Regulation of Cancer Metastasis by PAK2
Abstract
:1. Introduction
2. Structure of PAK2 and Mechanisms of PAK2 Activation
3. PAK2 Signaling and Its Regulation of Cell Motility, Growth, and Survival
4. Overexpression of PAK2 in Various Cancers
5. PAK2 Regulation of Cancer Metastasis
5.1. Breast Cancer
5.2. Pancreatic Cancer
5.3. Prostate Cancer
5.4. Colorectal Cancer
5.5. Ovary Cancer
5.6. Lung Cancer
5.7. Gastric Cancer
5.8. Renal Cancer
5.9. Hepatic Cancer
5.10. Miscellaneous
Role | Model | Effects | Target | Mechanism of Action | Reference |
---|---|---|---|---|---|
Breast Cancer | |||||
Tumor Promoter | In vitro, in vivo | Promotes proliferation, migration, and invasion; increases chemoresistance. | STX17 | PAK2 enhances autophagy by degrading STX17; inhibition using FRAX486 suppresses autophagy and migration in TNBC cells. | [12] |
Prognostic Marker | Clinical | PAK2 overexpression linked to poor prognosis in ER+ breast cancer and TNBC. | PAK2 | Drives estrogen-independent growth in ER+ BC and promotes metastasis in TNBC. | [54] |
Pancreatic Cancer | |||||
Tumor Promoter | In vitro, clinical | Enhances EMT and angiogenesis and reduces differentiation; promotes metastasis and survival. | TGF-β, PKM2, and HSP90 | PKM2 phosphorylates PAK2, stabilizing it via HSP90 interaction, preventing ubiquitination and degradation; activates TGF-β signaling to drive EMT. | [49,55] |
Tumor Promoter/Pathophysiological | In-vitro | Mediates activation of focal adhesion kinases and MAPKs; modulates PI3K/Akt pathway. | ERK1/2 | PAK2 activated ERK1/2, mediating physiological and pathophysiological effects. | [18] |
Prostate Cancer | |||||
Tumor Promoter | In vitro | Promotes LIMK phosphorylation, actin remodeling, and EMT; linked to metastasis. | LIMK | Activated by α2-macroglobulin binding to GRP78 receptor; depends on Ras/MAPK and PI3K activation. | [24] |
Tumor Promoter | In vitro | AR-ligand-treated exosomes promote growth of untreated PCa cells. | Akt1 and PAK2 | AR-agonists and antagonists alter exosome protein cargo. Exosomes promote growth and influence the tumor microenvironment (TME) by upregulating pro-proliferative pathways. | [57] |
In vitro (LNCaP, PC-3, and PC-3M) | PAK2 regulates cell invasion, colony formation, and proliferation. | PAK2, Rac1, and RhoH | PAK2 modulates MAPK signaling, EMT, Rac1, and RhoH to drive cell migration, invasion, and proliferation. | [58,60] | |
Mass spectrometry (PC-3 and PC-3M) | PAK2 upregulated in metastatic cells, enhancing migration. | PAK2 andAKT1 | PAK2 phosphorylation enhances migration in aggressive PCa cell lines, suggesting its role in metastasis. | [61,62] | |
Mass spectrometry (xenografts in intact/castrated mice and CRPC cell lines) | PAK2 regulates colony formation, cell invasion, and proliferation in CRPC. | PAK2 | PAK2 regulates key processes including cell proliferation, mitotic timing, and invasion in CRPC. | [27] | |
Colorectal Cancer | |||||
Tumor Promoter | In vitro, clinical | Enhances proliferation, migration, and apoptosis resistance; promotes chemoresistance. | MOB1 and MCM7 | Negative correlation with MOB1; MCM7 and miR-107 regulate PAK2 to promote malignant progression. | [26,35] |
Ovary Cancer | |||||
