Plateau Pika Disturbance Changes Soil Bacterial Functions and Exoenzyme Abundance to Modulate the C Cycle Pathway in Alpine Grasslands
Abstract
:1. Introduction
2. Results
2.1. Plateau Pika Disturbance Changes Soil Physicochemical Properties
2.2. Plateau Pika Disturbance Alters Bacterial Communities’ Functions and Exoenzyme Abundance
2.2.1. Bacterial Communities’ Abundance and Diversity
2.2.2. Bacterial Communities’ Composition
2.2.3. Bacterial Communities Function
2.2.4. Exoenzyme Abundance
2.3. Plateau Pika Disturbance Modulates C Cycle Pathways in Alpine Grasslands
3. Discussion
3.1. The Composition of Bacterial Communities Is Primarily Determined by Soil Physicochemial Properties
3.2. The Bacterial Function and Exoenzyme Abundance Is Determined by Bacterial Composition, Which Significantly Impact SOC Content
3.3. The Effects of Plateau Pika Disturbance on C Cycle Pathways Are Differential Across Didfferent Alpine Grasslands
4. Materials and Methods
4.1. Sampling Area and Methods
4.2. Soil Physicochemical Properties Measurement
4.3. Microbial Sequencing and Metagenomic Funtional Prediction
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Qian, J.; Cheng, G.; Lai, Y. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci. Total Environ. 2002, 291, 207–217. [Google Scholar]
- Ma, K.; Liu, J.; Balkovič, J.; Skalský, R.; Azevedo, L.B.; Kraxner, F. Changes in soil organic carbon stocks of wetlands on China’s Zoige plateau from 1980 to 2010. Ecol. Model. 2016, 327, 18–28. [Google Scholar] [CrossRef]
- Wu, X.; Fang, H.; Zhao, Y.; Smoak, J.M.; Li, W.; Shi, W.; Sheng, Y.; Zhao, L.; Ding, Y. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. J. Geophys. Res. Biogeosci. 2017, 122, 1705–1717. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Tang, Y.; Ji, C.; Zheng, C.; He, J.; Zhu, B. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 2008, 14, 1592–1599. [Google Scholar] [CrossRef]
- Cai, M.; Zhao, G.; Zhao, B.; Cong, N.; Zheng, Z.; Zhu, J.; Duan, X.; Zhang, Y. Climate warming alters the relative importance of plant root and microbial community in regulating the accumulation of soil microbial necromass carbon in a Tibetan alpine meadow. Glob. Change Biol. 2023, 29, 3193–3204. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Ma, W.; Wu, X.; Li, R.; Qiao, Y.; Li, X.; Yue, G.; Zhu, X.; Ni, J. Weakening of carbon sink on the Qinghai–Tibet Plateau. Geoderma 2022, 412, 115707. [Google Scholar] [CrossRef]
- Chen, L.; Jing, X.; Flynn, D.F.B.; Shi, Y.; Kühn, P.; Scholten, T.; He, J.S. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 2017, 288, 166–174. [Google Scholar] [CrossRef]
- Chen, L.; Liang, J.; Qin, S.; Liu, L.; Fang, K.; Xu, Y.; Ding, J.; Li, F.; Luo, Y.; Yang, Y. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 2016, 7, 13046. [Google Scholar] [CrossRef]
- Dorji, T.; Hopping, K.A.; Wang, S.; Piao, S.; Tarchen, T.; Klein, J.A. Grazing and spring snow counteract the effects of warming on an alpine plant community in Tibet through effects on the dominant species. Agric. For. Meteorol. 2018, 263, 188–197. [Google Scholar] [CrossRef]
