Molecular Basis of Na, K–ATPase Regulation of Diseases: Hormone and FXYD2 Interactions
Abstract
:1. Introduction
2. Na, K–ATPase: Structure and Function
3. Regulatory Mechanisms
4. Regulation of Na, K–ATPase by FXYD2
5. Cardiotonic Steroids
6. Vanadate
7. Oxidative Stress
8. Angiotensin II
9. Dopamine
10. Balance Between Ang II and DA: A Dynamic Equilibrium
11. Epinephrine
12. Norepinephrine
13. Thyroxine
14. Insulin
15. Diseases
15.1. Hypertension
15.2. Renal Hypomagnesemia
15.3. Cancer
16. Future Directions on Na, K–ATPase and Cancer Research
17. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dempski, R.E.; Lustig, J.; Friedrich, T.; Bamberg, E. Structural Arrangement and Conformational Dynamics of the γ Subunit of the Na+/K+-ATPase. Biochemistry 2008, 47, 257–266. [Google Scholar] [CrossRef]
- Monti, J.L.E.; Montes, M.R.; Rossi, R.C. Steady-State Analysis of Enzymes with Non-Michaelis-Menten Kinetics: The Transport Mechanism of Na+/K+-ATPase. J. Biol. Chem. 2018, 293, 1373–1385. [Google Scholar] [CrossRef]
- Skou, J.C. The Influence of Some Cations on an Adenosine Triphosphatase from Peripheral Nerves. Biochim. Biophys. Acta 1957, 23, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Quastel, M.R.; Kaplan, J.G. Inhibition by Ouabain of Human Lymphocyte Transformation Induced by Phytohaemagglutinin In Vitro. Nature 1968, 219, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Boardman, L.; Huett, M.; Lamb, J.F.; Newton, J.P.; Polson, J.M. Evidence for the Genetic Control of the Sodium Pump Density in HeLa Cells. J. Physiol. 1974, 241, 771–794. [Google Scholar] [CrossRef] [PubMed]
- Pollack, L.R.; Tate, E.H.; Cook, J.S. Turnover and Regulation of Na-K-ATPase in HeLa Cells. Am. J. Physiol.-Cell Physiol. 1981, 241, C173–C183. [Google Scholar] [CrossRef]
- Scanzano, R.; Segall, L.; Blostein, R. Specific Sites in the Cytoplasmic N Terminus Modulate Conformational Transitions of the Na, K-ATPase. J. Biol. Chem. 2007, 282, 33691–33697. [Google Scholar] [CrossRef]
- Liu, L.; Ivanov, A.V.; Gable, M.E.; Jolivel, F.; Morrill, G.A.; Askari, A. Comparative Properties of Caveolar and Noncaveolar Preparations of Kidney Na+/K+-ATPase. Biochemistry 2011, 50, 8664–8673. [Google Scholar] [CrossRef]
- Yap, J.Q.; Seflova, J.; Sweazey, R.; Artigas, P.; Robia, S.L. FXYD Proteins and Sodium Pump Regulatory Mechanisms. J. Gen. Physiol. 2021, 153, e202012633. [Google Scholar] [CrossRef] [PubMed]
- Stock, C.; Heger, T.; Basse Hansen, S.; Thirup Larsen, S.; Habeck, M.; Dieudonné, T.; Driller, R.; Nissen, P. Fast-Forward on P-Type ATPases: Recent Advances on Structure and Function. Biochem. Soc. Trans. 2023, 51, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, P.L. Purification and Characterization of (Na+ + K+)-ATPase: Na, K-ATPase III. Purification from the Outer Medulla of Mammalian Kidney after Selective Removal of Membrane Components by Sodium Dodecylsulphate. Biochim. Biophys. Acta (BBA)-Biomembr. 1974, 356, 36–52. [Google Scholar] [CrossRef]
- Jensen, J.; Nørby, J.G.; Ottolenghi, P. Binding of Sodium and Potassium to the Sodium Pump of Pig Kidney Evaluated from Nucleotide-binding Behaviour. J. Physiol. 1984, 346, 219–241. [Google Scholar] [CrossRef]
- Fabri, L.M.; Moraes, C.M.; Costa, M.I.C.; Garçon, D.P.; Fontes, C.F.L.; Pinto, M.R.; McNamara, J.C.; Leone, F.A. Salinity-Dependent Modulation by Protein Kinases and the FXYD2 Peptide of Gill (Na+, K+)-ATPase Activity in the Freshwater Shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Biochim. Biophys. Acta Biomembr. 2022, 1864, 183982. [Google Scholar] [CrossRef]
- Glynn, I.M. The Na+, K+-Transporting Adenosine Triphosphatase. In The Enzymes of Biological Membranes: Volume 3: Membrane Transport, 2nd ed.; Martonosi, A.N., Ed.; Springer: Boston, MA, USA, 1985; pp. 35–114. [Google Scholar] [CrossRef]
- Campos, M.; Beaugé, L. ATP−ADP Exchange Reaction Catalyzed by Na+, K+-ATPase: Dephosphorylation by ADP of the E1P Enzyme Form. Biochemistry 1997, 36, 14228–14237. [Google Scholar] [CrossRef]
- Faraj, S.E.; Valsecchi, W.M.; Ferreira-Gomes, M.; Centeno, M.; Martin, E.M.S.; Fedosova, N.U.; Rossi, J.P.F.; Montes, M.R.; Rossi, R.C. Measurements of Na+-Occluded Intermediates during the Catalytic Cycle of the Na+/K+-ATPase Provide Novel Insights into the Mechanism of Na+ Transport. J. Biol. Chem. 2023, 299, 102811. [Google Scholar] [CrossRef]
- Hidalgo, C. An Introduction to Membrane Transport and Bioelectricity. Foundations of General Physiology and Electrochemical Signaling. Second edition. FEBS Lett. 1995, 367, 100–101. [Google Scholar] [CrossRef]
- Abercrombie, R.F.; de Weer, P. Electric Current Generated by Squid Giant Axon Sodium Pump: External K and Internal ADP Effects. Am. J. Physiol.-Cell Physiol. 1978, 235, C63–C68. [Google Scholar] [CrossRef]
- de Weer, P.; Geduldig, D. Contribution of Sodium Pump to Resting Potential of Squid Giant Axon. Am. J. Physiol.-Cell Physiol. 1978, 235, C55–C62. [Google Scholar] [CrossRef]
- Sjodin, R.A. Contributions of Electrogenic Pumps to Resting Membrane Potentials: The Theory of Electrogenic Potentials. Soc. Gen. Physiol. Ser. 1984, 38, 105–127. [Google Scholar]
- Peluffo, R.D.; Hernández, J.A. The Na+, K+-ATPase and Its Stoichiometric Ratio: Some Thermodynamic Speculations. Biophys. Rev. 2023, 15, 539–552. [Google Scholar] [CrossRef]
- Pirkmajer, S.; Chibalin, A.V. Hormonal Regulation of Na+-K+-ATPase from the Evolutionary Perspective. In Current Topics in Membranes; Membrane Transporters in the Pathogenesis of Cardiovascular and Lung Disorders; Orlov, S.N., Ed.; Academic Press: New York, NY, USA, 2019; Volume 83, pp. 315–351. [Google Scholar]
- Isenovic, E.R.; Jacobs, D.B.; Kedees, M.H.; Sha, Q.; Milivojevic, N.; Kawakami, K.; Gick, G.; Sowers, J.R. Angiotensin II Regulation of the Na+ Pump Involves the Phosphatidylinositol-3 Kinase and P42/44 Mitogen-Activated Protein Kinase Signaling Pathways in Vascular Smooth Muscle Cells. Endocrinology 2004, 145, 1151–1160. [Google Scholar] [CrossRef]
- Cheng, X.J.; Höög, J.O.; Nairn, A.C.; Greengard, P.; Aperia, A. Regulation of Rat Na+-K+-ATPase Activity by PKC Is Modulated by State of Phosphorylation of Ser-943 by PKA. Am. J. Physiol. 1997, 273, C1981–C1986. [Google Scholar] [CrossRef] [PubMed]
- Pirkmajer, S.; Chibalin, A.V. Na, K-ATPase Regulation in Skeletal Muscle. Am. J. Physiol.-Endocrinol. Metab. 2016, 311, E1–E31. [Google Scholar] [CrossRef]
- Al-Khalili, L.; Yu, M.; Chibalin, A.V. Na+,K+-ATPase Trafficking in Skeletal Muscle: Insulin Stimulates Translocation of Both Alpha 1- and Alpha 2-Subunit Isoforms. FEBS Lett. 2003, 536, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalili, L.; Kotova, O.; Tsuchida, H.; Ehrén, I.; Féraille, E.; Krook, A.; Chibalin, A.V. ERK1/2 Mediates Insulin Stimulation of Na(+),K(+)-ATPase by Phosphorylation of the Alpha-Subunit in Human Skeletal Muscle Cells. J. Biol. Chem. 2004, 279, 25211–25218. [Google Scholar] [CrossRef]
- Comellas, A.P.; Kelly, A.M.; Trejo, H.E.; Briva, A.; Lee, J.; Sznajder, J.I.; Dada, L.A. Insulin Regulates Alveolar Epithelial Function by Inducing Na+/K+-ATPase Translocation to the Plasma Membrane in a Process Mediated by the Action of Akt. J. Cell Sci. 2010, 123 Pt 8, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Tiwari, M.N.; Biala, Y.; Yaari, Y. Regulation of Neuronal Na+/K+-ATPase by Specific Protein Kinases and Protein Phosphatases. J. Neurosci. 2019, 39, 5440–5451. [Google Scholar] [CrossRef] [PubMed]
- Hernández-R, J. Na+/K(+)-ATPase Regulation by Neurotransmitters. Neurochem. Int. 1992, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mercer, R.W.; Biemesderfer, D.; Bliss, D.P., Jr.; Collins, J.H.; Forbush, B., 3rd. Molecular Cloning and Immunological Characterization of the Gamma Polypeptide, a Small Protein Associated with the Na, K-ATPase. J. Cell Biol. 1993, 121, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; He, H.; Gick, G. Thyroid Hormone Regulation of Na, K-ATPase Alpha 2 Gene Expression in Cardiac Myocytes. Cell Mol. Biol. Res. 1994, 40, 41–52. [Google Scholar]
- Ikeda, U.; Hyman, R.; Smith, T.W.; Medford, R.M. Aldosterone-Mediated Regulation of Na+, K(+)-ATPase Gene Expression in Adult and Neonatal Rat Cardiocytes. J. Biol. Chem. 1991, 266, 12058–12066. [Google Scholar] [CrossRef] [PubMed]
- Bertorello, A.M.; Aperia, A.; Walaas, S.I.; Nairn, A.C.; Greengard, P. Phosphorylation of the Catalytic Subunit of Na+,K(+)-ATPase Inhibits the Activity of the Enzyme. Proc. Natl. Acad. Sci. USA 1991, 88, 11359–11362. [Google Scholar] [CrossRef] [PubMed]
- Feschenko, M.S.; Sweadner, K.J. Conformation-Dependent Phosphorylation of Na, K-ATPase by Protein Kinase A and Protein Kinase C. J. Biol. Chem. 1994, 269, 30436–30444. [Google Scholar] [CrossRef] [PubMed]
- Chibalin, A.V.; Vasilets, L.A.; Hennekes, H.; Pralong, D.; Geering, K. Phosphorylation of Na, K-ATPase Alpha-Subunits in Microsomes and in Homogenates of Xenopus Oocytes Resulting from the Stimulation of Protein Kinase A and Protein Kinase C. J. Biol. Chem. 1992, 267, 22378–22384. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Amaral, E.E.D.; Caruso-Neves, C.; Lara, L.S.; Pinheiro, C.M.; Meyer-Fernandes, J.R. Leishmania Amazonensis: PKC-like Protein Kinase Modulates the (Na+ + K+)ATPase Activity. Exp. Parasitol. 2007, 116, 419–426. [Google Scholar] [CrossRef]