Tumor Promoter | In vitro, clinical | Increases cell migration, invasion, and drug resistance; promotes EMT and survival. | Cdc42, Rac1, and SOX2 | PAK2–SOX2 interaction regulates EMT; R-ketorolac suppresses Rac1/Cdc42 pathways to inhibit PAK2 activity. | [65,68] |
Pro-apoptotic | CASP-cleavage models | PAK2-p34 promotes apoptotic cell death and regulates programmed cell death via caspase cleavage. | CASPs/PAK2-p34 pathway | Caspase activation cleaves PAK2, converting its anti-apoptotic role to a pro-apoptotic function (PAK2-p34). | [67] |
Lung Cancer | |||||
Tumor Promoter | In vitro, clinical | Stimulates proliferation, migration, and invasion; enhances tumor growth. | LIMK1 | Activates LIMK1/cofilin signaling for cytoskeletal dynamics; PAK2–SOX2 interaction promotes malignancy. | [69,70] |
Gastric Cancer | |||||
Tumor Promoter | In vitro, clinical | Accelerates tumor progression and metastasis; correlates with poor prognosis. | CDK12 | CDK12 phosphorylates PAK2, activating MAPK signaling and promoting tumor growth and cell division. | [10,26] |
Renal Cancer | |||||
Tumor Promoter | Clinical | Drives invasion, metastasis, and cytoskeletal remodeling. | Rac1 and Cdc42 | Rac1 and Cdc42 activate PAK2, facilitating cytoskeletal dynamics and tumor progression. | [72] |
Hepatic Cancer | |||||
Tumor Promoter | In vitro, clinical | Promotes lipid peroxidation, EMT, and tumor progression; correlates with poor prognosis. | ACSL4 and Sp1 | ACSL4 transcriptionally upregulates PAK2 via Sp1; enhances lipid peroxidation, driving ferroptosis and HCC progression. | [75] |
Miscellaneous Cancers | |||||
Mixed Role | In vitro, clinical | Facilitates hematopoietic stem cell survival; regulates Schwann cell transformation and T/B cell differentiation. | STAT3 and Wnt/β-catenin | PAK2 modulates STAT3 signaling to enhance cyclin D1 expression; activates Wnt/β-catenin signaling in Schwannoma cells. | [77,78] |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kichina, J.V.; Goc, A.; Al-Husein, B.; Somanath, P.R.; Kandel, E.S. PAK1 as a Therapeutic Target. Expert Opin. Ther. Targets 2010, 14, 703–725. [Google Scholar] [CrossRef] [PubMed]
- Goeckeler, Z.M.; Masaracchia, R.A.; Zeng, Q.; Chew, T.-L.; Gallagher, P.; Wysolmerski, R.B. Phosphorylation of Myosin Light Chain Kinase by P21-Activated Kinase PAK2. J. Biol. Chem. 2000, 275, 18366–18374. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Traugh, J.A.; Bishop, J.M. Negative Control of the Myc Protein by the Stress-Responsive Kinase Pak2. Mol. Cell. Biol. 2004, 24, 1582–1594. [Google Scholar] [CrossRef] [PubMed]
- Orton, K.C.; Ling, J.; Waskiewicz, A.J.; Cooper, J.A.; Merrick, W.C.; Korneeva, N.L.; Rhoads, R.E.; Sonenberg, N.; Traugh, J.A. Phosphorylation of Mnk1 by Caspase-Activated Pak2/γ-PAK Inhibits Phosphorylation and Interaction of eIF4G with Mnk. J. Biol. Chem. 2004, 279, 38649–38657. [Google Scholar] [CrossRef]
- Grebeňová, D.; Holoubek, A.; Röselová, P.; Obr, A.; Brodská, B.; Kuželová, K. PAK1, PAK1Δ15, and PAK2: Similarities, Differences and Mutual Interactions. Sci. Rep. 2019, 9, 17171. [Google Scholar] [CrossRef]
- Lee, C.-H.; Park, S.-W.; Kim, Y.S.; Kang, S.S.; Kim, J.A.; Lee, S.H.; Lee, S.-M. Protective Mechanism of Glycyrrhizin on Acute Liver Injury Induced by Carbon Tetrachloride in Mice. Biol. Pharm. Bull. 2007, 30, 1898–1904. [Google Scholar] [CrossRef]