- Wang, Y.; Lehnert, L.W.; Holzapfel, M.; Schultz, R.; Heberling, G.; Görzen, E.; Meyer, H.; Seeber, E.; Pinkert, S.; Ritz, M.; et al. Multiple indicators yield diverging results on grazing degradation and climate controls across Tibetan pastures. Ecol. Indic. 2018, 93, 1199–1208. [Google Scholar] [CrossRef]
- Dai, L.; Fu, R.; Guo, X.; Du, Y.; Lin, L.; Zhang, F.; Li, Y.; Cao, G. Long-term grazing exclusion greatly improve carbon and nitrogen store in an alpine meadow on the northern Qinghai-Tibet Plateau. Catena 2021, 197, 104955. [Google Scholar] [CrossRef]
- Xiong, Q.; Xiao, Y.; Liang, P.; Li, L.; Zhang, L.; Li, T.; Pan, K.; Liu, C. Trends in climate change and human interventions indicate grassland productivity on the Qinghai–Tibetan Plateau from 1980 to 2015. Ecol. Indic. 2021, 129, 108010. [Google Scholar] [CrossRef]
- Allison, S.D.; Wallenstein, M.D.; Bradford, M.A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 2010, 3, 336–340. [Google Scholar] [CrossRef]
- Tao, F.; Huang, Y.; Hungate, B.A.; Manzoni, S.; Frey, S.D.; Schmidt, M.W.I.; Reichstein, M.; Carvalhais, N.; Ciais, P.; Jiang, L.; et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 2023, 618, 981–985. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, R.; Chang, S.; Zheng, Y.; Ma, T.; Xu, S.; Zhang, X.; Shi, X.; Lu, J.; Luo, D.; et al. The contribution of microbial necromass to soil organic carbon and influencing factors along a variation of habitats in alpine ecosystems. Sci. Total Environ. 2024, 921, 171126. [Google Scholar] [CrossRef]
- Liu, X.h. Rodent biology and management: Current status, opinion and challenges in China. J. Integr. Agric. 2019, 18, 830–839. [Google Scholar] [CrossRef]
- Smith, A.T.; Senko, J.; Siladan, M.U. Plateau Pika Ochotona curzoniae Poisoning Campaign Reduces Carnivore Abundance in Southern Qinghai, China. Mammal Study 2016, 41, 1–8. [Google Scholar]
- Su, J.; Aryal, A.; Nan, Z.; Ji, W. Climate Change-Induced Range Expansion of a Subterranean Rodent: Implications for Rangeland Management in Qinghai-Tibetan Plateau. PLoS ONE 2015, 10, e0138969. [Google Scholar] [CrossRef]
- Qu, J.; Yang, M.; Li, W.; Chen, Q.; Mi, Z.; Xu, W.; Zhang, Y. Effects of climate change on the reproduction and offspring sex ratio of plateau pika (Ochotona curzoniae) on the Tibetan Plateau. J. Arid Environ. 2016, 134, 66–72. [Google Scholar] [CrossRef]
- Cui, H.; Wang, Y.; Zhou, X.; Li, W. Positive role of plateau pika (Ochotona coronae) on environmental quality at low and moderate density on the Tibetan plateau: Evidence from a meta-analysis. J. Environ. Manag. 2024, 361, 121239. [Google Scholar] [CrossRef]
- Pech, R.P.; Jiebu Arthur, A.D.; Yanming, Z.; Hui, L. Population dynamics and responses to management of plateau pikas Ochotona curzoniae. J. Appl. Ecol. 2007, 44, 615–624. [Google Scholar] [CrossRef]
- Yuan, X.; Qin, W.; Chen, Y.; Xu, T.; Chen, K.; Zhu, B. Plateau pika offsets the positive effects of warming on soil organic carbon in an alpine swamp meadow on the Tibetan Plateau. Catena 2021, 204, 105417. [Google Scholar] [CrossRef]
- Delibes-Mateos, M.; Smith, A.T.; Slobodchikoff, C.N.; Swenson, J.E. The paradox of keystone species persecuted as pests: A call for the conservation of abundant small mammals in their native range. Biol. Conserv. 2011, 144, 1335–1346. [Google Scholar] [CrossRef]