- Almeida-Amaral, E.E.; Cardoso, V.C.; Francioli, F.G.; Meyer-Fernandes, J.R. Leishmania Amazonensis: Heme Stimulates (Na+ + K+)ATPase Activity via Phosphatidylinositol-Specific Phospholipase C/Protein Kinase C-like (PI-PLC/PKC) Signaling Pathways. Exp. Parasitol. 2010, 124, 436–441. [Google Scholar] [CrossRef]
- Béguin, P.; Peitsch, M.C.; Geering, K. Alpha 1 but Not Alpha 2 or Alpha 3 Isoforms of Na, K-ATPase Are Efficiently Phosphorylated in a Novel Protein Kinase C Motif. Biochemistry 1996, 35, 14098–14108. [Google Scholar] [CrossRef] [PubMed]
- Sweadner, K.J.; Rael, E. The FXYD Gene Family of Small Ion Transport Regulators or Channels: cDNA Sequence, Protein Signature Sequence, and Expression. Genomics 2000, 68, 41–56. [Google Scholar] [CrossRef]
- Geering, K. Functional Roles of Na, K-ATPase Subunits. Curr. Opin. Nephrol. Hypertens. 2008, 17, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Crambert, G.; Fuzesi, M.; Garty, H.; Karlish, S.; Geering, K. Phospholemman (FXYD1) Associates with Na, K-ATPase and Regulates Its Transport Properties. Proc. Natl. Acad. Sci. USA 2002, 99, 11476–11481. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.J.; Scott, B.T.; Jones, L.R. Purification and Complete Sequence Determination of the Major Plasma Membrane Substrate for cAMP-Dependent Protein Kinase and Protein Kinase C in Myocardium. J. Biol. Chem. 1991, 266, 11126–11130. [Google Scholar] [CrossRef] [PubMed]
- Despa, S.; Bossuyt, J.; Han, F.; Ginsburg, K.S.; Jia, L.-G.; Kutchai, H.; Tucker, A.L.; Bers, D.M. Phospholemman-Phosphorylation Mediates the Beta-Adrenergic Effects on Na/K Pump Function in Cardiac Myocytes. Circ. Res. 2005, 97, 252–259. [Google Scholar] [CrossRef]
- Arystarkhova, E.; Wetzel, R.K. Gamma Structural Variants Differentially Regulate Na, K-ATPase Properties. Ann. N. Y. Acad. Sci. 2003, 986, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Arystarkhova, E.; Wetzel, R.; Asinovski, N.; Sweadner, K. The Gamma Subunit Modulates Na(+) and K(+) Affinity of the Renal Na, K-ATPase. J. Biol. Chem. 1999, 274, 33183–33185. [Google Scholar] [CrossRef]
- Arystarkhova, E. Beneficial Renal and Pancreatic Phenotypes in a Mouse Deficient in FXYD2 Regulatory Subunit of Na, K-ATPase. Front. Physiol. 2016, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Kuster, B.; Shainskaya, A.; Pu, H.X.; Goldshleger, R.; Blostein, R.; Mann, M.; Karlish, S.J. A New Variant of the Gamma Subunit of Renal Na, K-ATPase. Identification by Mass Spectrometry, Antibody Binding, and Expression in Cultured Cells. J. Biol. Chem. 2000, 275, 18441–18446. [Google Scholar] [CrossRef]
- Wetzel, R.K.; Pascoa, J.L.; Arystarkhova, E. Stress-Induced Expression of the Gamma Subunit (FXYD2) Modulates Na, K-ATPase Activity and Cell Growth. J. Biol. Chem. 2004, 279, 41750–41757. [Google Scholar] [CrossRef]
- Pu, H.X.; Cluzeaud, F.; Goldshleger, R.; Karlish, S.J.; Farman, N.; Blostein, R. Functional Role and Immunocytochemical Localization of the Gamma a and Gamma b Forms of the Na, K-ATPase Gamma Subunit. J. Biol. Chem. 2001, 276, 20370–20378. [Google Scholar] [CrossRef] [PubMed]
- Arystarkhova, E.; Wetzel, R.K.; Sweadner, K.J. Distribution and Oligomeric Association of Splice Forms of Na(+)-K(+)-ATPase Regulatory Gamma-Subunit in Rat Kidney. Am. J. Physiol. Renal. Physiol. 2002, 282, F393–F407. [Google Scholar] [CrossRef]
- Blostein, R.; Pu, H.X.; Scanzano, R.; Zouzoulas, A. Structure/Function Studies of the Gamma Subunit of the Na, K-ATPase. Ann. N. Y. Acad. Sci. 2003, 986, 420–427. [Google Scholar] [CrossRef]
- Arystarkhova, E.; Sweadner, K.J. Splice Variants of the Gamma Subunit (FXYD2) and Their Significance in Regulation of the Na, K-ATPase in Kidney. J. Bioenerg. Biomembr. 2005, 37, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Pihakaski-Maunsbach, K.; Vorum, H.; Honoré, B.; Tokonabe, S.; Frøkiaer, J.; Garty, H.; Karlish, S.J.D.; Maunsbach, A.B. Locations, Abundances, and Possible Functions of FXYD Ion Transport Regulators in Rat Renal Medulla. Am. J. Physiol. Renal. Physiol. 2006, 291, F1033–F1044. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.H.; Li, T.Y.; Arystarkhova, E.; Barr, K.J.; Wetzel, R.K.; Peng, J.; Markham, K.; Sweadner, K.J.; Fong, G.-H.; Kidder, G.M. Na, K-ATPase from Mice Lacking the Gamma Subunit (FXYD2) Exhibits Altered Na+ Affinity and Decreased Thermal Stability. J. Biol. Chem. 2005, 280, 19003–19011. [Google Scholar] [CrossRef]
- Arystarkhova, E.; Donnet, C.; Asinovski, N.K.; Sweadner, K.J. Differential Regulation of Renal Na, K-ATPase by Splice Variants of the Gamma Subunit. J. Biol. Chem. 2002, 277, 10162–10172. [Google Scholar] [CrossRef] [PubMed]
- Sweadner, K.J.; Pascoa, J.L.; Salazar, C.A.; Arystarkhova, E. Post-Transcriptional Control of Na, K-ATPase Activity and Cell Growth by a Splice Variant of FXYD2 Protein with Modified mRNA. J. Biol. Chem. 2011, 286, 18290–18300. [Google Scholar] [CrossRef]
- Flamez, D.; Roland, I.; Berton, A.; Kutlu, B.; Dufrane, D.; Beckers, M.C.; De Waele, E.; Rooman, I.; Bouwens, L.; Clark, A.; et al. A Genomic-Based Approach Identifies FXYD Domain Containing Ion Transport Regulator 2 (FXYD2)Gammaa as a Pancreatic Beta Cell-Specific Biomarker. Diabetologia 2010, 53, 1372–1383. [Google Scholar] [CrossRef] [PubMed]
- Cortes, V.F.; Veiga-Lopes, F.E.; Barrabin, H.; Alves-Ferreira, M.; Fontes, C.F.L. The γ Subunit of Na+, K+-ATPase: Role on ATPase Activity and Regulatory Phosphorylation by PKA. Int. J. Biochem. Cell Biol. 2006, 38, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Cortes, V.F.; Ribeiro, I.M.; Barrabin, H.; Alves-Ferreira, M.; Fontes, C.F.L. Regulatory Phosphorylation of FXYD2 by PKC and Cross Interactions between FXYD2, Plasmalemmal Ca-ATPase and Na, K-ATPase. Arch. Biochem. Biophys. 2011, 505, 75–82. [Google Scholar] [CrossRef]
- Mahmmoud, Y.A.; Vorum, H.; Cornelius, F. Identification of a Phospholemman-like Protein from Shark Rectal Glands. Evidence for Indirect Regulation of Na, K-ATPase by Protein Kinase c via a Novel Member of the FXYDY Family. J. Biol. Chem. 2000, 275, 35969–35977. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Grosdidier, A.; Crambert, G.; Horisberger, J.-D.; Michielin, O.; Geering, K. Structural and Functional Interaction Sites between Na, K-ATPase and FXYD Proteins. J. Biol. Chem. 2004, 279, 38895–38902. [Google Scholar] [CrossRef]
- Hebert, H.; Purhonen, P.; Thomsen, K.; Vorum, H.; Maunsbach, A.B. Renal Na, K-ATPase Structure from Cryo-Electron Microscopy of Two-Dimensional Crystals. Ann. N. Y. Acad. Sci. 2003, 986, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Donnet, C.; Arystarkhova, E.; Sweadner, K.J. Thermal Denaturation of the Na, K-ATPase Provides Evidence for Alpha-Alpha Oligomeric Interaction and Gamma Subunit Association with the C-Terminal Domain. J. Biol. Chem. 2001, 276, 7357–7365. [Google Scholar] [CrossRef] [PubMed]
- Yatime, L.; Laursen, M.; Preben Morth, J.; Esmann, M.; Nissen, P.; Fedosova, N.U. Structural Insights into the High Affinity Binding of Cardiotonic Steroids to the Na+, K+-ATPase. J. Struct. Biol. 2011, 174, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Bharatula, M.; Hussain, T.; Lokhandwala, M.F. Angiotensin II AT1 Receptor/Signaling Mechanisms in the Biphasic Effect of the Peptide on Proximal Tubular Na+, K+-ATPase. Clin. Exp. Hypertens. 1998, 20, 465–480. [Google Scholar] [CrossRef]
- Fontes, C.F.L.; Lopes, F.E.V.; Scofano, H.M.; Barrabin, H.; Nørby, J.G. Stimulation of Ouabain Binding to Na, K-ATPase in 40% Dimethyl Sulfoxide by a Factor from Na, K-ATPase Preparations. Arch. Biochem. Biophys. 1999, 366, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Farman, N.; Fay, M.; Cluzeaud, F. Cell-Specific Expression of Three Members of the FXYD Family along the Renal Tubule. Ann. N. Y. Acad. Sci. 2003, 986, 428–436. [Google Scholar] [CrossRef]
- El-Mallakh, R.S.; Brar, K.S.; Yeruva, R.R. Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. Insects 2019, 10, 102. [Google Scholar] [CrossRef]
- El-Bakry, A.A.; Hammad, I.A.; Galal, T.M.; Ghazi, S.M.; Rafat, F.A. Polymorphism in Calotropis Procera: Variation of Metabolites in Populations from Different Phytogeographical Regions of Egypt. Rend. Fis. Acc. Lincei 2014, 25, 461–469. [Google Scholar] [CrossRef]
- Pavlovic, D. The Role of Cardiotonic Steroids in the Pathogenesis of Cardiomyopathy in Chronic Kidney Disease. Nephron Clin. Pract. 2014, 128, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Heasley, B. Chemical Synthesis of the Cardiotonic Steroid Glycosides and Related Natural Products. Chem.—Eur. J. 2012, 18, 3092–3120. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z. Molecular Mechanisms of Na/K-ATPase-Mediated Signal Transduction. Ann. N. Y. Acad. Sci. 2003, 986, 497–503. [Google Scholar] [CrossRef]
- Larsen, B.R.; Assentoft, M.; Cotrina, M.L.; Hua, S.Z.; Nedergaard, M.; Kaila, K.; Voipio, J.; MacAulay, N. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to Hippocampal K+ Clearance and Volume Responses. Glia 2014, 62, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Hamlyn, J.M.; Blaustein, M.P.; Bova, S.; DuCharme, D.W.; Harris, D.W.; Mandel, F.; Mathews, W.R.; Ludens, J.H. Identification and Characterization of a Ouabain-like Compound from Human Plasma. Available online: https://www.pnas.org/doi/epdf/10.1073/pnas.88.14.6259 (accessed on 8 August 2024).