- Chan, W.-H.; Yu, J.-S.; Yang, S.-D. PAK2 Is Cleaved and Activated during Hyperosmotic Shock-Induced Apoptosis via a Caspase-Dependent Mechanism: Evidence for the Involvement of Oxidative Stress. J. Cell. Physiol. 1999, 178, 397–408. [Google Scholar] [CrossRef]
- Li, X.; Wen, W.; Liu, K.; Zhu, F.; Malakhova, M.; Peng, C.; Li, T.; Kim, H.-G.; Ma, W.; Cho, Y.Y.; et al. Phosphorylation of Caspase-7 by P21-Activated Protein Kinase (PAK) 2 Inhibits Chemotherapeutic Drug-Induced Apoptosis of Breast Cancer Cell Lines. J. Biol. Chem. 2011, 286, 22291–22299. [Google Scholar] [CrossRef]
- Cho, H.J.; Baek, K.E.; Kim, I.-K.; Park, S.-M.; Choi, Y.-L.; Nam, I.-K.; Park, S.-H.; Im, M.-J.; Yoo, J.-M.; Ryu, K.-J.; et al. Proteomics-Based Strategy to Delineate the Molecular Mechanisms of RhoGDI2-Induced Metastasis and Drug Resistance in Gastric Cancer. J. Proteome Res. 2012, 11, 2355–2364. [Google Scholar] [CrossRef]
- Gao, C.; Ma, T.; Pang, L.; Xie, R. Activation of P21-Activated Protein Kinase 2 Is an Independent Prognostic Predictor for Patients with Gastric Cancer. Diagn. Pathol. 2014, 9, 55. [Google Scholar] [CrossRef]
- Licciulli, S.; Maksimoska, J.; Zhou, C.; Troutman, S.; Kota, S.; Liu, Q.; Duron, S.; Campbell, D.; Chernoff, J.; Field, J.; et al. FRAX597, a Small Molecule Inhibitor of the P21-Activated Kinases, Inhibits Tumorigenesis of Neurofibromatosis Type 2 (NF2)-Associated Schwannomas. J. Biol. Chem. 2013, 288, 29105–29114. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Li, H.; Lu, K.; Jiang, S.; Li, H. PAK Inhibitor FRAX486 Decreases the Metastatic Potential of Triple-Negative Breast Cancer Cells by Blocking Autophagy. Br. J. Cancer 2024, 130, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, C.; Shepelev, M.; Chernoff, J. The Genetics of Pak. J. Cell Sci. 2004, 117, 4343–4354. [Google Scholar] [CrossRef] [PubMed]
- Jakobi, R.; McCarthy, C.C.; Koeppel, M.A.; Stringer, D.K. Caspase-Activated PAK-2 Is Regulated by Subcellular Targeting and Proteasomal Degradation. J. Biol. Chem. 2003, 278, 38675–38685. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, S.; Gao, M.; Lu, D.; Song, S.; Chen, D.; Fan, W.; Xu, Z.; Zhang, Z.; Sun, X. PAK2 Is Essential for Chromosome Alignment in Metaphase I Oocytes. Cell Death Dis. 2023, 14, 150. [Google Scholar] [CrossRef]
- Lei, M.; Lu, W.; Meng, W.; Parrini, M.-C.; Eck, M.J.; Mayer, B.J.; Harrison, S.C. Structure of PAK1 in an Autoinhibited Conformation Reveals a Multistage Activation Switch. Cell 2000, 102, 387–397. [Google Scholar] [CrossRef]
- Pirruccello, M.; Sondermann, H.; Pelton, J.G.; Pellicena, P.; Hoelz, A.; Chernoff, J.; Wemmer, D.E.; Kuriyan, J. A Dimeric Kinase Assembly Underlying Autophosphorylation in the P21 Activated Kinases. J. Mol. Biol. 2006, 361, 312–326. [Google Scholar] [CrossRef]
- Nuche-Berenguer, B.; Ramos-Álvarez, I.; Jensen, R.T. The P21-Activated Kinase, PAK2, Is Important in the Activation of Numerous Pancreatic Acinar Cell Signaling Cascades and in the Onset of Early Pancreatitis Events. Biochim. Biophys. Acta-Mol. Basis Dis. 2016, 1862, 1122–1136. [Google Scholar] [CrossRef]