- Smith, A.T.; Foggin, J.M. The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim. Conserv. 2006, 2, 235–240. [Google Scholar] [CrossRef]
- Guo, Z.G.; Zhou, X.R.; Hou, Y. Effect of available burrow densities of plateau pika (Ochotona curzoniae) on soil physicochemical property of the bare land and vegetation land in the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2012, 32, 104–110. [Google Scholar] [CrossRef]
- Qian, D.; Li, Q.; Fan, B.; Lan, Y.; Cao, G. Characterization of the spatial distribution of plateau pika burrows along an alpine grassland degradation gradient on the Qinghai-Tibet Plateau. Ecol. Evol. 2021, 11, 14905–14915. [Google Scholar] [CrossRef]
- Qin, Y.; Yi, S.; Ding, Y.; Qin, Y.; Zhang, W.; Sun, Y.; Hou, X.; Yu, H.; Meng, B.; Zhang, H.; et al. Effects of plateau pikas’ foraging and burrowing activities on vegetation biomass and soil organic carbon of alpine grasslands. Plant Soil 2020, 458, 201–216. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, R.; Guo, J.; Yi, S.; Meng, B.; Xiong, F.; Zhang, L.; Yang, X.; Liu, X.; Miao, Y. Response mechanism of rodent burrow density to natural environmental factors in desert areas based on multisource data. Catena 2024, 242, 108091. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, J.; Shi, Z.; Yang, X.; Harris, W. Relationships between plateau pika (Ochotona curzoniae) densities and biomass and biodiversity indices of alpine meadow steppe on the Qinghai–Tibet Plateau China. Ecol. Eng. 2017, 102, 509–518. [Google Scholar] [CrossRef]
- Song, Z.; Li, X.; Su, X.; Li, C. Analyzing the recovery mechanisms of patchy degradation and its response to mowing and plateau pika disturbances in alpine meadow. Ecol. Indic. 2023, 154, 110565. [Google Scholar] [CrossRef]
- Sun, J.; Wang, P.; Wang, H.; Yu, X. Changes in plant communities, soil characteristics, and microbial communities in alpine meadows degraded to different degrees by pika on the Qinghai–Tibetan Plateau. Glob. Ecol. Conserv. 2021, 27, e01621. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Meng, B.; Chen, J.; Wang, X.; Jiang, H.; Yu, Y.; Yi, S. Using UAVs to assess the relationship between alpine meadow bare patches and disturbance by pikas in the source region of Yellow River on the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 26, e01517. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Pang, X.P.; Wang, Q.; Zhou, Y.P.; Guo, Z.G. Soil disturbance and disturbance intensity: Response of soil nutrient concentrations of alpine meadow to plateau pika bioturbation in the Qinghai-Tibetan Plateau, China. Geoderma 2017, 307, 98–106. [Google Scholar] [CrossRef]
- Chen, J.; Yi, S.; Qin, Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma 2017, 297, 1–9. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, L.; Wei, H.; Zhang, T.; Bai, Y.; Li, R.; Tang, Y. Impact of plateau pika (Ochotona curzoniae) burrowing-induced microtopography on ecosystem respiration of the alpine meadow and steppe on the Tibetan plateau. Plant Soil 2019, 458, 217–230. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, X.; Huang, B.; Yu, H.; Yi, S. Soil microbial communities and the associated effect on soil organic carbon in response to plateau pika bioturbation in alpine grasslands. Glob. Ecol. Conserv. 2023, 46, e02561. [Google Scholar] [CrossRef]