- Tymiak, A.A.; Norman, J.A.; Bolgar, M.; DiDonato, G.C.; Lee, H.; Parker, W.L.; Lo, L.C.; Berova, N.; Nakanishi, K.; Haber, E. Physicochemical Characterization of a Ouabain Isomer Isolated from Bovine Hypothalamus. Proc. Natl. Acad. Sci. USA 1993, 90, 8189–8193. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.F.; Ogden, P. Internalization of Ouabain and Replacement of Sodium Pumps in the Plasma Membranes of Hela Cells Following Block with Cardiac Glycosides. Q. J. Exp. Physiol. 1982, 67, 105–119. [Google Scholar] [CrossRef]
- Yoda, A. Structue-Activity Relationships of Cardiotonic Steroids for the Inhibition of Sodium- and Potassium-Dependent Adenosine Triphosphatase. I. Dissociation Rate Constants of Various Enzyme-Cardiac Glycoside Complexes Formed in the Presence of Magnesium and Phosphate. Mol. Pharmacol. 1973, 9, 51–60. [Google Scholar]
- Wasserstrom, J.A.; Aistrup, G.L. Digitalis: New Actions for an Old Drug. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1781–H1793. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Hamlyn, J.M. Ouabain, Endogenous Ouabain and Ouabain-like Factors: The Na+ Pump/Ouabain Receptor, Its Linkage to NCX, and Its Myriad Functions. Cell Calcium 2020, 86, 102159. [Google Scholar] [CrossRef] [PubMed]
- Yoda, A.; Yoda, S. Interaction between Ouabain and the Phosphorylated Intermediate of Na, K-ATPase. Mol. Pharmacol. 1982, 22, 700–705. [Google Scholar] [PubMed]
- Rogachevskii, I.V.; Samosvat, D.M.; Penniyaynen, V.A.; Plakhova, V.B.; Podzorova, S.A.; Ma, K.; Zegrya, G.G.; Krylov, B.V. Role of the Rhamnosyl Residue of Ouabain in the Activation of the Na, K-ATPase Signaling Function. Life 2023, 13, 1500. [Google Scholar] [CrossRef] [PubMed]
- Soumoy, L.; Wells, M.; Najem, A.; Krayem, M.; Ghanem, G.; Hambye, S.; Saussez, S.; Blankert, B.; Journe, F. Toad Venom Antiproliferative Activities on Metastatic Melanoma: Bio-Guided Fractionation and Screening of the Compounds of Two Different Venoms. Biology 2020, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Toxins and Drug Discovery. Toxicon 2014, 92, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Amarelle, L.; Lecuona, E. The Antiviral Effects of Na, K-ATPase Inhibition: A Minireview. Int. J. Mol. Sci. 2018, 19, 2154. [Google Scholar] [CrossRef] [PubMed]
- Orellana, A.M.; Kinoshita, P.F.; Leite, J.A.; Kawamoto, E.M.; Scavone, C. Cardiotonic Steroids as Modulators of Neuroinflammation. Front. Endocrinol. 2016, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, L.Q.; da Conceição Machado, K.; de Carvalho Oliveira, S.F.; da Silva Araújo, L.; Monção-Filho, E.D.S.; de Carvalho Melo-Cavalcante, A.A.; Vieira-Júnior, G.M.; Ferreira, P.M.P. Bufadienolides from Amphibians: A Promising Source of Anticancer Prototypes for Radical Innovation, Apoptosis Triggering and Na+/K+-ATPase Inhibition. Toxicon 2017, 127, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, A.S.; Froehlich, J.P.; Albers, R.W. Inhibition by Vanadate of the Reactions Catalyzed by the (Na+ + K+)-Stimulated ATPase. A Transient State Kinetic Characterization. J. Biol. Chem. 1980, 255, 5724–5727. [Google Scholar] [CrossRef]
- Robinson, J. The (Na+ + K+)-Activated ATPase Enzymatic and Transport Properties. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 1979, 549, 145–176. [Google Scholar] [CrossRef]
- Fraqueza, G.; Fuentes, J.; Krivosudský, L.; Dutta, S.; Mal, S.S.; Roller, A.; Giester, G.; Rompel, A.; Aureliano, M. Inhibition of Na+/K+- and Ca2+-ATPase Activities by Phosphotetradecavanadate. J. Inorg. Biochem. 2019, 197, 110700. [Google Scholar] [CrossRef]
- Krstić, D.; Čolović, M.; Bošnjaković-Pavlović, N.; Spasojević-De Bire, A.; Vasić, V. Influence of Decavanadate on Rat Synaptic Plasma Membrane ATPases Activity. GPB 2009, 28, 302–306. [Google Scholar] [CrossRef]
- Toustrup-Jensen, M.; Vilsen, B. Importance of Thr214 in the Conserved TGES Sequence of the Na, K -ATPase for Vanadate Binding and Hydrolysis of E2P. Ann. N. Y. Acad. Sci. 2003, 986, 267–269. [Google Scholar] [CrossRef]
- Liu, J.; Kennedy, D.J.; Yan, Y.; Shapiro, J.I. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling. Int. J. Nephrol. 2012, 2012, 381320. [Google Scholar] [CrossRef]
- Bibert, S.; Liu, C.-C.; Figtree, G.A.; Garcia, A.; Hamilton, E.J.; Marassi, F.M.; Sweadner, K.J.; Cornelius, F.; Geering, K.; Rasmussen, H.H. FXYD Proteins Reverse Inhibition of the Na+-K+ Pump Mediated by Glutathionylation of Its Β1 Subunit. J. Biol. Chem. 2011, 286, 18562–18572. [Google Scholar] [CrossRef]
- Kawamoto, E.M.; Cararo-Lopes, M.M.; Kinoshita, P.F.; Quintas, L.E.M.; Lima, L.S.; Andreotti, D.Z.; Scavone, C. Influence of Nitric Oxide-Cyclic GMP and Oxidative STRESS on Amyloid-β Peptide Induced Decrease of Na, K-ATPase Activity in Rat Hippocampal Slices. J. Membr. Biol. 2021, 254, 463–473. [Google Scholar] [CrossRef]
- Cassol, G.; Cipolat, R.P.; Papalia, W.L.; Godinho, D.B.; Quines, C.B.; Nogueira, C.W.; Da Veiga, M.; Da Rocha, M.I.U.M.; Furian, A.F.; Oliveira, M.S.; et al. A Role of Na+, K+-ATPase in Spatial Memory Deficits and Inflammatory/Oxidative Stress after Recurrent Concussion in Adolescent Rats. Brain Res. Bull. 2022, 180, 1–11. [Google Scholar] [CrossRef]
- Soratto Heitich Ferrazza, M.H.; Delwing-Dal Magro, D.; Salamaia, E.; Guareschi, T.E.; Fernandes Erzinger, L.F.; Maia, T.P.; Siebert, C.; Dos Santos, T.M.; de Souza Wyse, A.T.; Borgmann, G.; et al. Sub-chronic Administration of Lead Alters Markers of Oxidative Stress, Acetylcholinesterase and Na+ K+-ATPase Activities in Rat Brain. Acta Neurobiol. Exp. 2023, 83, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.H.; Wang, Y.; Askari, A. (Na+ + K+)-ATPase: Inactivation and Degradation Induced by Oxygen Radicals. Int. J. Biochem. 1992, 24, 621–626. [Google Scholar] [CrossRef]
- Thomas, C.E.; Reed, D.J. Radical-Induced Inactivation of Kidney Na+, K(+)-ATPase: Sensitivity to Membrane Lipid Peroxidation and the Protective Effect of Vitamin E. Arch. Biochem. Biophys. 1990, 281, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Cai, R.; Volchuk, A.; Steinberg, B.E.; Saito, Y.; Matsuzawa, A.; Grinstein, S.; Freeman, S.A. Lipid Peroxidation Increases Membrane Tension, Piezo1 Gating, and Cation Permeability to Execute Ferroptosis. Curr. Biol. 2023, 33, 1282–1294.e5. [Google Scholar] [CrossRef]
- Namazi, G.; Asa, P.; Sarrafzadegan, N.; Pourfarzam, M. Decreased Na+/K+-ATPase Activity and Altered Susceptibility to Peroxidation and Lipid Composition in the Erythrocytes of Metabolic Syndrome Patients with Coronary Artery Disease. Ann. Nutr. Metab. 2019, 74, 140–148. [Google Scholar] [CrossRef]
- Gupta, S.; Chough, E.; Daley, J.; Oates, P.; Tornheim, K.; Ruderman, N.B.; Keaney, J.F. Hyperglycemia Increases Endothelial Superoxide That Impairs Smooth Muscle Cell Na+-K+-ATPase Activity. Am. J. Physiol. Cell Physiol. 2002, 282, C560–C566. [Google Scholar] [CrossRef] [PubMed]
- Reifenberger, M.S.; Arnett, K.L.; Gatto, C.; Milanick, M.A. The Reactive Nitrogen Species Peroxynitrite Is a Potent Inhibitor of Renal Na-K-ATPase Activity. Am. J. Physiol. Renal Physiol. 2008, 295, F1191–F1198. [Google Scholar] [CrossRef]
- Soloviev, A.; Sydorenko, V. Oxidative and Nitrous Stress Underlies Vascular Malfunction Induced by Ionizing Radiation and Diabetes. Cardiovasc. Toxicol. 2024, 24, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.; Guo, H.; Wang, Y. Na+/K+-ATPase-Mediated Signal Transduction and Na+/K+-ATPase Regulation. Fundam. Clin. Pharmacol. 2008, 22, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Shapiro, J.I. Na/K-ATPase Amplification of Oxidant Stress; a Universal but Unrecognized Clinical Target? Marshall J. Med. 2016, 2, 8. [Google Scholar] [CrossRef]
- Liu, J.; Lilly, M.N.; Shapiro, J.I. Targeting Na/K-ATPase Signaling: A New Approach to Control Oxidative Stress. CPD 2018, 24, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Bubb, K.J.; Tang, O.; Gentile, C.; Moosavi, S.M.; Hansen, T.; Liu, C.-C.; Di Bartolo, B.A.; Figtree, G.A. FXYD1 Is Protective Against Vascular Dysfunction. Hypertension 2021, 77, 2104–2116. [Google Scholar] [CrossRef]
