Transcriptome Analysis of Fibroblasts in Hypoxia-Induced Vascular Remodeling: Functional Roles of CD26/DPP4
Abstract
:1. Introduction
2. Results
2.1. Hypoxia-Induced Pulmonary Hypertension Was Augmented in Dpp4 KO Mice
2.2. Hypoxia-Induced Medial Wall Thickness Was Augmented in Dpp4 KO Mice
2.3. The Number of Lung Endothelial Cells Was Larger During Chronic Hypoxia, and Dpp4 KO Did Not Affect This Response
2.4. Deletion of Dpp4 Does Not Significantly Affect Inflammatory Responses During Acute or Subacute Hypoxia
2.5. Transcriptome Analysis of Cultured Human Lung Fibroblasts (HLFs)
2.5.1. Differential Gene Expression and Pathway Analysis Between HLFs Cultured Under Normoxic Conditions and Those Cultured Under Hypoxic Conditions
2.5.2. Differential Gene Expression and Pathway Analysis Between Control HLFs and Those with DPP4 KD Cultured Under Normoxic Conditions
2.5.3. Differential Gene Expression and Pathway Analysis Between Control and DPP4 KD HLFs Under Hypoxic Conditions
3. Discussion
4. Materials and Methods
4.1. Animal Model of Hypoxic Pulmonary Hypertension
4.2. Hemodynamic Analysis
4.3. Fulton’s Index
4.4. Histological Analysis
4.5. Collection of BALF
4.6. Flow Cytometry Analysis of Mouse Cells in BALF and Lungs
4.7. Cell Culture and Treatments of Small Interfering RNA
4.8. Transcriptome Analysis
4.9. mRNA Sequencing Data Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, J.P.; McMurtry, I.F. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: New findings for an old problem. Curr. Opin. Pharmacol. 2009, 9, 287–296. [Google Scholar] [CrossRef] [PubMed]
- El Alam, S.; Pena, E.; Aguilera, D.; Siques, P.; Brito, J. Inflammation in Pulmonary Hypertension and Edema Induced by Hypobaric Hypoxia Exposure. Int. J. Mol. Sci. 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Rabinovitch, M.; Gamble, W.; Nadas, A.S.; Miettinen, O.S.; Reid, L. Rat pulmonary circulation after chronic hypoxia: Hemodynamic and structural features. Am. J. Physiol. Heart Circ. Physiol. 1979, 236, H818–H827. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, K.R.; Fagan, K.A.; Frid, M.G. Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circ. Res. 2006, 99, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Sakao, S.; Tatsumi, K.; Voelkel, N.F. Endothelial cells and pulmonary arterial hypertension: Apoptosis, proliferation, interaction and transdifferentiation. Respir. Res. 2009, 10, 95. [Google Scholar] [CrossRef]
- Ball, M.K.; Waypa, G.B.; Mungai, P.T.; Nielsen, J.M.; Czech, L.; Dudley, V.J.; Beussink, L.; Dettman, R.W.; Berkelhamer, S.K.; Steinhorn, R.H.; et al. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1alpha. Am. J. Respir. Crit. Care Med. 2014, 189, 314–324. [Google Scholar] [CrossRef]
- Shimoda, L.A. Cellular Pathways Promoting Pulmonary Vascular Remodeling by Hypoxia. Physiology (Bethesda) 2020, 35, 222–233. [Google Scholar] [CrossRef]
- Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Investig. 2012, 122, 4306–4313. [Google Scholar] [CrossRef]
- Yang, X.; Sheares, K.K.; Davie, N.; Upton, P.D.; Taylor, G.W.; Horsley, J.; Wharton, J.; Morrell, N.W. Hypoxic induction of cox-2 regulates proliferation of human pulmonary artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 2002, 27, 688–696. [Google Scholar] [CrossRef]
- Anwar, A.; Li, M.; Frid, M.G.; Kumar, B.; Gerasimovskaya, E.V.; Riddle, S.R.; McKeon, B.A.; Thukaram, R.; Meyrick, B.O.; Fini, M.A.; et al. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 303, L1–L11. [Google Scholar] [CrossRef]