- Lee, N.; MacDonald, H.; Reinhard, C.; Halenbeck, R.; Roulston, A.; Shi, T.; Williams, L.T. Activation of hPAK65 by Caspase Cleavage Induces Some of the Morphological and Biochemical Changes of Apoptosis. Proc. Natl. Acad. Sci. USA 1997, 94, 13642–13647. [Google Scholar] [CrossRef]
- Rudel, T.; Zenke, F.T.; Chuang, T.-H.; Bokoch, G.M. Cutting Edge: P21-Activated Kinase (PAK) Is Required for Fas-Induced JNK Activation in Jurkat Cells1 2. J. Immun. 1998, 160, 7–11. [Google Scholar] [CrossRef]
- Walter, B.N.; Huang, Z.; Jakobi, R.; Tuazon, P.T.; Alnemri, E.S.; Litwack, G.; Traugh, J.A. Cleavage and Activation of P21-Activated Protein Kinase γ-PAK by CPP32 (Caspase 3): EFFECTS OF AUTOPHOSPHORYLATION ON ACTIVITY. J. Biol. Chem. 1998, 273, 28733–28739. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, A.; Poplawski, A.; DiPino, F.; Traugh, J.A.; Ling, J. PAK2 Activated by Cdc42 and Caspase 3 Mediates Different Cellular Responses to Oxidative Stress-Induced Apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118645. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tao, T.; Wen, C.; He, W.-Q.; Qiao, Y.-N.; Gao, Y.-Q.; Chen, X.; Wang, P.; Chen, C.-P.; Zhao, W.; et al. Myosin Light Chain Kinase (MLCK) Regulates Cell Migration in a Myosin Regulatory Light Chain Phosphorylation-Independent Mechanism. J. Biol. Chem. 2014, 289, 28478–28488. [Google Scholar] [CrossRef]
- Misra, U.K.; Deedwania, R.; Pizzo, S.V. Binding of Activated Alpha2-Macroglobulin to Its Cell Surface Receptor GRP78 in 1-LN Prostate Cancer Cells Regulates PAK-2-Dependent Activation of LIMK. J. Biol. Chem. 2005, 280, 26278–26286. [Google Scholar] [CrossRef]
- Parsons, J.T.; Horwitz, A.R.; Schwartz, M.A. Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension. Nat. Rev. Mol. Cell Biol. 2010, 11, 633–643. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Z.; Ma, Y.; Fu, L.; Yi, M. MOB1 Inhibits Malignant Progression of Colorectal Cancer by Targeting PAK2. OncoTargets Ther. 2020, 13, 8803–8811. [Google Scholar] [CrossRef]
- Jiang, N.; Hjorth-Jensen, K.; Hekmat, O.; Iglesias-Gato, D.; Kruse, T.; Wang, C.; Wei, W.; Ke, B.; Yan, B.; Niu, Y.; et al. In Vivo Quantitative Phosphoproteomic Profiling Identifies Novel Regulators of Castration-Resistant Prostate Cancer Growth. Oncogene 2015, 34, 2764–2776. [Google Scholar] [CrossRef]
- Roig, J.; Tuazon, P.T.; Zipfel, P.A.; Pendergast, A.M.; Traugh, J.A. Functional Interaction between C-Abl and the P21-Activated Protein Kinase γ-PAK. Proc. Natl. Acad. Sci. USA 2000, 97, 14346–14351. [Google Scholar] [CrossRef]
- Jakobi, R.; Moertl, E.; Koeppel, M.A. P21-Activated Protein Kinase γ-PAK Suppresses Programmed Cell Death of BALB3T3 Fibroblasts. J. Biol. Chem. 2001, 276, 16624–16634. [Google Scholar] [CrossRef]
- Campbell, H.K.; Salvi, A.M.; O’Brien, T.; Superfine, R.; DeMali, K.A. PAK2 Links Cell Survival to Mechanotransduction and Metabolism. J. Cell Biol. 2019, 218, 1958–1971. [Google Scholar] [CrossRef]
- Kumar, R.; Sanawar, R.; Li, X.; Li, F. Structure, Biochemistry, and Biology of PAK Kinases. Gene 2017, 605, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Tan, G.; Qing, W. AMPK Activation Increases Postoperative Cognitive Impairment in Intermittent Hypoxia Rats via Direct Activating PAK2. Behav. Brain Res. 2020, 379, 112344. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Liu, Y.; Dong, S.; Wen, Z.; He, W.; Zhang, S.; Huang, Q.; Shi, M. ROS Signaling under Metabolic Stress: Cross-Talk between AMPK and AKT Pathway. Mol. Cancer 2017, 16, 79. [Google Scholar] [CrossRef]