- Cai, L.; Pessoa, M.T.; Gao, Y.; Strause, S.; Banerjee, M.; Tian, J.; Xie, Z.; Pierre, S.V.; Rimessi, A. The Na/K-ATPase A1/Src Signaling Axis Regulates Mitochondrial Metabolic Function and Redox Signaling in Human iPSC-Derived Cardiomyocytes. Biomedicines 2023, 11, 3207. [Google Scholar] [CrossRef]
- Liu, C. Silencing FXYD3 Protein in Human Breast Cancer Cells Enhances Oxidative Stress of Doxorubicin and Gamma Irradiation. Free Radic. Biol. Med. 2016, 100, S125. [Google Scholar] [CrossRef]
- Liu, C.-C.; Kim, Y.J.; Teh, R.; Garcia, A.; Hamilton, E.J.; Cornelius, F.; Baxter, R.C.; Rasmussen, H.H. Displacement of Native FXYD Protein From Na+/K+-ATPase With Novel FXYD Peptide Derivatives: Effects on Doxorubicin Cytotoxicity. Front. Oncol. 2022, 12, 859216. [Google Scholar] [CrossRef]
- Kopf, P.G.; Campbell, W.B. Endothelial Metabolism of Angiotensin II to Angiotensin III, Not Angiotensin (1–7), Augments the Vasorelaxation Response in Adrenal Cortical Arteries. Endocrinology 2013, 154, 4768–4776. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef]
- Almeida, L.F.; Tofteng, S.S.; Madsen, K.; Jensen, B.L. Role of the Renin-Angiotensin System in Kidney Development and Programming of Adult Blood Pressure. Clin. Sci. 2020, 134, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Aperia, A.; Fryckstedt, J.; Svensson, L.; Hemmings, H.; Nairn, A.; Greengard, P. Phosphorylated Mr 32,000 Dopamine- and Camp-Regulated Phosphoprotein Inhibits Na+,K+-Atpase Activity in Renal Tubule Cells. Proc. Natl. Acad. Sci. USA. 1991, 88, 2798–2801. [Google Scholar] [CrossRef]
- Correa, A.H.; Choi, M.R.; Gironacci, M.; Valera, M.S.; Fernández, B.E. Signaling Pathways Involved in Atrial Natriuretic Factor and Dopamine Regulation of Renal Na+, K+-ATPase Activity. Regul. Pept. 2007, 138, 26–31. [Google Scholar] [CrossRef]
- Li, H.; Weatherford, E.T.; Davis, D.R.; Keen, H.L.; Grobe, J.L.; Daugherty, A.; Cassis, L.A.; Allen, A.M.; Sigmund, C.D. Renal Proximal Tubule Angiotensin AT1A Receptors Regulate Blood Pressure. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2011, 301, R1067. [Google Scholar] [CrossRef]
- Gurley, S.B.; Riquier-Brison, A.D.M.; Schnermann, J.; Sparks, M.A.; Allen, A.M.; Haase, V.H.; Snouwaert, J.N.; Le, T.H.; McDonough, A.A.; Koller, B.H.; et al. AT1A Angiotensin Receptors in the Renal Proximal Tubule Regulate Blood Pressure. Cell Metab. 2011, 13, 469–475. [Google Scholar] [CrossRef]
- Brock, T.A.; Lewis, L.J.; Smith, J.B. Angiotensin Increases Na+ Entry and Na+/K+ Pump Activity in Cultures of Smooth Muscle from Rat Aorta. Proc. Natl. Acad. Sci. USA 1982, 79, 1438–1442. [Google Scholar] [CrossRef]
- Efendiev, R.; Budu, C.E.; Cinelli, A.R.; Bertorello, A.M.; Pedemonte, C.H. Intracellular Na+ Regulates Dopamine and Angiotensin II Receptors Availability at the Plasma Membrane and Their Cellular Responses in Renal Epithelia. J. Biol. Chem. 2003, 278, 28719–28726. [Google Scholar] [CrossRef]
- Zhang, F.; Lei, L.; Huang, J.; Wang, W.; Su, Q.; Yan, H.; Chen, C.; Zheng, S.; Ren, H.; Li, Z.; et al. G-Protein-Coupled Receptor Kinase 4 Causes Renal Angiotensin II Type 2 Receptor Dysfunction by Increasing Its Phosphorylation. Clin. Sci. 2022, 136, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Siragy, H. Angiotensin II Receptor Blockers: Review of the Binding Characteristics. Am. J. Cardiol. 1999, 84, 3S–8S. [Google Scholar] [CrossRef]
- Massey, K.J.; Li, Q.; Rossi, N.F.; Mattingly, R.R.; Yingst, D.R. Angiotensin II-Dependent Phosphorylation at Ser11/Ser18 and Ser938 Shifts the E2conformations of Rat Kidney Na/K-ATPase. Biochem. J. 2012, 443, 249–258. [Google Scholar] [CrossRef]
- Massey, K.J.; Li, Q.; Rossi, N.F.; Keezer, S.M.; Mattingly, R.R.; Yingst, D.R. Phosphorylation of Rat Kidney Na-K Pump at Ser938 Is Required for Rapid Angiotensin II-Dependent Stimulation of Activity and Trafficking in Proximal Tubule Cells. Am. J. Physiol. Cell Physiol. 2016, 310, C227–C232. [Google Scholar] [CrossRef]
- Reilly, A.M.; Harris, P.J.; Williams, D.A. Biphasic Effect of Angiotensin II on Intracellular Sodium Concentration in Rat Proximal Tubules. Am. J. Physiol. 1995, 269 Pt 2, F374–F380. [Google Scholar] [CrossRef] [PubMed]
- Masaki, H.; Kurihara, T.; Yamaki, A.; Inomata, N.; Nozawa, Y.; Mori, Y.; Murasawa, S.; Kizima, K.; Maruyama, K.; Horiuchi, M.; et al. Cardiac-Specific Overexpression of Angiotensin II AT2 Receptor Causes Attenuated Response to AT1 Receptor-Mediated Pressor and Chronotropic Effects. J. Clin. Investig. 1998, 101, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Padia, S.H.; Carey, R.M. AT2 Receptors: Beneficial Counter-Regulatory Role in Cardiovascular and Renal Function. Pflugers Arch.-Eur. J. Physiol. 2013, 465, 99–110. [Google Scholar] [CrossRef]
- Aperia, A.C. Intrarenal Dopamine: A Key Signal in the Interactive Regulation of Sodium Metabolism. Annu. Rev. Physiol. 2000, 62, 621–647. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Yamaji, Y.; Kitajima, W.; Saruta, T. Aromatic L-Amino Acid Decarboxylase Activity along the Rat Nephron. Am. J. Physiol. 1990, 258 Pt 2, F28–F33. [Google Scholar] [CrossRef] [PubMed]
- Chugh, G.; Pokkunuri, I.; Asghar, M. Renal Dopamine and Angiotensin II Receptor Signaling in Age-Related Hypertension. Am. J. Physiol. Renal Physiol. 2013, 304, F1–F7. [Google Scholar] [CrossRef] [PubMed]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine Receptors: From Structure to Function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed]
- Savica, R.; Benarroch, E.E. Dopamine Receptor Signaling in the Forebrain: Recent Insights and Clinical Implications. Neurology 2014, 83, 758–767. [Google Scholar] [CrossRef]
- Chibalin, A.V.; Ogimoto, G.; Pedemonte, C.H.; Pressley, T.A.; Katz, A.I.; Féraille, E.; Berggren, P.O.; Bertorello, A.M. Dopamine-Induced Endocytosis of Na+,K+-ATPase Is Initiated by Phosphorylation of Ser-18 in the Rat Alpha Subunit and Is Responsible for the Decreased Activity in Epithelial Cells. J. Biol. Chem. 1999, 274, 1920–1927. [Google Scholar] [CrossRef]
- Barati, M.T.; Ketchem, C.J.; Merchant, M.L.; Kusiak, W.B.; Jose, P.A.; Weinman, E.J.; LeBlanc, A.J.; Lederer, E.D.; Khundmiri, S.J. Loss of NHERF-1 Expression Prevents Dopamine-Mediated Na-K-ATPase Regulation in Renal Proximal Tubule Cells from Rat Models of Hypertension: Aged F344 Rats and Spontaneously Hypertensive Rats. Am. J. Physiol. Cell Physiol. 2017, 313, C197–C206. [Google Scholar] [CrossRef] [PubMed]
- Taveira-da-Silva, R.; da Silva Sampaio, L.; Vieyra, A.; Einicker-Lamas, M. L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser40: An Alternative Route for Dopamine Synthesis and Modulation of Na+/K+-ATPase in Kidney Cells. Kidney Blood Press. Res. 2019, 44, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Spicarová, Z.; Zelenin, S.; Holtbäck, U.; Scott, L.; Aperia, A. Negative Reciprocity between Angiotensin II Type 1 and Dopamine D1 Receptors in Rat Renal Proximal Tubule Cells. Am. J. Physiol. Renal Physiol. 2008, 295, F1110–F1116. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, F.; Guo, H.; Wang, H.; Zhang, Z.; Liu, X.; Shi, X.; Gou, X.; Su, Q.; Yin, J.; et al. The Paradox of Dopamine and Angiotensin II-Mediated Na(+), K(+)-ATPase Regulation in Renal Proximal Tubules. Clin. Exp. Hypertens. 2010, 32, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.R.; Correa, A.H.; del Valle Turco, V.; Garcia, F.A.; Fernández, B.E. Angiotensin II Regulates Extraneuronal Dopamine Uptake in the Kidney. Nephron Physiol. 2006, 104, 136–143. [Google Scholar] [CrossRef]
- Martínez-Pinilla, E.; Rodríguez-Pérez, A.I.; Navarro, G.; Aguinaga, D.; Moreno, E.; Lanciego, J.L.; Labandeira-García, J.L.; Franco, R. Dopamine D2 and Angiotensin II Type 1 Receptors Form Functional Heteromers in Rat Striatum. Biochem. Pharmacol. 2015, 96, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Gildea, J.J.; Xu, P.; Kemp, B.A.; Carey, R.M.; Jose, P.A.; Felder, R.A. The Dopamine D1 Receptor and Angiotensin II Type-2 Receptor Are Required for Inhibition of Sodium Transport Through a Protein Phosphatase 2A Pathway. Hypertension 2019, 73, 1258–1265. [Google Scholar] [CrossRef]
- Gildea, J.J.; Wang, X.; Jose, P.A.; Felder, R.A. Differential D1 and D5 Receptor Regulation and Degradation of the Angiotensin Type 1 Receptor. Hypertension 2008, 51, 360–366. [Google Scholar] [CrossRef]