- Meyrick, B.; Reid, L. Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall. Am. J. Pathol. 1979, 96, 51–70. [Google Scholar] [PubMed]
- Belknap, J.K.; Orton, E.C.; Ensley, B.; Tucker, A.; Stenmark, K.R. Hypoxia increases bromodeoxyuridine labeling indices in bovine neonatal pulmonary arteries. Am. J. Respir. Cell Mol. Biol. 1997, 16, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Rose, F.; Grimminger, F.; Appel, J.; Heller, M.; Pies, V.; Weissmann, N.; Fink, L.; Schmidt, S.; Krick, S.; Camenisch, G.; et al. Hypoxic pulmonary artery fibroblasts trigger proliferation of vascular smooth muscle cells: Role of hypoxia-inducible transcription factors. FASEB J. 2002, 16, 1660–1661. [Google Scholar] [CrossRef] [PubMed]
- El Kasmi, K.C.; Pugliese, S.C.; Riddle, S.R.; Poth, J.M.; Anderson, A.L.; Frid, M.G.; Li, M.; Pullamsetti, S.S.; Savai, R.; Nagel, M.A.; et al. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J. Immunol. 2014, 193, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Maiellaro, K.; Taylor, W.R. The role of the adventitia in vascular inflammation. Cardiovasc. Res. 2007, 75, 640–648. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Wang, J.; Guo, X.; Chan, E.C.; Jiang, F. Adventitial Activation in the Pathogenesis of Injury-Induced Arterial Remodeling: Potential Implications in Transplant Vasculopathy. Am. J. Pathol. 2018, 188, 838–845. [Google Scholar] [CrossRef]
- Stenmark, K.R.; Davie, N.; Frid, M.; Gerasimovskaya, E.; Das, M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006, 21, 134–145. [Google Scholar] [CrossRef]
- Spiekerkoetter, E.; Goncharova, E.A.; Guignabert, C.; Stenmark, K.; Kwapiszewska, G.; Rabinovitch, M.; Voelkel, N.; Bogaard, H.J.; Graham, B.; Pullamsetti, S.S.; et al. Hot topics in the mechanisms of pulmonary arterial hypertension disease: Cancer-like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulm. Circ. 2019, 9, 2045894019889775. [Google Scholar] [CrossRef]
- Zou, H.; Zhu, N.; Li, S. The emerging role of dipeptidyl-peptidase-4 as a therapeutic target in lung disease. Expert Opin. Ther. Targets 2020, 24, 147–153. [Google Scholar] [CrossRef]
- Morimoto, C.; Schlossman, S.F. The structure and function of CD26 in the T-cell immune response. Immunol. Rev. 1998, 161, 55–70. [Google Scholar] [CrossRef]
- Ohnuma, K.; Dang, N.H.; Morimoto, C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 2008, 29, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Meyerholz, D.K.; Lambertz, A.M.; McCray, P.B., Jr. Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome. Am. J. Pathol. 2016, 186, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Okaya, T.; Kawasaki, T.; Sato, S.; Koyanagi, Y.; Tatsumi, K.; Hatano, R.; Ohnuma, K.; Morimoto, C.; Kasuya, Y.; Hasegawa, Y.; et al. Functional Roles of CD26/DPP4 in Bleomycin-Induced Pulmonary Hypertension Associated with Interstitial Lung Disease. Int. J. Mol. Sci. 2024, 25, 748. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, Y.; Kawasaki, T.; Kasuya, Y.; Hatano, R.; Sato, S.; Takahashi, Y.; Ohnuma, K.; Morimoto, C.; Dudek, S.M.; Tatsumi, K.; et al. Functional roles of CD26/DPP4 in bleomycin-induced pulmonary fibrosis. Physiol. Rep. 2023, 11, e15645. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Chen, W.; Htwe, Y.M.; Tatsumi, K.; Dudek, S.M. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2018, 315, L834–L845. [Google Scholar] [CrossRef]