- Hao, S.; Luo, C.; Abukiwan, A.; Wang, G.; He, J.; Huang, L.; Weber, C.E.M.; Lv, N.; Xiao, X.; Eichmüller, S.B.; et al. miR-137 Inhibits Proliferation of Melanoma Cells by Targeting PAK2. Exp. Dermatol. 2015, 24, 947–952. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Jiang, C.; Wang, Q.; Mi, J.; Zhang, Y.; Zuo, L.; Geng, Z.; Song, X.; Ge, S.; et al. miR-107 Regulates the Effect of MCM7 on the Proliferation and Apoptosis of Colorectal Cancer via the PAK2 Pathway. Biochem. Pharmacol. 2021, 190, 114610. [Google Scholar] [CrossRef]
- Rong, R.; Surace, E.I.; Haipek, C.A.; Gutmann, D.H.; Ye, K. Serine 518 Phosphorylation Modulates Merlin Intramolecular Association and Binding to Critical Effectors Important for NF2 Growth Suppression. Oncogene 2004, 23, 8447–8454. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Zhu, F.; Wen, W.; Zykova, T.; Li, X.; Liu, K.; Peng, C.; Ma, W.; Shi, G.; et al. P21-Activated Protein Kinase (PAK2)-Mediated c-Jun Phosphorylation at 5 Threonine Sites Promotes Cell Transformation. Carcinogenesis 2011, 32, 659–666. [Google Scholar] [CrossRef]
- Boscher, C.; Gaonac’h-Lovejoy, V.; Delisle, C.; Gratton, J.-P. Polarization and Sprouting of Endothelial Cells by Angiopoietin-1 Require PAK2 and Paxillin-Dependent Cdc42 Activation. MBoC 2019, 30, 2227–2239. [Google Scholar] [CrossRef]
- Wu, A.; Jiang, X. P21-Activated Kinases as Promising Therapeutic Targets in Hematological Malignancies. Leukemia 2022, 36, 315–326. [Google Scholar] [CrossRef]
- Macek, P.; Cliff, M.J.; Embrey, K.J.; Holdgate, G.A.; Nissink, J.W.M.; Panova, S.; Waltho, J.P.; Davies, R.A. Myc Phosphorylation in Its Basic Helix–Loop–Helix Region Destabilizes Transient α-Helical Structures, Disrupting Max and DNA Binding. J. Biol. Chem. 2018, 293, 9301–9310. [Google Scholar] [CrossRef]
- Varshney, P.; Dey, C.S. P21-Activated Kinase 2 (PAK2) Regulates Glucose Uptake and Insulin Sensitivity in Neuronal Cells. Mol. Cell. Endocrinol. 2016, 429, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Matsuda, Y.; Wakai, T.; Kubota, M.; Osawa, M.; Fujimaki, S.; Sanpei, A.; Takamura, M.; Yamagiwa, S.; Aoyagi, Y. P21-Activated Kinase-2 Is a Critical Mediator of Transforming Growth Factor-β-Induced Hepatoma Cell Migration. J. Gastroenterol. Hepatol. 2013, 28, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Ajith, A.; Singh, S.; Panday, R.K.; Samaiya, A.; Shukla, S. PAK2–c-Myc–PKM2 Axis Plays an Essential Role in Head and Neck Oncogenesis via Regulating Warburg Effect. Cell Death Dis. 2018, 9, 825. [Google Scholar] [CrossRef] [PubMed]
- Siu, M.K.Y.; Wong, E.S.Y.; Chan, H.Y.; Kong, D.S.H.; Woo, N.W.S.; Tam, K.F.; Ngan, H.Y.S.; Chan, Q.K.Y.; Chan, D.C.W.; Chan, K.Y.K.; et al. Differential Expression and Phosphorylation of Pak1 and Pak2 in Ovarian Cancer: Effects on Prognosis and Cell Invasion. Int. J. Cancer 2010, 127, 21–31. [Google Scholar] [CrossRef]
- Shuang, T.; Wu, S.; Zhao, Y.; Yang, Y.; Pei, M. The Up-Regulation of PAK2 Indicates Unfavorable Prognosis in Patients with Serous Epithelial Ovarian Cancer and Contributes to Paclitaxel Resistance in Ovarian Cancer Cells. BMC Cancer 2024, 24, 1213. [Google Scholar] [CrossRef]