- Gildea, J.J.; Wang, X.; Shah, N.; Tran, H.; Spinosa, M.; Van Sciver, R.; Sasaki, M.; Yatabe, J.; Carey, R.M.; Jose, P.A.; et al. Dopamine and Angiotensin Type 2 Receptors Cooperatively Inhibit Sodium Transport in Human Renal Proximal Tubule Cells. Hypertension 2012, 60, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.M. AT2 Receptors: Potential Therapeutic Targets for Hypertension. Am. J. Hypertens. 2017, 30, 339–347. [Google Scholar] [CrossRef]
- Hawk, C.T.; Kudo, L.H.; Rouch, A.J.; Schafer, J.A. Inhibition by Epinephrine of AVP- and cAMP-Stimulated Na+ and Water Transport in Dahl Rat CCD. Am. J. Physiol. 1993, 265 Pt 2, F449–F460. [Google Scholar] [CrossRef]
- Moussawi, L.E.; Chakkour, M.; Kreydiyyeh, S.I. Epinephrine Modulates Na+/K+ ATPase Activity in Caco-2 Cells via Src, p38MAPK, ERK and PGE2. PLoS ONE 2018, 13, e0193139. [Google Scholar] [CrossRef] [PubMed]
- Erickson-Lamy, K.A.; Nathanson, J.A. Epinephrine Increases Facility of Outflow and Cyclic AMP Content in the Human Eye In Vitro. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2672–2678. [Google Scholar]
- Nathanson, J.A.; Scavone, C.; Scanlon, C.; McKee, M. The Cellular Na+ Pump as a Site of Action for Carbon Monoxide and Glutamate: A Mechanism for Long-Term Modulation of Cellular Activity. Neuron 1995, 14, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.M.; Maender, K.C.; Awender, N.E.; Maron, M.B. Adrenal Epinephrine Increases Alveolar Liquid Clearance in a Canine Model of Neurogenic Pulmonary Edema. Am. J. Respir. Crit. Care Med. 1998, 158, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Kreydiyyeh, S.I. Epinephrine Stimulates the Na+-K+ ATPase in Isolated Rat Jejunal Crypt Cells. Life Sci. 2000, 67, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- James, J.H.; Wagner, K.R.; King, J.-K.; Leffler, R.E.; Upputuri, R.K.; Balasubramaniam, A.; Friend, L.A.; Shelly, D.A.; Paul, R.J.; Fischer, J.E. Stimulation of Both Aerobic Glycolysis and Na+-K+-ATPase Activity in Skeletal Muscle by Epinephrine or Amylin. Am. J. Physiol.-Endocrinol. Metab. 1999, 277, E176–E186. [Google Scholar] [CrossRef]
- Moussawi, L.E.; Chakkour, M.; Kreydiyyeh, S. The Epinephrine-Induced PGE2 Reduces Na+/K+ ATPase Activity in Caco-2 Cells via PKC, NF-κB and NO. PLoS ONE 2019, 14, e0220987. [Google Scholar] [CrossRef] [PubMed]
- Hatano, E.; Bennett, B.L.; Manning, A.M.; Qian, T.; Lemasters, J.J.; Brenner, D.A. NF-kappaB Stimulates Inducible Nitric Oxide Synthase to Protect Mouse Hepatocytes from TNF-Alpha- and Fas-Mediated Apoptosis. Gastroenterology 2001, 120, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Jun, C.D.; Kim, J.M.; Rim, G.N.; Kim, H.M.; Chung, H.T. Phorbol Ester Synergistically Increases Interferon-Gamma-Induced Nitric Oxide Synthesis in Murine Microglial Cells. Neuroimmunomodulation 1994, 1, 377–382. [Google Scholar] [CrossRef]
- Beckman, J.S.; Crow, J.P. Pathological Implications of Nitric Oxide, Superoxide and Peroxynitrite Formation. Biochem. Soc. Trans. 1993, 21, 330–334. [Google Scholar] [CrossRef]
- Lipton, S.A.; Choi, Y.B.; Pan, Z.H.; Lei, S.Z.; Chen, H.S.; Sucher, N.J.; Loscalzo, J.; Singel, D.J.; Stamler, J.S. A Redox-Based Mechanism for the Neuroprotective and Neurodestructive Effects of Nitric Oxide and Related Nitroso-Compounds. Nature 1993, 364, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Lopatina, E.V.; Kipenko, A.V.; Pasatetskaya, N.A.; Penniyaynen, V.A.; Krylov, B.V. Modulation of the Transducer Function of Na+, K+-ATPase: New Mechanism of Heart Remodeling. Can. J. Physiol. Pharmacol. 2016, 94, 1110–1116. [Google Scholar] [CrossRef]
- Lopatina, E.V.; Penniyainen, V.A.; Zaika, A.A. Regulatory Role of Na, K-ATPase in the Growth of Heart Tissue Explants in Organotypic Culture. Bull. Exp. Biol. Med. 2005, 140, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Papazian, L.; Perrin, G.; Saux, P.; Gouin, F. Norepinephrine or Dopamine for the Treatment of Hyperdynamic Septic Shock? Chest 1993, 103, 1826–1831. [Google Scholar] [CrossRef]
- Schreuder, W.O.; Schneider, A.J.; Groeneveld, A.B.; Thijs, L.G. Effect of Dopamine vs Norepinephrine on Hemodynamics in Septic Shock. Emphasis on Right Ventricular Performance. Chest 1989, 95, 1282–1288. [Google Scholar] [CrossRef]
- Beach, R.; Schwab, S.; Brazy, P.; Dennis, V. Norepinephrine Increases Na+-K+-Atpase and Solute Transport in Rabbit Proximal Tubules. Am. J. Physiol. 1987, 252, F215–F220. [Google Scholar] [CrossRef]
- Azzam, Z.S.; Adir, Y.; Crespo, A.; Comellas, A.; Lecuona, E.; Dada, L.A.; Krivoy, N.; Rutschman, D.H.; Sznajder, J.I.; Ridge, K.M. Norepinephrine Increases Alveolar Fluid Reabsorption and Na, K-ATPase Activity. Am. J. Respir. Crit. Care Med. 2004, 170, 730–736. [Google Scholar] [CrossRef]
- Baba, A.; Yoshikawa, T.; Mitamura, H.; Ogawa, S. Erythrocyte Na+, K+-ATPase Activity in Patients with Congestive Heart Failure. Int. J. Cardiol. 1999, 69, 117–125. [Google Scholar] [CrossRef]
- Mallick, B.N.; Adya, H.V.A.; Faisal, M. Norepinephrine-Stimulaled Increase in Na+, K+-ATPase Activity in the Rat Brain Is Mediated through α1A-Adrenoceptor Possibly by Dephosphorylation of the Enzyme. J. Neurochem. 2000, 74, 1574–1578. [Google Scholar] [CrossRef]
- Taub, M.; Garimella, S.; Kim, D.; Rajkhowa, T.; Cutuli, F. Renal Proximal Tubule Na, K-ATPase Is Controlled by CREB-Regulated Transcriptional Coactivators as Well as Salt-Inducible Kinase 1. Cell. Signal. 2015, 27, 2568–2578. [Google Scholar] [CrossRef] [PubMed]
- Kometiani, Z.P.; Tsakadze, L.G.; Jariashvili, T.Y. Functional Significance of the Effects of Neurotransmitters on the Na+,K+-ATPase System. J. Neurochem. 1984, 42, 1246–1250. [Google Scholar] [CrossRef]
- Hernandez, R.; Condeslara, M. Brain Na+/K+-Atpase Regulation by Serotonin and Norepinephrine in Normal and Kindled Rats. Brain Res. 1992, 593, 239–244. [Google Scholar] [CrossRef]
- Azzam, Z.S.; Adir, Y.; Welch, L.; Chen, J.; Winaver, J.; Factor, P.; Krivoy, N.; Hoffman, A.; Sznajder, J.I.; Abassi, Z. Alveolar Fluid Reabsorption Is Increased in Rats with Compensated Heart Failure. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2006, 291, L1094–L1100. [Google Scholar] [CrossRef] [PubMed]
- Pesce, L.; Guerrero, C.; Comellas, A.; Ridge, K.M.; Sznajder, J.I. Beta-Agonists Regulate Na, K-ATPase via Novel MAPK/ERK and Rapamycin-Sensitive Pathways. FEBS Lett. 2000, 486, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Matalon, S. Mechanisms and Regulation of Ion Transport in Adult Mammalian Alveolar Type II Pneumocytes. Am. J. Physiol. 1991, 261 Pt 1, C727–C738. [Google Scholar] [CrossRef] [PubMed]
- Mullur, R.; Liu, Y.-Y.; Brent, G.A. Thyroid Hormone Regulation of Metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.O.; Lye, W.C.; Tan, C.C.; Lee, E.J. Acute Cyclosporine A Nephrotoxicity in a Renal Allograft Recipient with Hypothyroidism. Am. J. Kidney Dis. 1995, 25, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Siegel, N.J.; Gaudio, K.M.; Katz, L.A.; Reilly, H.F.; Ardito, T.A.; Hendler, F.G.; Kashgarian, M. Beneficial Effect of Thyroxin on Recovery from Toxic Acute Renal Failure. Kidney Int. 1984, 25, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Cronin, R.E.; Newman, J.A. Protective Effect of Thyroxine but Not Parathyroidectomy on Gentamicin Nephrotoxicity. Am. J. Physiol. 1985, 248 Pt 2, F332–F339. [Google Scholar] [CrossRef]
- Cronin, R.E.; Brown, D.M.; Simonsen, R. Protection by Thyroxine in Nephrotoxic Acute Renal Failure. Am. J. Physiol. 1986, 251 Pt 2, F408–F416. [Google Scholar] [CrossRef]
- You, C.-W.; Park, Y.-H.; Lee, E.-S.; Kim, Y.-J.; Shin, S.-M.; Park, M.-O. Effects of Thyroxine on Hyperkalemia and Renal Cortical Na+, K+-ATPase Activity Induced by Cyclosporin A. J. Korean Med. Sci. 2002, 17, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Haber, R.S.; Loeb, J.N. Stimulation of Potassium Efflux in Rat Liver by a Low Dose of Thyroid Hormone: Evidence for Enhanced Cation Permeability in the Absence of Na, K-ATPase Induction. Endocrinology 1986, 118, 207–211. [Google Scholar] [CrossRef]