- Suzuki, T.; Tada, Y.; Gladson, S.; Nishimura, R.; Shimomura, I.; Karasawa, S.; Tatsumi, K.; West, J. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir. Res. 2017, 18, 177. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kawasaki, T.; Sato, H.; Hasegawa, Y.; Dudek, S.M.; Ohara, O.; Tatsumi, K.; Suzuki, T. Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells. Cells 2021, 10, 3508. [Google Scholar] [CrossRef]
- Sato, S.; Kawasaki, T.; Hatano, R.; Koyanagi, Y.; Takahashi, Y.; Ohnuma, K.; Morimoto, C.; Dudek, S.M.; Tatsumi, K.; Suzuki, T. Functional roles of CD26/DPP4 in lipopolysaccharide-induced lung injury. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2024, 326, L562–L573. [Google Scholar] [CrossRef]
- Nishimura, R.; Nishiwaki, T.; Kawasaki, T.; Sekine, A.; Suda, R.; Urushibara, T.; Suzuki, T.; Takayanagi, S.; Terada, J.; Sakao, S.; et al. Hypoxia-induced proliferation of tissue-resident endothelial progenitor cells in the lung. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2015, 308, L746–L758. [Google Scholar] [CrossRef]
- Bagheri, M.; Agrawal, V.; Annis, J.; Shi, M.; Ferguson, J.F.; Freiberg, M.S.; Mosley, J.D.; Brittain, E.L. Genetics of Pulmonary Pressure and Right Ventricle Stress Identify Diabetes as a Causal Risk Factor. J. Am. Heart Assoc. 2023, 12, e029190. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; He, M.; Han, H.; Xie, W.; Wang, H.; Kong, H. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. Lab. Investig. 2018, 98, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Soare, A.; Gyorfi, H.A.; Matei, A.E.; Dees, C.; Rauber, S.; Wohlfahrt, T.; Chen, C.W.; Ludolph, I.; Horch, R.E.; Bauerle, T.; et al. Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol. 2020, 72, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Ohm, B.; Moneke, I.; Jungraithmayr, W. Targeting cluster of differentiation 26/dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis. British J. Pharmacol. 2023, 180, 2846–2861. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Srivastava, S.P.; Kanasaki, M.; He, J.; Kitada, M.; Nagai, T.; Nitta, K.; Takagi, S.; Kanasaki, K.; Koya, D. Interactions of DPP-4 and integrin beta1 influences endothelial-to-mesenchymal transition. Kidney Int. 2015, 88, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Markovics, J.A.; Araya, J.; Cambier, S.; Somanath, S.; Gline, S.; Jablons, D.; Hill, A.; Wolters, P.J.; Nishimura, S.L. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activating integrin subunit beta8 through altering chromatin architecture. J. Biol. Chem. 2011, 286, 36864–36874. [Google Scholar] [CrossRef]
- Li, D.Y.; Brooke, B.; Davis, E.C.; Mecham, R.P.; Sorensen, L.K.; Boak, B.B.; Eichwald, E.; Keating, M.T. Elastin is an essential determinant of arterial morphogenesis. Nature 1998, 393, 276–280. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Chen, M.; Su, X.; Yi, D.; Lu, P.; Zhu, D. 15-LO/15-HETE mediated vascular adventitia fibrosis via p38 MAPK-dependent TGF-beta. J. Cell. Physiol. 2014, 229, 245–257. [Google Scholar] [CrossRef]
- Mayr, C.H.; Sengupta, A.; Asgharpour, S.; Ansari, M.; Pestoni, J.C.; Ogar, P.; Angelidis, I.; Liontos, A.; Rodriguez-Castillo, J.A.; Lang, N.J.; et al. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur. Respir. J. 2024, 63, 2301326. [Google Scholar] [CrossRef]
