | Maspin | Overexpressed |
Aga et al., 2014 [35] | 37 | IgG4 | Serum and tissue levels increased in some of WT, mRNA overexpressed in some of WT, not increased/expressed in PA |
Faur et al., 2014 [36] | 20 | VEGF | Moderately positive VEGF expression |
He et al., 2014 [37] | 3 | Phosphatidylocholine | Increased in WT |
Andisheh-Tadbir et al., 2014 [38] | 15 | CD166 | Overexpressed |
Wang et al., 2015 [39] | 40 | PRDM1 | Pverexpressed |
Haghshenas et al., 2015 [40] | 19 | IL-17-producing lymphocytes and CTLA4+ lymphocytes | Increased concentration in serum |
Jaafari-Ashkavandi et al., 2015 [41] | 15 | Caveolin-1 | overexpressed |
Fonseca et al., 2015 [42] | 120 | Semaphorins and neutrophilins | No significant difference vs. control group |
Khademi et al., 2016 [43] | 50 | INF y, IL-4 | No significant difference vs. control group |
Kim et al., 2016 [44] | 8 | IgG4 | Increased concentration in serum |
Haghshenas et al., 2016 [45] | 15 | Th1, Th2, Tc1, Tc2 lymphocytes | No significant difference vs. control group |
Zare et al., 2018 [46] | 14 | IL-33 | Slightly overexpressed |
Sowa et al., 2018 [47] | 51 | Adipocytokines | Serum levels of adiponectin and visfatin elevated, leptin elevated in males, IL-6 no difference |
Sowa et al., 2018 [48] | 26 | Protein oxidation products | Serum level of Total Antioxidant Capacity of Blood Serum and thiol groups decreased, Advanced oxidation protein products increased |
Błochowiak et al., 2018 [49] | 45 | VEGF165b, VEGFR1, VEGFR2 and CD34 | No significant difference vs. control group |
Tenorio et al., 2018 [50] | 38 | COX-2, cyclin D1 | Underexpressed vs. malignant tumors |
Andisheh-Tadbir et al., 2019 [51] | 17 | Glypican-3 (GPC-3) | Overexpressed |
Aslan et al., 2020 [52] | 38 | RANK, RANKL | Underexpressed vs. malignant tumors |
Baneckova et al., 2020 [53] | 89 | S1009, SOX-10 | Expressed in 10% of oncocytic cases of PA/ME, negative in oncocytoma |
Da Silva et al., 2020 [54] | 51 | ALDH-1 | Expressed in parenchyma of all benign tumors |
Mochizuki et al., 2021 [55] | 40 | CXCL10, CXCL12, CCL18 | WT mostly positive for expression, PA mostly negative |
Kobayashi et al., 2021 [56] | 64 | Th, Tfh | Different for solid-type and cyst-type tumor |
Sahin et al., 2022 [57] | 185 | Systemic Immune-Inflammation Index (SII) | Lower vs. malignant tumors |
Haghshenas et al., 2022 [58] | 5 | MSC cells | Many cell expressed—CD44, CD73, CD90, CD105, and CD166, heat shock protein 70 (Hsp70), keratin, type II cytoskeletal 7 (CK-7), |
Laohavisudhi et al., 2022 [59] | 13 | CD44s, CD44v6, CXCR2, CXCL1, and IL-1β | CD44s, CD44v6, CXCR2—increased in benign tumors |
Gaonkar et al., 2022 [60] | 15 | Endoglin | Higher expression vs. control group, lower vs. malignant tumors |
Abbate et al., 2022 [61] | 191 | NLR, SII, PRL | All markers significantly increased vs. control group |
Sowa et al., 2022 [62] | 52 | Oxidative stress markers | Plasma lipofuscin increased in all benign tumors, Cu-Zn SOD decreased in WT |
Jabbar et al., 2023 [63] | 30 | VEGF | Overexpression |
Abbate et al., 2023 [64] | 140 | Inflammatory biomarkers SII, SIRI, PLR, and NLR | SIRI showed highest accuracy in determining malignancy, decreased vs. malignant tumors |
Tateda et al., 2024 [65] | 38 | Periostin | Overexpression in 32 out of 38 benign tumors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szydłowski, K.; Puchalski, M.; Ołdziej, S.; Kasprzyk-Tryk, A.; Skorek, A.; Tretiakow, D. The Impact of Inflammation on the Etiopathogenesis of Benign Salivary Gland Tumors: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 12558. https://doi.org/10.3390/ijms252312558
Szydłowski K, Puchalski M, Ołdziej S, Kasprzyk-Tryk A, Skorek A, Tretiakow D. The Impact of Inflammation on the Etiopathogenesis of Benign Salivary Gland Tumors: A Scoping Review. International Journal of Molecular Sciences. 2024; 25(23):12558. https://doi.org/10.3390/ijms252312558
Chicago/Turabian StyleSzydłowski, Konrad, Michał Puchalski, Stanisław Ołdziej, Agnieszka Kasprzyk-Tryk, Andrzej Skorek, and Dmitry Tretiakow. 2024. "The Impact of Inflammation on the Etiopathogenesis of Benign Salivary Gland Tumors: A Scoping Review" International Journal of Molecular Sciences 25, no. 23: 12558. https://doi.org/10.3390/ijms252312558
APA StyleSzydłowski, K., Puchalski, M., Ołdziej, S., Kasprzyk-Tryk, A., Skorek, A., & Tretiakow, D. (2024). The Impact of Inflammation on the Etiopathogenesis of Benign Salivary Gland Tumors: A Scoping Review. International Journal of Molecular Sciences, 25(23), 12558. https://doi.org/10.3390/ijms252312558