- Sundaram, S.M.; Marx, R.; Lesslich, H.M.; Dietzel, I.D. Deficiency of Thyroid Hormone Reduces Voltage-Gated Na+ Currents as Well as Expression of Na+/K+-ATPase in the Mouse Hippocampus. Int. J. Mol. Sci. 2022, 23, 4133. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T. Clinical and Therapeutic Significance of the Na+,K+ Pump. Clin. Sci. 1998, 95, 3–17. [Google Scholar] [CrossRef]
- Féraille, E.; Marsy, S.; Cheval, L.; Barlet-Bas, C.; Khadouri, C.; Favre, H.; Doucet, A. Sites of Antinatriuretic Action of Insulin along Rat Nephron. Am. J. Physiol. 1992, 263 Pt 2, F175–F179. [Google Scholar] [CrossRef] [PubMed]
- Baum, M. Insulin Stimulates Volume Absorption in the Rabbit Proximal Convoluted Tubule. J. Clin. Investig. 1987, 79, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Féraille, E.; Carranza, M.L.; Rousselot, M.; Favre, H. Insulin Enhances Sodium Sensitivity of Na-K-ATPase in Isolated Rat Proximal Convoluted Tubule. Am. J. Physiol. 1994, 267 Pt 2, F55–F62. [Google Scholar] [CrossRef]
- Féraille, E.; Carranza, M.L.; Rousselot, M.; Favre, H. Modulation of Na+,K(+)-ATPase Activity by a Tyrosine Phosphorylation Process in Rat Proximal Convoluted Tubule. J. Physiol. 1997, 498 Pt 1, 99–108. [Google Scholar] [CrossRef]
- Féraille, E.; Carranza, M.L.; Gonin, S.; Béguin, P.; Pedemonte, C.; Rousselot, M.; Caverzasio, J.; Geering, K.; Martin, P.-Y.; Favre, H. Insulin-Induced Stimulation of Na+, K+-ATPase Activity in Kidney Proximal Tubule Cells Depends on Phosphorylation of the α-Subunit at Tyr-10. Mol. Biol. Cell 1999, 10, 2847. [Google Scholar] [CrossRef]
- Sznajder, J.I.; Factor, P.; Ingbar, D.H. Invited Review: Lung Edema Clearance: Role of Na(+)-K(+)-ATPase. J. Appl. Physiol. 2002, 93, 1860–1866. [Google Scholar] [CrossRef]
- Iannello, S.; Milazzo, P.; Belfiore, F. Animal and Human Tissue Na, K-ATPase in Obesity and Diabetes: A New Proposed Enzyme Regulation. Am. J. Med. Sci. 2007, 333, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.R.; Moorthy, K.; Taha, A.; Hussain, M.E.; Baquer, N.Z. Low Doses of Vanadate and Trigonella Synergistically Regulate Na+/K+-ATPase Activity and GLUT4 Translocation in Alloxan-Diabetic Rats. Mol. Cell Biochem. 2006, 285, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Bjelogrlic, P.; Rizzo, M.; Katsiki, N.; Haidara, M.; Stewart, A.J.; Jovanovic, A.; Isenovic, E.R. Effects of Obesity and Estradiol on Na+/K+-ATPase and Their Relevance to Cardiovascular Diseases. J. Endocrinol. 2013, 218, R13–R23. [Google Scholar] [CrossRef] [PubMed]
- Iannello, S.; Milazzo, P.; Belfiore, F. Animal and Human Tissue Na, K-ATPase in Normal and Insulin-Resistant States: Regulation, Behaviour and Interpretative Hypothesis on NEFA Effects. Obes. Rev. 2007, 8, 231–251. [Google Scholar] [CrossRef] [PubMed]
- Stanimirovic, J.; Obradovic, M.; Panic, A.; Petrovic, V.; Alavantic, D.; Melih, I.; Isenovic, E.R. Regulation of Hepatic Na+/K+-ATPase in Obese Female and Male Rats: Involvement of ERK1/2, AMPK, and Rho/ROCK. Mol. Cell Biochem. 2018, 440, 77–88. [Google Scholar] [CrossRef]
- Ewart, H.S.; Klip, A. Hormonal Regulation of the Na(+)-K(+)-ATPase: Mechanisms Underlying Rapid and Sustained Changes in Pump Activity. Am. J. Physiol. 1995, 269 Pt 1, C295–C311. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.O. Concomitant Administration of Resveratrol and Insulin Protects against Diabetes Mellitus Type-1-Induced Renal Damage and Impaired Function via an Antioxidant-Mediated Mechanism and up-Regulation of Na+/K+-ATPase. Arch. Physiol. Biochem. 2019, 125, 104–113. [Google Scholar] [CrossRef]
- Swift, F.; Birkeland, J.A.K.; Tovsrud, N.; Enger, U.H.; Aronsen, J.M.; Louch, W.E.; Sjaastad, I.; Sejersted, O.M. Altered Na+/Ca2+-Exchanger Activity Due to Downregulation of Na+/K+-ATPase Alpha2-Isoform in Heart Failure. Cardiovasc. Res. 2008, 78, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, J.; Ai, X.; Moorman, J.R.; Pogwizd, S.M.; Bers, D.M. Expression and Phosphorylation of the Na-Pump Regulatory Subunit Phospholemman in Heart Failure. Circ. Res. 2005, 97, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Marck, P.V.; Pierre, S.V. Na/K-ATPase Signaling and Cardiac Pre/Postconditioning with Cardiotonic Steroids. Int. J. Mol. Sci. 2018, 19, 2336. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhou, Q.-Y.; Liu, D.; Yu, L.; Zhan, L.; Li, X.-J.; Peng, H.-Y.; Zhang, X.-L.; Yuan, X.-C. Advanced Glycation End-Products Impair Na+/K+-ATPase Activity in Diabetic Cardiomyopathy: Role of the Adenosine Monophosphate-Activated Protein Kinase/Sirtuin 1 Pathway. Clin. Exp. Pharmacol. Physiol. 2014, 41, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-P.; Wan, Q.-Q. Regulatory Effect of Insulin on the Structure, Function and Metabolism of Na+/K+-ATPase (Review). Exp. Ther. Med. 2021, 22, 1243. [Google Scholar] [CrossRef] [PubMed]
- Lingrel, J.B. The Physiological Significance of the Cardiotonic Steroid/Ouabain-Binding Site of the Na, K-ATPase. Annu. Rev. Physiol. 2010, 72, 395–412. [Google Scholar] [CrossRef]
- Blaustein, M.P. Sodium Ions, Calcium Ions, Blood Pressure Regulation, and Hypertension: A Reassessment and a Hypothesis. Am. J. Physiol. 1977, 232, C165–C173. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, M.P.; Zhang, J.; Chen, L.; Song, H.; Raina, H.; Kinsey, S.P.; Izuka, M.; Iwamoto, T.; Kotlikoff, M.I.; Lingrel, J.B.; et al. The Pump, the Exchanger and Endogenous Ouabain: Signaling Mechanisms that Link Salt Retention to Hypertension. Hypertension 2008, 53, 291. [Google Scholar] [CrossRef]
- Manunta, P.; Ferrandi, M.; Bianchi, G.; Hamlyn, J.M. Endogenous Ouabain in Cardiovascular Function and Disease. J. Hypertens. 2009, 27, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Bignami, E.; Casamassima, N.; Frati, E.; Lanzani, C.; Corno, L.; Alferi, O.; Gottlieb, S.; Simonini, M.; Shah, K.B.; Mizzi, A.; et al. Preoperative Endogenous Ouabain Predicts Acute Kidney Injury in Cardiac Surgery Patients. Crit. Care Med. 2013, 41, 744. [Google Scholar] [CrossRef]
- Dostanic-Larson, I.; Van Huysse, J.W.; Lorenz, J.N.; Lingrel, J.B. The Highly Conserved Cardiac Glycoside Binding Site of Na, K-ATPase Plays a Role in Blood Pressure Regulation. Proc. Natl. Acad. Sci. USA 2005, 102, 15845–15850. [Google Scholar] [CrossRef]
- Pierdomenico, S.D.; Bucci, A.; Manunta, P.; Rivera, R.; Ferrandi, M.; Hamlyn, J.M.; Lapenna, D.; Cuccurullo, F.; Mezzetti, A. Endogenous Ouabain and Hemodynamic and Left Ventricular Geometric Patterns in Essential Hypertension. Am. J. Hypertens. 2001, 14, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Lanzini, C.; Gatti, G.; Citterio, L.; Messaggio, E.; Delli Carpini, S.; Simonini, M.; Casamassima, N.; Zagato, L.; Brioni, E.; Hamlyn, J.M.; et al. Lanosterol Synthase Gene Polymorphisms and Changes in Endogenous Ouabain in the Response to Low Sodium Intake. Hypertension 2016, 67, 342–348. [Google Scholar] [CrossRef]
- Overbeck, H.W.; Pamnani, M.B.; Akera, T.; Brody, T.M.; Haddy, F.J. Depressed Function of a Ouabain-Sensitive Sodium-Potassium Pump in Blood Vessels from Renal Hypertensive Dogs. Circ. Res. 1976, 38, 48–52. [Google Scholar] [CrossRef]
- Staehr, C.; Aalkjaer, C.; Matchkov, V.V. The Vascular Na, K-ATPase: Clinical Implications in Stroke, Migraine, and Hypertension. Clin. Sci. 2023, 137, 1595–1618. [Google Scholar] [CrossRef] [PubMed]
- Tomazelli, C.A.; Ishikawa, F.M.; Couto, G.K.; Parente, J.M.; de Castro, M.M.; Xavier, F.E.; Rossoni, L.V. Small Artery Remodeling and Stiffening in Deoxycorticosterone Acetate-Salt Hypertensive Rats Involves the Interaction between Endogenous Ouabain/Na+ K+-ATPase/cSrc Signaling. J. Hypertens. 2023, 41, 1554–1564. [Google Scholar] [CrossRef]
- Lai, X.; Wen, H.; Yang, T.; Qin, F.; Zhong, X.; Pan, Y.; Yu, J.; Huang, J.; Li, J. Effects of Renal Denervation on Endogenous Ouabain in Spontaneously Hypertensive Rats. Acta Cir. Bras. 2023, 37, e371102. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.A.; Lau, Y.-S.; Lokhandwala, M.F. Oxidative Stress Causes Renal Dopamine D1 Receptor Dysfunction and Salt-Sensitive Hypertension in Sprague-Dawley Rats. Hypertension 2008, 51, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Lokhandwala, M.F. Renal Dopamine Receptor Function in Hypertension. Hypertension 1998, 32, 187–197. [Google Scholar] [CrossRef]
