Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages
Abstract
:1. Introduction
2. Results
2.1. CATH-2 Inhibits APEC-Induced Transcription and Production of Inflammatory Cytokines in Macrophages
2.2. CATH-2 Inhibits APEC-Induced NLRP3 Inflammasome Activation in Macrophages
2.3. CATH-2 Inhibits APEC-Induced NF-κB and MAPK Signaling Pathway Activation in Macrophages
2.4. CATH-2 Inhibits APEC-Induced IL-1β Secretion by Promoting Lysosomal Dysfunction in Macrophages
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Peptides
4.3. Bacterial Strain and Culture
4.4. Preparation of Macrophages and APEC Infection
4.5. Enzyme-Linked Immunosorbent Assay (ELISA)
4.6. Cell Viability
4.7. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
4.8. Western Blot Analysis
4.9. Immunofluorescence Staining
4.10. Detection of Lysosomal Leakage and Acidification
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kathayat, D.; Lokesh, D.; Ranjit, S.; Rajashekara, G. Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021, 10, 467. [Google Scholar] [CrossRef]
- Alber, A.; Stevens, M.P.; Vervelde, L. The bird’s immune response to avian pathogenic Escherichia coli. Avian Pathol. 2021, 50, 382–391. [Google Scholar] [CrossRef]
- Bergeron, C.R.; Prussing, C.; Boerlin, P.; Daignault, D.; Dutil, L.; Reid-Smith, R.J.; Zhanel, G.G.; Manges, A.R. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg. Infect. Dis. 2012, 18, 415–421. [Google Scholar] [CrossRef]
- Hu, J.; Afayibo, D.J.A.; Zhang, B.; Zhu, H.; Yao, L.; Guo, W.; Wang, X.; Wang, Z.; Wang, D.; Peng, H.; et al. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front. Microbiol. 2022, 13, 1049391. [Google Scholar] [CrossRef]
- Peng, L.; Matthijs, M.G.R.; Haagsman, H.P.; Veldhuizen, E.J.A. Avian pathogenic Escherichia coli-induced activation of chicken macrophage HD11 cells. Dev. Comp. Immunol. 2018, 87, 75–83. [Google Scholar] [CrossRef]
- Peng, L.; Scheenstra, M.R.; van Harten, R.M.; Haagsman, H.P.; Veldhuizen, E.J.A. The immunomodulatory effect of cathelicidin-B1 on chicken macrophages. Vet. Res. 2020, 51, 122. [Google Scholar] [CrossRef]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: Beyond antimicrobial activity. Nat. Rev. Immunol. 2016, 16, 321–334. [Google Scholar] [CrossRef]
- Coorens, M.; Schneider, V.A.F.; de Groot, A.M.; van Dijk, A.; Meijerink, M.; Wells, J.M.; Scheenstra, M.R.; Veldhuizen, E.J.A.; Haagsman, H.P. Cathelicidins Inhibit Escherichia coli-Induced TLR2 and TLR4 Activation in a Viability-Dependent Manner. J. Immunol. 2017, 199, 1418–1428. [Google Scholar] [CrossRef]
- Peng, L.; Tian, H.; Lu, Y.; Jia, K.; Ran, J.; Tao, Q.; Li, G.; Wan, C.; Ye, C.; Veldhuizen, E.J.A.; et al. Chicken cathelicidin-2 promotes NLRP3 inflammasome activation in macrophages. Vet. Res. 2022, 53, 69. [Google Scholar] [CrossRef]
- van Harten, R.M.; Veldhuizen, E.J.A.; Haagsman, H.P.; Scheenstra, M.R. The cathelicidin CATH-2 efficiently neutralizes LPS- and E. coli-induced activation of porcine bone marrow derived macrophages. Vet. Immunol. Immunopathol. 2022, 244, 110369. [Google Scholar] [CrossRef]
- van Dijk, A.; Molhoek, E.M.; Veldhuizen, E.J.; Bokhoven, J.L.T.-V.; Wagendorp, E.; Bikker, F.; Haagsman, H.P. Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Mol. Immunol. 2009, 46, 2465–2473. [Google Scholar] [CrossRef]
- Coorens, M.; van Dijk, A.; Bikker, F.; Veldhuizen, E.J.; Haagsman, H.P. Importance of Endosomal Cathelicidin Degradation To Enhance DNA-Induced Chicken Macrophage Activation. J. Immunol. 2015, 195, 3970–3977. [Google Scholar] [CrossRef]
- van Dijk, A.; van Eldik, M.; Veldhuizen, E.J.; Tjeerdsma-van Bokhoven, H.L.; de Zoete, M.R.; Bikker, F.J.; Haagsman, H.P. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides. PLoS ONE 2016, 11, e0147919. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 2011, 12, 695–708. [Google Scholar] [CrossRef]