- Carraway, M.S.; Ghio, A.J.; Carter, J.D.; Piantadosi, C.A. Expression of heme oxygenase-1 in the lung in chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 278, L806–L812. [Google Scholar] [CrossRef]
- Galan-Cobo, A.; Arellano-Orden, E.; Sanchez Silva, R.; Lopez-Campos, J.L.; Gutierrez Rivera, C.; Gomez Izquierdo, L.; Suarez-Luna, N.; Molina-Molina, M.; Rodriguez Portal, J.A.; Echevarria, M. The Expression of AQP1 IS Modified in Lung of Patients With Idiopathic Pulmonary Fibrosis: Addressing a Possible New Target. Front. Mol. Biosci. 2018, 5, 43. [Google Scholar] [CrossRef]
- Herrmann, F.E.; Hesslinger, C.; Wollin, L.; Nickolaus, P. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis. Front. Pharmacol. 2022, 13, 838449. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Azuma, A.; Cottin, V.; Hesslinger, C.; Stowasser, S.; Valenzuela, C.; Wijsenbeek, M.S.; Zoz, D.F.; Voss, F.; Maher, T.M.; et al. Trial of a Preferential Phosphodiesterase 4B Inhibitor for Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2022, 386, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.H., Jr.; Kottom, T.J.; Hebrink, D.M.; Choudhury, M.; Leof, E.B.; Limper, A.H. Vardenafil Activity in Lung Fibrosis and In Vitro Synergy with Nintedanib. Cells 2021, 10, 3502. [Google Scholar] [CrossRef] [PubMed]
- Kokeny, G.; Calvier, L.; Legchenko, E.; Chouvarine, P.; Mozes, M.M.; Hansmann, G. PPARgamma is a gatekeeper for extracellular matrix and vascular cell homeostasis: Beneficial role in pulmonary hypertension and renal/cardiac/pulmonary fibrosis. Curr. Opin. Nephrol. Hypertens. 2020, 29, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Legchenko, E.; Chouvarine, P.; Borchert, P.; Fernandez-Gonzalez, A.; Snay, E.; Meier, M.; Maegel, L.; Mitsialis, S.A.; Rog-Zielinska, E.A.; Kourembanas, S.; et al. PPARgamma agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci. Transl. Med. 2018, 10, eaao0303. [Google Scholar] [CrossRef]
- Frump, A.L.; Selej, M.; Wood, J.A.; Albrecht, M.; Yakubov, B.; Petrache, I.; Lahm, T. Hypoxia Upregulates Estrogen Receptor beta in Pulmonary Artery Endothelial Cells in a HIF-1alpha-Dependent Manner. Am. J. Respir. Cell. Mol. Biol. 2018, 59, 114–126. [Google Scholar] [CrossRef]
- Kimura, D.; Saravia, J.; Jaligama, S.; McNamara, I.; Vu, L.D.; Sullivan, R.D.; Mancarella, S.; You, D.; Cormier, S.A. New mouse model of pulmonary hypertension induced by respiratory syncytial virus bronchiolitis. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H581–H589. [Google Scholar] [CrossRef]
(a) Excerpted Relevant GO Terms | ||
Terms with Upregulated Genes Following Exposure to Hypoxia | p-Value | Genes |
Cellular response to hypoxia (GO:0071456) | <0.001 | SLC8A3, BNIP3L, EGLN3, PTGIS, HILPDA, RORA, AK4, NDNF, NDRG1, MT3, VEGFA |
Cellular response to decreased oxygen levels (GO:0036294) | <0.001 | SLC8A3, BNIP3L, EGLN3, PTGIS, HILPDA, RORA, AK4, NDNF, NDRG1, MT3, VEGFA |
Positive regulation of cytokine production (GO:0001819) | <0.001 | SLC7A5, IL33, IL6, CADM1, LEP, SERPINE1, HILPDA, F2RL1, RORA, AGER, ELANE |
Positive regulation of p38MAPK cascade (GO:1900745) | 0.0218 | LEP, VEGFA |
(b) Excerpted relevant KEGG terms | ||
Terms with upregulated genes following exposure to hypoxia | p-value | Genes |
HIF-1 signaling pathway | <0.001 | LDHA, IL6, EGLN3, SERPINE1, SLC2A1, ENO2, VEGFA |
PI3K-Akt signaling pathway | 0.0071 | IL6, EFNA3, DDIT4, COL4A6, PDGFB, THBS2, JAK3, PCK2, VEGFA |
(a) Excerpted Relevant GO Terms | ||