- Albrecht, F.E.; Drago, J.; Felder, R.A.; Printz, M.P.; Eisner, G.M.; Robillard, J.E.; Sibley, D.R.; Westphal, H.J.; Jose, P.A. Role of the D1A Dopamine Receptor in the Pathogenesis of Genetic Hypertension. J. Clin. Investig. 1996, 97, 2283–2288. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Beheray, S.A.; Lokhandwala, M.F. Defective Dopamine Receptor Function in Proximal Tubules of Obese Zucker Rats. Hypertension 1999, 34, 1091–1096. [Google Scholar] [CrossRef]
- Hussain, T.; Becker, M.; Beheray, S.; Lokhandwala, M.F. Dopamine Fails to Inhibit Na, H-Exchanger in Proximal Tubules of Obese Zucker Rats. Clin. Exp. Hypertens. 2001, 23, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.A.; Asghar, M.; Hussain, T.; Lokhandwala, M.F. Insulin-Mediated Uncoupling of Dopamine D1 Receptor from G Proteins as a Mechanism for Diminished Inhibition of Renal Na, K-ATPase by Dopamine in Obese Zucker Rats. Am. J. Hypertens. 2003, 16, 19A–20A. [Google Scholar] [CrossRef]
- Banday, A.A.; Asghar, M.; Hussain, T.; Lokhandwala, M.F. Dopamine-Mediated Inhibition of Renal Na, K-ATPase Is Reduced by Insulin. Hypertension 2003, 41, 1353–1358. [Google Scholar] [CrossRef]
- Karnik, S.S.; Unal, H.; Kemp, J.R.; Tirupula, K.C.; Eguchi, S.; Vanderheyden, P.M.L.; Thomas, W.G. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli. Pharmacol. Rev. 2015, 67, 754–819. [Google Scholar] [CrossRef] [PubMed]
- Michel, F.S.; Norton, G.R.; Maseko, M.J.; Majane, O.H.I.; Sareli, P.; Woodiwiss, A.J. Urinary Angiotensinogen Excretion Is Associated with Blood Pressure Independent of the Circulating Renin-Angiotensin System in a Group of African Ancestry. Hypertension 2014, 64, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Meij, I.C.; Koenderink, J.B.; van Bokhoven, H.; Assink, K.F.; Groenestege, W.T.; de Pont, J.J.; Bindels, R.J.; Monnens, L.A.; van den Heuvel, L.P.; Knoers, N.V. Dominant Isolated Renal Magnesium Loss Is Caused by Misrouting of the Na(+),K(+)-ATPase Gamma-Subunit. Nat. Genet. 2000, 26, 265–266. [Google Scholar] [CrossRef] [PubMed]
- Sha, Q.; Pearson, W.; Burcea, L.C.; Wigfall, D.A.; Schlesinger, P.H.; Nichols, C.G.; Mercer, R.W. Human FXYD2 G41R Mutation Responsible for Renal Hypomagnesemia Behaves as an Inward-Rectifying Cation Channel. Am. J. Physiol.-Ren. Physiol. 2008, 295, F91–F99. [Google Scholar] [CrossRef] [PubMed]
- Meij, I.C.; Koenderink, J.B.; De Jong, J.C.; De Pont, J.J.H.H.M.; Monnens, L.A.H.; Van Den Heuvel, L.P.W.J.; Knoers, N.V.A.M. Dominant Isolated Renal Magnesium Loss Is Caused by Misrouting of the Na+,K+-ATPase Gamma-Subunit. Ann. N. Y. Acad. Sci. 2003, 986, 437–443. [Google Scholar] [CrossRef] [PubMed]
- de Baaij, J.H.F.; Dorresteijn, E.M.; Hennekam, E.A.M.; Kamsteeg, E.-J.; Meijer, R.; Dahan, K.; Muller, M.; van den Dorpel, M.A.; Bindels, R.J.M.; Hoenderop, J.G.J.; et al. Recurrent FXYD2 p.Gly41Arg Mutation in Patients with Isolated Dominant Hypomagnesaemia. Nephrol. Dial. Transplant. 2015, 30, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.X.; Scanzano, R.; Blostein, R. Distinct Regulatory Effects of the Na, K-ATPase Gamma Subunit. J. Biol. Chem. 2002, 277, 20270–20276. [Google Scholar] [CrossRef] [PubMed]
- Cairo, E.R.; Swarts, H.G.P.; Wilmer, M.J.G.; Willems, P.H.G.M.; Levtchenko, E.N.; De Pont, J.J.H.H.M.; Koenderink, J.B. FXYD2 and Na, K-ATPase Expression in Isolated Human Proximal Tubular Cells: Disturbed Upregulation on Renal Hypomagnesemia? J. Membr. Biol. 2009, 231, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amer, N.; Priel, E.; Karlish, S.J.D.; Farfel, Z.; Mayan, H. Hypermagnesuria in Humans Following Acute Intravenous Administration of Digoxin. Nephron 2017, 138, 113–118. [Google Scholar] [CrossRef]
- Lacerda-Abreu, M.A.; Russo-Abrahão, T.; de Queiroz Monteiro, R.; Rumjanek, F.D.; Meyer-Fernandes, J.R. Inorganic Phosphate Transporters in Cancer: Functions, Molecular Mechanisms and Possible Clinical Applications. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2018, 1870, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Bejček, J.; Spiwok, V.; Kmoníčková, E.; Rimpelová, S. Na+/K+-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation. Molecules 2021, 26, 1905. [Google Scholar] [CrossRef]
- Pereira, D.G.; Salgado, M.A.R.; Rocha, S.C.; Santos, H.L.; Villar, J.A.F.P.; Contreras, R.G.; Fontes, C.F.L.; Barbosa, L.A.; Cortes, V.F. Involvement of Src Signaling in the Synergistic Effect between Cisplatin and Digoxin on Cancer Cell Viability. J. Cell Biochem. 2018, 119, 3352–3362. [Google Scholar] [CrossRef]
- Schneider, N.F.Z.; Menegaz, D.; Dagostin, A.L.A.; Persich, L.; Rocha, S.C.; Ramos, A.C.P.; Cortes, V.F.; Fontes, C.F.L.; de Pádua, R.M.; Munkert, J.; et al. Cytotoxicity of Glucoevatromonoside Alone and in Combination with Chemotherapy Drugs and Their Effects on Na+,K+-ATPase and Ion Channels on Lung Cancer Cells. Mol. Cell Biochem. 2021, 476, 1825–1848. [Google Scholar] [CrossRef]
- Cereijido, M.; Contreras, R.G.; Shoshani, L.; Larre, I. The Na+-K+-ATPase as Self-Adhesion Molecule and Hormone Receptor. Am. J. Physiol. Cell Physiol. 2012, 302, C473–C481. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, T.-J.; Letourneau, P.C.; Costa, L.D.F.; Schubert, D. Modifier of Cell Adhesion Regulates N-Cadherin-Mediated Cell-Cell Adhesion and Neurite Outgrowth. J. Neurosci. 2005, 25, 281–290. [Google Scholar] [CrossRef]
- Rajasekaran, S.A.; Barwe, S.P.; Rajasekaran, A.K. Multiple Functions of Na, K-ATPase in Epithelial Cells. Semin. Nephrol. 2005, 25, 328–334. [Google Scholar] [CrossRef]
- Vagin, O.; Sachs, G.; Tokhtaeva, E. The Roles of the Na, K-ATPase Beta 1 Subunit in Pump Sorting and Epithelial Integrity. J. Bioenerg. Biomembr. 2007, 39, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Vagin, O.; Tokhtaeva, E.; Sachs, G. The Role of the Beta1 Subunit of the Na, K-ATPase and Its Glycosylation in Cell-Cell Adhesion. J. Biol. Chem. 2006, 281, 39573–39587. [Google Scholar] [CrossRef]
- Roldán, M.L.; Ramírez-Salinas, G.L.; Martinez-Archundia, M.; Cuellar-Perez, F.; Vilchis-Nestor, C.A.; Cancino-Diaz, J.C.; Shoshani, L. The Β2-Subunit (AMOG) of Human Na+, K+-ATPase Is a Homophilic Adhesion Molecule. Int. J. Mol. Sci. 2022, 23, 7753. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.G.; Torres-Carrillo, A.; Flores-Maldonado, C.; Shoshani, L.; Ponce, A. Na+/K+-ATPase: More than an Electrogenic Pump. Int. J. Mol. Sci. 2024, 25, 6122. [Google Scholar] [CrossRef]
- Barbosa, L.A.; Goto-Silva, L.; Redondo, P.A.; Oliveira, S.; Montesano, G.; De Souza, W.; Morgado-Díaz, J.A. TPA-Induced Signal Transduction: A Link between PKC and EGFR Signaling Modulates the Assembly of Intercellular Junctions in Caco-2 Cells. Cell Tissue Res. 2003, 312, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Cai, T. Na+-K+-ATPase-Mediated Signal Transduction: From Protein Interaction to Cellular Function. Mol. Interv. 2003, 3, 157–168. [Google Scholar] [CrossRef]
- de Souza, W.F.; Barbosa, L.A.; Liu, L.; de Araujo, W.M.; de-Freitas-Junior, J.C.M.; Fortunato-Miranda, N.; Fontes, C.F.L.; Morgado-Díaz, J.A. Ouabain-Induced Alterations of the Apical Junctional Complex Involve A1 and Β1 Na, K-ATPase Downregulation and ERK1/2 Activation Independent of Caveolae in Colorectal Cancer Cells. J. Membr. Biol. 2014, 247, 23–33. [Google Scholar] [CrossRef]
- Rajasekaran, S.A.; Palmer, L.G.; Quan, K.; Harper, J.F.; Ball, W.J.; Bander, N.H.; Peralta Soler, A.; Rajasekaran, A.K. Na, K-ATPase Beta-Subunit Is Required for Epithelial Polarization, Suppression of Invasion, and Cell Motility. Mol. Biol. Cell 2001, 12, 279–295. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Y.; Li, L.; Yang, W.; Xu, Y.; Zhou, J.; Ma, K.; Zhang, K.; Zhuang, H.; Gong, Y.; et al. Downregulation of FXYD2 Is Associated with Poor Prognosis and Increased Regulatory T Cell Infiltration in Clear Cell Renal Cell Carcinoma. J. Immunol. Res. 2022, 2022, 4946197. [Google Scholar] [CrossRef]
- CBIIT Maintenance Page. Available online: https://cgap.nci.nih.gov/cgap_retire_notice.html (accessed on 30 October 2024).