- Schneider, V.A.F.; Coorens, M.; Ordonez, S.R.; Bokhoven, J.L.M.T.-V.; Posthuma, G.; van Dijk, A.; Haagsman, H.P.; Veldhuizen, E.J.A. Imaging the antimicrobial mechanism(s) of cathelicidin-2. Sci. Rep. 2016, 6, 32948. [Google Scholar] [CrossRef]
- Schneider, V.A.F.; Coorens, M.; Bokhoven, J.L.M.T.-V.; Posthuma, G.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P. Imaging the Antistaphylococcal Activity of CATH-2: Mechanism of Attack and Regulation of Inflammatory Response. mSphere 2017, 2, e00370-17. [Google Scholar] [CrossRef]
- van Harten, R.M.; Tjeerdsma-van Bokhoven, J.L.; de Greeff, A.; Balhuizen, M.D.; van Dijk, A.; Veldhuizen, E.J.; Haagsman, H.P.; Scheenstra, M.R. d-enantiomers of CATH-2 enhance the response of macrophages against Streptococcus suis serotype 2. J. Adv. Res. 2022, 36, 101–112. [Google Scholar] [CrossRef]
- Coorens, M.; Banaschewski, B.J.H.; Yamashita, C.; van Dijk, A.; Haagsman, H.P.; Veldhuizen, R.A.W.; Veldhuizen, E.J.A. Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation In Vivo. Infect. Immun. 2017, 85, e00546-17. [Google Scholar] [CrossRef]
- Scheenstra, M.R.; Belt, M.v.D.; Bokhoven, J.L.M.T.-V.; Schneider, V.A.F.; Ordonez, S.R.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci. Rep. 2019, 9, 4780. [Google Scholar] [CrossRef]
- Ruan, Y.; Shen, T.; Wang, Y.; Hou, M.; Li, J.; Sun, T. Antimicrobial peptide LL-37 attenuates LTA induced inflammatory effect in macrophages. Int. Immunopharmacol. 2013, 15, 575–580. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Hwang, I.; Lee, E.; Cho, H.-J.; Ryu, J.H.; Kim, T.-G.; Yu, J.-W. Antimicrobial Peptide LL-37 Drives Rosacea-Like Skin Inflammation in an NLRP3-Dependent Manner. J. Investig. Dermatol. 2021, 141, 2885–2894.e5. [Google Scholar] [CrossRef]
- Si, F.; Lu, Y.; Wen, Y.; Chen, T.; Zhang, Y.; Yang, Y. Cathelicidin (LL-37) causes expression of inflammatory factors in coronary artery endothelial cells of Kawasaki disease by activating TLR4-NF-κB-NLRP3 signaling. Immun. Inflamm. Dis. 2023, 11, e1032. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, F.; Xu, L.; Tian, H.; Tao, Q.; Jia, K.; Yin, H.; Ye, C.; Fang, R.; Peng, L. The protective role of chicken cathelicidin-1 against Streptococcus suis serotype 2 in vitro and in vivo. Vet. Res. 2023, 54, 65. [Google Scholar] [CrossRef]
- McHugh, B.J.; Wang, R.; Li, H.-N.; Beaumont, P.E.; Kells, R.; Stevens, H.; Young, L.; Rossi, A.G.; Gray, R.D.; Dorin, J.R.; et al. Cathelicidin is a “fire alarm”, generating protective NLRP3-dependent airway epithelial cell inflammatory responses during infection with Pseudomonas aeruginosa. PLoS Pathog. 2019, 15, e1007694. [Google Scholar] [CrossRef]
- Bauer, C.; Duewell, P.; Mayer, C.; Lehr, H.A.; Fitzgerald, K.A.; Dauer, M.; Tschopp, J.; Endres, S.; Latz, E.; Schnurr, M. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010, 59, 1192–1199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Xu, L.; Zhang, T.; Tian, H.; Lu, Y.; Jiang, S.; Cao, X.; Li, Z.; Hu, X.; Fang, R.; et al. Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages. Int. J. Mol. Sci. 2024, 25, 12572. https://doi.org/10.3390/ijms252312572
Xu Y, Xu L, Zhang T, Tian H, Lu Y, Jiang S, Cao X, Li Z, Hu X, Fang R, et al. Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages. International Journal of Molecular Sciences. 2024; 25(23):12572. https://doi.org/10.3390/ijms252312572
Chicago/Turabian StyleXu, Yating, Liuyi Xu, Tingting Zhang, Hongliang Tian, Yi Lu, Sha Jiang, Xuefeng Cao, Zhiwei Li, Xiaoxiang Hu, Rendong Fang, and et al. 2024. "Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages" International Journal of Molecular Sciences 25, no. 23: 12572. https://doi.org/10.3390/ijms252312572
APA StyleXu, Y., Xu, L., Zhang, T., Tian, H., Lu, Y., Jiang, S., Cao, X., Li, Z., Hu, X., Fang, R., & Peng, L. (2024). Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages. International Journal of Molecular Sciences, 25(23), 12572. https://doi.org/10.3390/ijms252312572