- Ma, X.; Asano, M.; Tamura, K.; Zhao, R.; Nakatsuka, H.; Wang, T. Physicochemical properties and micromorphology of degraded alpine meadow soils in the Eastern Qinghai-Tibet Plateau. Catena 2020, 194, 104649. [Google Scholar] [CrossRef]
- Guo, N.; Degen, A.A.; Deng, B.; Shi, F.; Bai, Y.; Zhang, T.; Long, R.; Shang, Z. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agric. Ecosyst. Environ. 2019, 284, 106593. [Google Scholar] [CrossRef]
- Qian, D.; Du, Y.; Li, Q.; Guo, X.; Fan, B.; Cao, G. Impacts of alpine shrub-meadow degradation on its ecosystem services and spatial patterns in Qinghai-Tibetan Plateau. Ecol. Indic. 2022, 135, 108541. [Google Scholar] [CrossRef]
- Cao, J.; Adamowski, J.F.; Deo, R.C.; Xu, X.; Gong, Y.; Feng, Q. Grassland Degradation on the Qinghai-Tibetan Plateau: Reevaluation of Causative Factors. Rangel. Ecol. Manag. 2019, 72, 988–995. [Google Scholar] [CrossRef]
- Mantel, S.; Dondeyne, S.; Deckers, S. World reference base for soil resources (WRB). In Encyclopedia of Soils in the Environment; Springer: Berlin/Heidelberg, Germany, 2023; pp. 206–217. [Google Scholar]
- Song, T.; Liu, Y.; Kolton, M.; Wilson, R.M.; Keller, J.K.; Rolando, J.L.; Chanton, J.P.; Kostka, J.E. Porewater constituents inhibit microbially mediated greenhouse gas production (GHG) and regulate the response of soil organic matter decomposition to warming in anoxic peat from a Sphagnum-dominated bog. FEMS Microbiol Ecol. 2023, 99, fiad060. [Google Scholar] [CrossRef] [PubMed]
- Davidova, I.A.; Marks, C.R.; Suflita, J.M. Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes; Springer: New York, NY, USA, 2019; pp. 207–243. [Google Scholar]
- Layoun, P.; Lopez-Perez, M.; Haro-Moreno, J.M.; Haber, M.; Thrash, J.C.; Henson, M.W.; Kavagutti, V.S.; Ghai, R.; Salcher, M.M. Flexible genomic island conservation across freshwater and marine Methylophilaceae. ISME J. 2024, 18, wrad036. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Baumbach, J.; Barbosa, E.G.; Azevedo, V.; Zhang, C.; Koblizek, M. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ. Microbiol. Rep. 2016, 8, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Feng, T.; An, X.; Chen, X.; Han, N.; Wang, J.; Chang, G.; Hou, X. Livestock grazing is associated with the gut microbiota and antibiotic resistance genes in sympatric plateau pika (Ochotona curzoniae). Integr. Zool. 2024, 19, 646–661. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Li, X.; Li, C.; Yang, P.; Chai, Y.; Xu, W. Positive effects of fungal β diversity on soil multifunctionality mediated by pH in the natural restoration succession stages of alpine meadow patches. Ecol. Indic. 2023, 148, 110122. [Google Scholar] [CrossRef]
- Han, B.; Yu, Q.; Han, Q.; Wang, S.; Su, W.; Qu, J.; Li, H. Precipitation weakens the grave soil fungal richness and species interactions in the Qinghai-Tibet Plateau. Appl. Soil Ecol. 2023, 189, 104958. [Google Scholar] [CrossRef]