- Hui, M.; Hu, S.; Ye, L.; Zhang, M.; Jing, X.; Hong, Y. PAK2/Beta-Catenin/c-Myc/PKM2 Signal Transduction Suppresses Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome. Biochem. Biophys. Res. Commun. 2023, 677, 54–62. [Google Scholar] [CrossRef]
- Xiao, Y.; Deng, W.-W.; Yang, L.-L.; Li, H.; Yu, G.-T.; Zhang, W.-F.; Sun, Z.-J. Overexpression of P21-Activated Kinase 2 Is Correlated with High-Grade Oral Squamous Cell Carcinomas. Future Oncol. 2018, 14, 1091–1100. [Google Scholar] [CrossRef]
- Song, J.; Wang, T.; Chi, X.; Wei, X.; Xu, S.; Yu, M.; He, H.; Ma, J.; Li, X.; Du, J.; et al. Kindlin-2 Inhibits the Hippo Signaling Pathway by Promoting Degradation of MOB1. Cell Rep. 2019, 29, 3664–3677.e5. [Google Scholar] [CrossRef]
- Yang, H.; Li, Z.; Zhu, S.; Wang, W.; Zhang, J.; Zhao, D.; Zhang, M.; Zhu, W.; Xu, W.; Xu, C. Molecular Mechanisms of Pancreatic Cancer Liver Metastasis: The Role of PAK2. Front. Immunol. 2024, 15, 1347683. [Google Scholar] [CrossRef]
- Senturk, A.; Sahin, A.T.; Armutlu, A.; Kiremit, M.C.; Acar, O.; Erdem, S.; Bagbudar, S.; Esen, T.; Ozlu, N. Quantitative Phosphoproteomics Analysis Uncovers PAK2- and CDK1-Mediated Malignant Signaling Pathways in Clear Cell Renal Cell Carcinoma. Mol. Cell. Proteom. 2022, 21, 100417. [Google Scholar] [CrossRef]
- Li, Q.; Wu, X.; Guo, L.; Shi, J.; Li, J. MicroRNA-7-5p Induces Cell Growth Inhibition, Cell Cycle Arrest and Apoptosis by Targeting PAK2 in Non-Small Cell Lung Cancer. FEBS Open Bio 2019, 9, 1983–1993. [Google Scholar] [CrossRef] [PubMed]
- Iwakawa, H.; Tomari, Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol. 2015, 25, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Peikang, W.U.; Keju, W. Mechanism research of PAK2 phosphorylating TRIM28 in the progression of prostate cancer. J. Clin. Urol. 2023, 38, 741–747. [Google Scholar] [CrossRef]
- Xiao, T.; Li, W.; Wang, X.; Xu, H.; Yang, J.; Wu, Q.; Huang, Y.; Geradts, J.; Jiang, P.; Fei, T.; et al. Estrogen-Regulated Feedback Loop Limits the Efficacy of Estrogen Receptor–Targeted Breast Cancer Therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 7869–7878. [Google Scholar] [CrossRef]
- Cheng, T.-Y.; Yang, Y.-C.; Wang, H.-P.; Tien, Y.-W.; Shun, C.-T.; Huang, H.-Y.; Hsiao, M.; Hua, K.-T. Pyruvate Kinase M2 Promotes Pancreatic Ductal Adenocarcinoma Invasion and Metastasis through Phosphorylation and Stabilization of PAK2 Protein. Oncogene 2018, 37, 1730–1742. [Google Scholar] [CrossRef]
- Somanath, P.R.; Chernoff, J.; Cummings, B.S.; Prasad, S.M.; Homan, H.D. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers 2023, 15, 2236. [Google Scholar] [CrossRef]
- Atri Roozbahani, G.; Kokal-Ribaudo, M.; Heidari Horestani, M.; Pungsrinont, T.; Baniahmad, A. The Protein Composition of Exosomes Released by Prostate Cancer Cells Is Distinctly Regulated by Androgen Receptor-Antagonists and -Agonist to Stimulate Growth of Target Cells. Cell Commun. Signal. 2024, 22, 219. [Google Scholar] [CrossRef]
- Singh, A.N.; Sharma, N. Quantitative SWATH-Based Proteomic Profiling for Identification of Mechanism-Driven Diagnostic Biomarkers Conferring in the Progression of Metastatic Prostate Cancer. Front. Oncol. 2020, 10, 493. [Google Scholar] [CrossRef]