Terms with Upregulated Genes Following DPP4 Knockdown Under Normoxic Conditions | p-Value | Genes |
Cellular response to hypoxia (GO:0071456) | <0.001 | SFRP1, HMOX1, AK4, MGARP, SCN2A, HIF1A, AQP1 |
Cellular response to decreased oxygen levels (GO:0036294) | <0.001 | SFRP1, HMOX1, AK4, MGARP, SCN2A, HIF1A, AQP1 |
Positive regulation of integrin-mediated signaling pathway (GO:2001046) | <0.001 | EMP2, NID1, LIMS2 |
Extracellular matrix organization (GO:0030198) | 0.0034 | POSTN, ELN, COL11A1, APLP1, SH3PXD2B, HAS2, NID1, ADAMTS7 |
(b) Excerpted relevant KEGG terms | ||
Terms with upregulated genes following DPP4 knockdown under normoxic conditions | p-value | Genes |
cAMP signaling pathway | 0.0034 | LIPE, OXTR, EDNRA, GABBR1, GIPR, HHIP, F2R, SSTR1, MAPK3 |
cGMP-PKG signaling pathway | 0.0299 | EDNRA, KCNJ8, ADRA1D, ADRA2C, SLC25A4, MAPK3 |
ECM–receptor interaction | 0.0347 | RELN, TNC, ITGA7, SDC1 |
(a) Excerpted Relevant GO Terms | ||
Terms with Upregulated Genes Following DPP4 Knockdown Under Hypoxic Conditions | p-Value | Genes |
Cellular response to hypoxia (GO:0071456) | <0.001 | SLC8A3, HMOX1, AK4, MGARP, HIF1A, MT3, AQP1 |
Cellular response to decreased oxygen levels (GO:0036294) | <0.001 | SLC8A3, HMOX1, AK4, MGARP, HIF1A, MT3, AQP1 |
Regulation of transforming growth factor beta production (GO:0071634) | 0.0022 | TGFB2, ITGB8, HIF1A |
Regulation of transforming growth factor beta2 production (GO:0032909) | 0.0041 | TGFB2, HIF1A |
Extracellular matrix organization (GO:0030198) | 0.0101 | TGFB2, ELN, COL11A1, APLP1, HAS2, NID1, LOXL1, ADAMTS7 |
(b) Excerpted relevant KEGG terms | ||
Terms with upregulated genes following DPP4 knockdown under hypoxic conditions | p-value | Genes |
MAPK signaling pathway | 0.0115 | DUSP5, DUSP2, TGFB2, EFNA3, BDNF, RPS6KA1, KIT, TGFA, MET, MAPK3 |
TGF-beta signaling pathway | 0.0214 | TGFB2, ZFYVE9, TGFB3, GDF6, MAPK3 |
cGMP-PKG signaling pathway | 0.0233 | SLC8A3, KCNJ8, ADCY3, ADRB1, ITPR3, ADRA2C, MAPK3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, Y.; Kawasaki, T.; Tatsumi, K.; Okaya, T.; Sato, S.; Shimada, A.; Misawa, T.; Hatano, R.; Morimoto, C.; Kasuya, Y.; et al. Transcriptome Analysis of Fibroblasts in Hypoxia-Induced Vascular Remodeling: Functional Roles of CD26/DPP4. Int. J. Mol. Sci. 2024, 25, 12599. https://doi.org/10.3390/ijms252312599
Suzuki Y, Kawasaki T, Tatsumi K, Okaya T, Sato S, Shimada A, Misawa T, Hatano R, Morimoto C, Kasuya Y, et al. Transcriptome Analysis of Fibroblasts in Hypoxia-Induced Vascular Remodeling: Functional Roles of CD26/DPP4. International Journal of Molecular Sciences. 2024; 25(23):12599. https://doi.org/10.3390/ijms252312599
Chicago/Turabian StyleSuzuki, Yuri, Takeshi Kawasaki, Koichiro Tatsumi, Tadasu Okaya, Shun Sato, Ayako Shimada, Tomoko Misawa, Ryo Hatano, Chikao Morimoto, Yoshitoshi Kasuya, and et al. 2024. "Transcriptome Analysis of Fibroblasts in Hypoxia-Induced Vascular Remodeling: Functional Roles of CD26/DPP4" International Journal of Molecular Sciences 25, no. 23: 12599. https://doi.org/10.3390/ijms252312599
APA StyleSuzuki, Y., Kawasaki, T., Tatsumi, K., Okaya, T., Sato, S., Shimada, A., Misawa, T., Hatano, R., Morimoto, C., Kasuya, Y., Hasegawa, Y., Ohara, O., & Suzuki, T. (2024). Transcriptome Analysis of Fibroblasts in Hypoxia-Induced Vascular Remodeling: Functional Roles of CD26/DPP4. International Journal of Molecular Sciences, 25(23), 12599. https://doi.org/10.3390/ijms252312599