- Xue, R.; Liu, S.; Stirling, E.; Wang, Y.; Zhao, K.; Matsumoto, H.; Wang, M.; Xu, J.; Ma, B. Core community drives phyllosphere bacterial diversity and function in multiple ecosystems. Sci. Total Environ. 2023, 896, 165187. [Google Scholar] [CrossRef]
- Uroz, S.; Tech, J.J.; Sawaya, N.A.; Frey-Klett, P.; Leveau, J.H.J. Structure and function of bacterial communities in ageing soils: Insights from the Mendocino ecological staircase. Soil Biol. Biochem. 2014, 69, 265–274. [Google Scholar] [CrossRef]
- Fan, J.; Jin, H.; Zhang, C.; Zheng, J.; Zhang, J.; Han, G. Grazing intensity induced alternations of soil microbial community composition in aggregates drive soil organic carbon turnover in a desert steppe. Agric. Ecosyst. Environ. 2021, 313, 107387. [Google Scholar] [CrossRef]
- Gunina, A.; Kuzyakov, Y. From energy to (soil organic) matter. Glob. Change Biol. 2022, 28, 2169–2182. [Google Scholar] [CrossRef]
- Liao, S.; Nie, X.; Zeng, A.; Liao, W.; Liu, Y.; Li, Z. Importance of carbon and nitrogen availability to microbial necromass carbon accumulation in the drawdown area. Catena 2024, 235, 107688. [Google Scholar] [CrossRef]
- Lu, Z.X.; Wang, P.; Ou, H.B.; Wei, S.X.; Wu, L.C.; Jiang, Y.; Wang, R.J.; Liu, X.S.; Wang, Z.H.; Chen, L.J.; et al. Effects of different vegetation restoration on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China. For. Ecol. Manag. 2022, 508, 120002. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Castellano, M.J.; Vogel, C.; Wiesmeier, M.; Mueller, C.W. Unlocking complex soil systems as carbon sinks: Multi-pool management as the key. Nat. Commun. 2023, 14, 2967. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chen, J.; Yi, S. Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecol. Eng. 2015, 84, 287–291. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Elberling, B.; Ambus, P.; Li, Y.; Pan, J.; Zhang, R.; Guo, H.; Niu, S. Regional emissions of soil greenhouse gases across Tibetan alpine grasslands. Geoderma 2024, 443, 116843. [Google Scholar] [CrossRef]
- Heanes, D.L. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Wu, J.; Brookes, P.C. Measuring soil microbial biomass using an automated procedure. Soil Biol. Biochem. 2011, 43, 873–876. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, G.; Jiang, S.; Liu, Y.X. Wekemo Bioincloud: A user-friendly platform for meta-omics data analyses. Imeta 2024, 3, e175. [Google Scholar] [CrossRef]
UDM | LDC | LDP | MDC | MDP | SDC | SDP | |
---|---|---|---|---|---|---|---|
pH | 5.39 ± 0.23 A | 5.72 ± 0.15 A | 5.65 ± 0.07 A | 4.81 ± 0.14 B | 4.71 ± 0.13 B | 7.11 ± 0.17 C | 7.21 ± 0.17 C |
SWC (%) | 160.5 ± 21.6 A | 48.4 ± 3.3 Ba | 56.1 ± 5.5 Bb | 41.6 ± 2.6 Ba | 49.3 ± 10.8 Bb | 27.9 ± 3.1 Ca | 24.5 ± 7.4 Cb |
SBD (g/cm3) | 0.44 ± 0.08 A | 1.34 ± 0.16 Ba | 1.09 ± 0.12 Bb | 1.02 ± 0.04 Bb | 0.93 ± 0.03 Ca | 1.18 ± 0.12 Cb | 1.02 ± 0.04 Bb |
Sand (0.05–2 mm%) | 34.66 ± 1.67 A | 49.76 ± 0.98 Ba | 51.23 ± 1.34 Ba | 52.45 ± 1.22 Ba | 51.89 ± 1.45 Ba | 60.89 ± 1.75 Ca | 64.56 ± 2.87 Ca |
Silt (0.002–0.05 mm%) | 47.57 ± 1.09 A | 39.32 ± 1.05 Ba | 38.08 ± 1.01 Ba | 37.05 ± 0.89 Ba | 38.76 ± 1.23 Ba | 33.23 ± 0.89 Ca | 30.45 ± 0.95 Ca |