- Tian, L.; Han, F.; Yang, J.; Ming, X.; Chen, L. Long Non-coding RNA LINC01006 Exhibits Oncogenic Properties in Cervical Cancer by Functioning as a Molecular Sponge for microRNA-28-5p and Increasing PAK2 Expression. Int. J. Mol. Med. 2021, 47, 46. [Google Scholar] [CrossRef]
- Tajadura-Ortega, V.; Garg, R.; Allen, R.; Owczarek, C.; Bright, M.D.; Kean, S.; Mohd-Noor, A.; Grigoriadis, A.; Elston, T.C.; Hahn, K.M.; et al. An RNAi Screen of Rho Signalling Networks Identifies RhoH as a Regulator of Rac1 in Prostate Cancer Cell Migration. BMC Biol. 2018, 16, 29. [Google Scholar] [CrossRef]
- Virtanen, S.S.; Ishizu, T.; Sandholm, J.A.; Löyttyniemi, E.; Väänänen, H.K.; Tuomela, J.M.; Härkönen, P.L. Alendronate-Induced Disruption of Actin Cytoskeleton and Inhibition of Migration/Invasion Are Associated with Cofilin Downregulation in PC-3 Prostate Cancer Cells. Oncotarget 2018, 9, 32593–32608. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ha, Y.-S.; Kwon, T.G.; Cho, Y.-C.; Lee, S.; Lee, J.N. Characterization of Kinase Expression Related to Increased Migration of PC-3M Cells Using Global Comparative Phosphoproteome Analysis. Cancer Genom. Proteom. 2020, 17, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-M.; Zhang, X.-F.; Cao, L.; Li, B.; Sui, C.-J.; Li, Y.-M.; Yin, Z.-F. MCM7 Expression Predicts Post-Operative Prognosis for Hepatocellular Carcinoma. Liver Int. 2012, 32, 1505–1509. [Google Scholar] [CrossRef]
- Guo, Y.; Kenney, S.R.; Muller, C.Y.; Adams, S.; Rutledge, T.; Romero, E.; Murray-Krezan, C.; Prekeris, R.; Sklar, L.A.; Hudson, L.G.; et al. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Mol. Cancer Ther. 2015, 14, 2215–2227. [Google Scholar] [CrossRef]
- Koeppel, M.A.; McCarthy, C.C.; Moertl, E.; Jakobi, R. Identification and Characterization of PS-GAP as a Novel Regulator of Caspase-Activated PAK-2. J. Biol. Chem. 2004, 279, 53653–53664. [Google Scholar] [CrossRef]
- Marlin, J.W.; Chang, Y.-W.E.; Ober, M.; Handy, A.; Xu, W.; Jakobi, R. Functional PAK-2 Knockout and Replacement with a Caspase Cleavage-Deficient Mutant in Mice Reveals Differential Requirements of Full-Length PAK-2 and Caspase-Activated PAK-2p34. Mamm. Genome 2011, 22, 306–317. [Google Scholar] [CrossRef]
- Yan, B.; Ma, J.; Zhang, J.; Guo, Y.; Mueller, M.D.; Remick, S.C.; Yu, J.J. Prostasin May Contribute to Chemoresistance, Repress Cancer Cells in Ovarian Cancer, and Is Involved in the Signaling Pathways of CASP/PAK2-P34/Actin. Cell Death Dis. 2014, 5, e995. [Google Scholar] [CrossRef]
- Yang, J.; Peng, S.; Zhang, K. LncRNA RP11-499E18.1 Inhibits Proliferation, Migration, and Epithelial–Mesenchymal Transition Process of Ovarian Cancer Cells by Dissociating PAK2–SOX2 Interaction. Front. Cell Dev. Biol. 2021, 9, 697831. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Xu, R.; Huang, X.; Li, Q.; Zhang, C.; Yuan, B. PAK2 Promotes Proliferation, Migration, and Invasion of Lung Squamous Cell Carcinoma through LIMK1/Cofilin Signaling Pathway. J. Biomed. Res. 2024, 38, 1–14. [Google Scholar] [CrossRef]