- Scahill, S.D.; Gould, H.J.; Paul, D. Abstract 276: Inflammatory Co-Regulation of Voltage-Gated Sodium Channels and Na, K-ATPases in Metastatic Breast Cancer. Cancer Res. 2022, 82 (Suppl. S12), 276. [Google Scholar] [CrossRef]
- Espineda, C.; Seligson, D.B.; James Ball, W.; Rao, J.; Palotie, A.; Horvath, S.; Huang, Y.; Shi, T.; Rajasekaran, A.K. Analysis of the Na, K-ATPase Alpha- and Beta-Subunit Expression Profiles of Bladder Cancer Using Tissue Microarrays. Cancer 2003, 97, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Suzuki, T.; Maeda, M.; Takahashi, Y.; Horikawa, N.; Minamimura, T.; Tsukada, K.; Takeguchi, N. Up-Regulation of Na(+),K(+)-ATPase Alpha 3-Isoform and down-Regulation of the Alpha1-Isoform in Human Colorectal Cancer. FEBS Lett. 2004, 563, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Bechmann, M.B.; Rotoli, D.; Morales, M.; Maeso, M.D.C.; García, M.D.P.; Ávila, J.; Mobasheri, A.; Martín-Vasallo, P. Na, K-ATPase Isozymes in Colorectal Cancer and Liver Metastases. Front. Physiol. 2016, 7, 9. [Google Scholar] [CrossRef]
- Yang, P.; Cartwright, C.; Efuet, E.; Hamilton, S.R.; Wistuba, I.I.; Menter, D.; Addington, C.; Shureiqi, I.; Newman, R.A. Cellular Location and Expression of Na+, K+-ATPase α Subunits Affect the Anti-Proliferative Activity of Oleandrin. Mol. Carcinog. 2014, 53, 253–263. [Google Scholar] [CrossRef]
- Banerjee, M.; Cui, X.; Li, Z.; Yu, H.; Cai, L.; Jia, X.; He, D.; Wang, C.; Gao, T.; Xie, Z. Na/K-ATPase Y260 Phosphorylation–Mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci. Rep. 2018, 8, 12322. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, Q.; Ding, C.; Kang, W.; Xiao, X.; Yu, Y.; Zhou, Q. Controllable Drug Delivery by Na+/K+ ATPase A1 Targeting Peptide Conjugated DSPE-PEG Nanocarriers for Breast Cancer. Technol. Cancer Res. Treat. 2021, 20, 15330338211027898. [Google Scholar] [CrossRef]
- Araste, F.; Abnous, K.; Hashemi, M.; Dehshahri, A.; Detampel, P.; Alibolandi, M.; Ramezani, M. Na+/K+ ATPase-Targeted Delivery to Metastatic Breast Cancer Models. Eur. J. Pharm. Sci. 2020, 143, 105207. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Tang, Y.; Lu, S.; Lv, Y.; Li, W.; Zhang, M.; Yu, Y. Stimuli-Responsive Ultra-Small Vanadate Prodrug Nanoparticles with NIR Photothermal Properties to Precisely Inhibit Na/K-ATPase for Enhanced Cancer Therapy. Nanoscale 2023, 15, 9116–9122. [Google Scholar] [CrossRef] [PubMed]
- De Sousa-Coelho, A.L.; Fraqueza, G.; Aureliano, M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals 2023, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; Rompel, A.; Crans, D.C. Polyoxovanadates with Emerging Biomedical Activities. Coord. Chem. Rev. 2021, 447, 214143. [Google Scholar] [CrossRef]
- Kanamala, M.; Wilson, W.R.; Yang, M.; Palmer, B.D.; Wu, Z. Mechanisms and Biomaterials in pH-Responsive Tumour Targeted Drug Delivery: A Review. Biomaterials 2016, 85, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Bar-Zeev, M.; Livney, Y.D.; Assaraf, Y.G. Targeted Nanomedicine for Cancer Therapeutics: Towards Precision Medicine Overcoming Drug Resistance. Drug Resist. Updates 2017, 31, 15–30. [Google Scholar] [CrossRef]
- Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific Targeting Cancer Cells with Nanoparticles and Drug Delivery in Cancer Therapy. Semin. Cancer Biol. 2021, 69, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Moradi Kashkooli, F.; Soltani, M.; Souri, M. Controlled Anti-Cancer Drug Release through Advanced Nano-Drug Delivery Systems: Static and Dynamic Targeting Strategies. J. Control. Release 2020, 327, 316–349. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.R.; Kardia, S.L.R.; Shedden, K.A.; Kuick, R.; Michailidis, G.; Taylor, J.M.G.; Misek, D.E.; Wu, R.; Zhai, Y.; Darrah, D.M.; et al. Gene Expression in Ovarian Cancer Reflects Both Morphology and Biological Behavior, Distinguishing Clear Cell from Other Poor-Prognosis Ovarian Carcinomas. Cancer Res. 2002, 62, 4722–4729. [Google Scholar] [PubMed]
- Hsu, I.-L.; Chou, C.-Y.; Wu, Y.-Y.; Wu, J.-E.; Liang, C.-H.; Tsai, Y.-T.; Ke, J.-Y.; Chen, Y.-L.; Hsu, K.-F.; Hong, T.-M. Targeting FXYD2 by Cardiac Glycosides Potently Blocks Tumor Growth in Ovarian Clear Cell Carcinoma. Oncotarget 2016, 7, 62925–62938. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, Y.; Hou, L.; Wang, W.; Li, K.; Zhang, Z.; Du, B.; Kong, D. Digoxin Exerts Anticancer Activity on Human Nonsmall Cell Lung Cancer Cells by Blocking PI3K/Akt Pathway. Biosci. Rep. 2021, 41, BSR20211056. [Google Scholar] [CrossRef] [PubMed]
- Nik Nabil, W.N.; Dai, R.; Liu, M.; Xi, Z.; Xu, H. Repurposing Cardiac Glycosides for Anticancer Treatment: A Review of Clinical Studies. Drug Discov. Today 2024, 29, 104129. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Bai, F.; Chaudhry, M.A.; Pratt, R.; Shapiro, J.I.; Liu, J. The Na/K-ATPase A1 and c-Src Form Signaling Complex under Native Condition: A Crosslinking Approach. Sci. Rep. 2020, 10, 6006. [Google Scholar] [CrossRef]
- Kubala, M.; Geleticova, J.; Huliciak, M.; Zatloukalova, M.; Vacek, J.; Sebela, M. Na(+)/K(+)-ATPase Inhibition by Cisplatin and Consequences for Cisplatin Nephrotoxicity. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2014, 158, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, A.V.; Slobodkina, E.A.; Alekseev, A.V.; Gogvadze, V.; Zhivotovsky, B. Contrasting Effects of Cardiac Glycosides on Cisplatin- and Etoposide-Induced Cell Death. Biol. Chem. 2016, 397, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.F.Z.; Silva, I.T.; Persich, L.; de Carvalho, A.; Rocha, S.C.; Marostica, L.; Ramos, A.C.P.; Taranto, A.G.; Pádua, R.M.; Kreis, W.; et al. Cytotoxic Effects of the Cardenolide Convallatoxin and Its Na, K-ATPase Regulation. Mol. Cell Biochem. 2017, 428, 23–39. [Google Scholar] [CrossRef]
- Neault, J.F.; Benkirane, A.; Malonga, H.; Tajmir-Riahi, H.A. Interaction of Cisplatin Drug with Na, K-ATPase: Drug Binding Mode and Protein Secondary Structure. J. Inorg. Biochem. 2001, 86, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Deyama, Y.; Yoshimura, Y.; Suzuki, K. Cisplatin Sensitivity of Oral Squamous Carcinoma Cells Is Regulated by Na+,K+-ATPase Activity Rather than Copper-Transporting P-Type ATPases, ATP7A and ATP7B. Cancer Chemother. Pharmacol. 2009, 63, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S.; Kawazoe, Y.; Ikeno, M.; Saitoh, M.; Nakano, Y.; Nishi, Y.; Fukushima, S.; Takeuchi, Y. Role of Na+, K+-ATPase A1 Subunit in the Intracellular Accumulation of Cisplatin. Cancer Chemother. Pharmacol. 2006, 57, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; López-Lázaro, M. The in Vivo Antitumor Activity of Cardiac Glycosides in Mice Xenografted with Human Cancer Cells Is Probably an Experimental Artifact. Oncogene 2014, 33, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Huličiak, M.; Vacek, J.; Sebela, M.; Orolinová, E.; Znaleziona, J.; Havlíková, M.; Kubala, M. Covalent Binding of Cisplatin Impairs the Function of Na(+)/K(+)-ATPase by Binding to Its Cytoplasmic Part. Biochem. Pharmacol. 2012, 83, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Zhang, H.; Yang, J.; Zheng, Z.; Liu, K. Expression Mode and Prognostic Value of FXYD Family Members in Colon Cancer. Aging 2021, 13, 18404–18422. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, S.-L.; Yin, J.-Y.; Yang, K.; Zhou, X.-G.; Xie, W.; Wang, Q. Differences of Core Genes in Liver Fibrosis and Hepatocellular Carcinoma: Evidence from Integrated Bioinformatics and Immunohistochemical Analysis. World J. Gastrointest. Oncol. 2022, 14, 1265–1280. [Google Scholar] [CrossRef]
- Frank, A.K.; Chung, B.K.; De Novales, M.L.L.; Engesæter, L.K.; Hoyle, H.W.; Øgaard, J.; Heslop, J.; Karlsen, T.H.; Tysoe, O.; Brevini, T.; et al. Single-Cell Transcriptomic Profiling of Cholangiocyte Organoids Derived from Bile Ducts of Primary Sclerosing Cholangitis Patients. Dig. Dis. Sci. 2024, 69, 3810–3823. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Feng, Y.; Zeng, X.; He, M.; Gong, Y.; Liu, Y. Extracellular Vesicles-Encapsulated Let-7i Shed from Bone Mesenchymal Stem Cells Suppress Lung Cancer via KDM3A/DCLK1/FXYD3 Axis. J. Cell. Mol. Med. 2021, 25, 1911–1926. [Google Scholar] [CrossRef] [PubMed]
- Okudela, K.; Yazawa, T.; Ishii, J.; Woo, T.; Mitsui, H.; Bunai, T.; Sakaeda, M.; Shimoyamada, H.; Sato, H.; Tajiri, M.; et al. Down-Regulation of FXYD3 Expression in Human Lung Cancers: Its Mechanism and Potential Role in Carcinogenesis. Am. J. Pathol. 2009, 175, 2646–2656. [Google Scholar] [CrossRef] [PubMed]
- Mijatovic, T.; Jungwirth, U.; Heffeter, P.; Hoda, M.A.R.; Dornetshuber, R.; Kiss, R.; Berger, W. The Na+/K+-ATPase Is the Achilles Heel of Multi-Drug-Resistant Cancer Cells. Cancer Lett. 2009, 282, 30–34. [Google Scholar] [CrossRef] [PubMed]
Cancer | Isoform | Expression Level | Prognosis |
---|---|---|---|
Colorectal | α1β1 | Decreased | Unknown (Bechmann et al., 2016) [245] |
Colorectal | α3β1 (perinuclear) | Increased | Poor (Yang et al., 2014) [246] |
Hepatocellular carcinoma | α3β1 (perinuclear) | Increased | Poor (Yang et al., 2014) [246] |
Cholangiocarcinoma | FXYD2 | Increased | Poor (Frank et al., 2024) [272] |
Hepatocellular carcinoma | FXYD2 | Much increased | Poor (Li et al., 2022) [271] |
Pancreatic | FXYD2 | Decreased | Poor (Zhang et al., 2022) [240] |
Clear cell renal carcinoma | FXYD2 | Decreased | Poor (Zhang et al., 2022) [240] |
Clear cell renal carcinoma | FXYD2 | Much increased | Better (Zhang et al., 2022) [240] |
Colorectal | FXYD2 | Increased | Poor (Jin et al., 2021) [270] |
Clear cell ovarian cancer | FXYD2 | Much Increased (Schwartz et al., 2002) [257] | Poor (Hsu et al., 2016) [258] |
Breast | FXYD3 | Increased | Poor (Liu et al., 2022; Li et al., 2023) [111,250] |
Lung | FXYD3 | Normal | Better (Liu et al., 2021) [273] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordeiro, B.M.; Leite Fontes, C.F.; Meyer-Fernandes, J.R. Molecular Basis of Na, K–ATPase Regulation of Diseases: Hormone and FXYD2 Interactions. Int. J. Mol. Sci. 2024, 25, 13398. https://doi.org/10.3390/ijms252413398
Cordeiro BM, Leite Fontes CF, Meyer-Fernandes JR. Molecular Basis of Na, K–ATPase Regulation of Diseases: Hormone and FXYD2 Interactions. International Journal of Molecular Sciences. 2024; 25(24):13398. https://doi.org/10.3390/ijms252413398
Chicago/Turabian StyleCordeiro, Bárbara Martins, Carlos Frederico Leite Fontes, and José Roberto Meyer-Fernandes. 2024. "Molecular Basis of Na, K–ATPase Regulation of Diseases: Hormone and FXYD2 Interactions" International Journal of Molecular Sciences 25, no. 24: 13398. https://doi.org/10.3390/ijms252413398
APA StyleCordeiro, B. M., Leite Fontes, C. F., & Meyer-Fernandes, J. R. (2024). Molecular Basis of Na, K–ATPase Regulation of Diseases: Hormone and FXYD2 Interactions. International Journal of Molecular Sciences, 25(24), 13398. https://doi.org/10.3390/ijms252413398