Clay (<0.002 mm%) | 18.36 ± 1.22 A | 11.21 ± 0.78 Ba | 10.15 ± 0.98 Ba | 10.24 ± 0.84 Ba | 9.86 ± 0.88 Ba | 6.54 ± 0.75 Ca | 5.89 ± 0.62 Ca |
TC (g/kg soil) | 202.1 ± 15.3 A | 66.83 ± 3.45 Ba | 70.15 ± 3.1 Bb | 67.38 ± 4.22 Ba | 74.19 ± 3.98 Bb | 57.36 ± 1.45 Ca | 51.45 ± 2.13 Cb |
TN (g/kg soil) | 8.72 ± 0.15 A | 2.41 ± 0.11 Ba | 2.83 ± 0.07 Bb | 2.43 ± 0.09 Ca | 2.68 ± 0.07 Cb | 1.81 ± 0.02 Da | 2.02 ± 0.02 Db |
C:N | 23.86 ± 0.45 A | 27.55 ± 1.54 Ba | 24.56 ± 0.88 A | 27.36 ± 1.43 Ba | 26.84 ± 0.76 Ba | 32.04 ± 0.65 Ca | 25.55 ± 0.78 A |
SOC (g/kg soil) | 129.5 ± 26.1 A | 43.69 ± 4.18 Ba | 45.55 ± 6.57 Ba | 44.92 ± 5.14 Ba | 49.64 ± 4.13 Bb | 37.05 ± 4.17 Ca | 32.19 ± 2.89 Cb |
MBC (mg/kg soil) | 1295 ± 91.1 A | 203.3 ± 17.5 Ba | 263.6 ± 23.8 Bb | 275.1 ± 27.3 Bb | 425.1 ± 40.1 Bc | 151.2 ± 14.9 Ca | 190.2 ± 16.2 Ba |
NH4+-N (mg/kg soil) | 94.6 ± 11.3 A | 35.71 ± 0.98 Ba | 52.87 ± 1.12 Bb | 66.24 ± 1.67 Ca | 74.56 ± 1.88 Cb | 69.76 ± 2.45 Ca | 62.64 ± 1.54 Ca |
NO3−-N (mg/kg soil) | 341.3± 19.7 A | 53.89 ± 1.09 Ba | 64.65 ± 1.65 Bb | 42.34 ± 1.01 Ca | 48.12 ± 0.98 Cb | 20.85 ± 0.65 Da | 39.56 ± 0.98 Db |
Alpine Grassland | OTU | α Diversity | β Diversity | ||||
---|---|---|---|---|---|---|---|
Chao_1 | Faith_pd | Shannon_ Winner | Bray_curtis | Weighted Unifrac | Unweighted Unifrac | ||
UDM | 4724 ± 213 A | 6453 ± 200 | 214.6 ± 5.5 | 10.36 ± 0.23 | 0.811 ± 0.016 | 0.104 ± 0.00 | 0.534 ± 0.008 |
LDC | 4590 ± 28 A | 5883 ± 87 | 195.8 ± 2.6 | 10.60 ± 0.02 | 0.733 ± 0.009 | 0.093 ± 0.004 | 0.526 ± 0.001 |
LDP | 4934 ± 294 A | 6129 ± 435 | 201.2 ± 30.7 | 10.43 ± 0.61 | 0.759 ± 0.032 | 0.108 ± 0.018 | 0.542 ± 0.038 |
MDC | 3745 ± 246 Ba | 6294 ± 345 | 202.7 ± 18.8 | 10.83 ± 0.29 | 0.733 ± 0.001 | 0.100 ± 0.006 | 0.516 ± 0.001 |
MDP | 5637 ± 285 Bb | 6623 ± 488 | 216.2 ± 24.5 | 10.97 ± 0.22 | 0.735 ± 0.023 | 0.097 ± 0.010 | 0.516 ± 0.010 |
SDC | 5831 ± 104 Bb | 6694 ± 501 | 221.2 ± 17.3 | 10.69 ± 0.17 | 0.744 ± 0.010 | 0.102 ± 0.001 | 0.526 ± 0.013 |
SDP | 4583 ± 161 A | 6056 ± 173 | 201.0 ± 2.2 | 10.39 ± 0.19 | 0.817 ± 0.016 | 0.114 ± 0.009 | 0.538 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, Q.; Zhu, B.; Yang, M. Plateau Pika Disturbance Changes Soil Bacterial Functions and Exoenzyme Abundance to Modulate the C Cycle Pathway in Alpine Grasslands. Int. J. Mol. Sci. 2024, 25, 12775. https://doi.org/10.3390/ijms252312775
Li J, Wang Q, Zhu B, Yang M. Plateau Pika Disturbance Changes Soil Bacterial Functions and Exoenzyme Abundance to Modulate the C Cycle Pathway in Alpine Grasslands. International Journal of Molecular Sciences. 2024; 25(23):12775. https://doi.org/10.3390/ijms252312775
Chicago/Turabian StyleLi, Jing, Qing Wang, Baolong Zhu, and Min Yang. 2024. "Plateau Pika Disturbance Changes Soil Bacterial Functions and Exoenzyme Abundance to Modulate the C Cycle Pathway in Alpine Grasslands" International Journal of Molecular Sciences 25, no. 23: 12775. https://doi.org/10.3390/ijms252312775
APA StyleLi, J., Wang, Q., Zhu, B., & Yang, M. (2024). Plateau Pika Disturbance Changes Soil Bacterial Functions and Exoenzyme Abundance to Modulate the C Cycle Pathway in Alpine Grasslands. International Journal of Molecular Sciences, 25(23), 12775. https://doi.org/10.3390/ijms252312775