- Xie, S.; Wan, X.; Chen, S.; Hu, Y.; Liu, X. P21-Activated Kinase 2 Binds to Transcription Factor SOX2 and up-Regulates DEK to Promote the Progression of Lung Squamous Cell Carcinoma. Lab. Investig. 2022, 102, 1109–1120. [Google Scholar] [CrossRef]
- Alberts, S.R.; Cervantes, A.; van de Velde, C.J.H. Gastric Cancer: Epidemiology, Pathology and Treatment. Ann. Oncol. 2003, 14, ii31–ii36. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.Z.; Field, J. PAK Signaling in Cancer. Cell. Logist. 2012, 2, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhou, J.; Hooi, S.C.; Jiang, Y.-M.; Lu, G.-D. Fatty Acid Activation in Carcinogenesis and Cancer Development: Essential Roles of Long-chain acyl-CoA Synthetases (Review). Oncol. Lett. 2018, 16, 1390–1396. [Google Scholar] [CrossRef]
- Jia, B.; Li, J.; Song, Y.; Luo, C. ACSL4-Mediated Ferroptosis and Its Potential Role in Central Nervous System Diseases and Injuries. Int. J. Mol. Sci. 2023, 24, 10021. [Google Scholar] [CrossRef]
- Wu, D.; Zuo, Z.; Sun, X.; Li, X.; Yin, F.; Yin, W. ACSL4 Promotes Malignant Progression of Hepatocellular Carcinoma by Targeting PAK2 Transcription. Biochem. Pharmacol. 2024, 224, 116206. [Google Scholar] [CrossRef]
- Zeng, Y.; Broxmeyer, H.E.; Staser, K.; Chitteti, B.R.; Park, S.-J.; Hahn, S.; Cooper, S.; Sun, Z.; Jiang, L.; Yang, X.; et al. Pak2 Regulates Hematopoietic Progenitor Cell Proliferation, Survival, and Differentiation. Stem Cells 2015, 33, 1630–1641. [Google Scholar] [CrossRef]
- Deng, W.-W.; Wu, L.; Bu, L.-L.; Liu, J.-F.; Li, Y.-C.; Ma, S.-R.; Yu, G.-T.; Mao, L.; Zhang, W.-F.; Sun, Z.-J. PAK2 Promotes Migration and Proliferation of Salivary Gland Adenoid Cystic Carcinoma. Am. J. Transl. Res. 2016, 8, 3387. [Google Scholar]
- Zhou, L.; Ercolano, E.; Ammoun, S.; Schmid, M.C.; Barczyk, M.A.; Hanemann, C.O. Merlin-Deficient Human Tumors Show Loss of Contact Inhibition and Activation of Wnt/β-Catenin Signaling Linked to the PDGFR/Src and Rac/PAK Pathways. Neoplasia 2011, 13, 1101-IN2. [Google Scholar] [CrossRef]
- Chow, H.Y.; Stepanova, D.; Koch, J.; Chernoff, J. P21-Activated Kinases Are Required for Transformation in a Cell-Based Model of Neurofibromatosis Type 2. PLoS ONE 2010, 5, e13791. [Google Scholar] [CrossRef]
Findings | Implications | References |
---|---|---|
Breast cancer | ||
PAK2 binds to caspase-7, phosphorylating it at Ser-30, Thr-173, and Ser-239 and reducing its apoptotic activity. Overexpression reverses miR-216a-5p effects, promoting cell proliferation and invasiveness. | Contributes to chemoresistance and poor prognosis by suppressing apoptosis. | [8] |
Hepatocellular carcinoma (HCC) | ||
Promotes tumor growth, invasion, and metastasis via TGF-β/Akt signaling and ROS generation. | Potential mediator of early recurrence and metastasis. | [42] |
Head and neck cancer (HNC) | ||
Enhances cell proliferation, aerobic glycolysis, and chemoresistance; upregulates c-Myc, which activates PKM2. | Linked to poor clinical outcomes and increased tumor metabolism. | [43] |
Gastric cancer | ||
High PAK2 and pSer20PAK2 expression correlates with advanced tumor stage, deeper invasion, and lymph node metastases. | Indicates aggressive disease and poor survival outcomes. | [10] |
Ovarian cancer | ||
Elevated p-PAK2 expression drives migration and invasion; associated with activation of the β-catenin/c-Myc/PKM2 pathway and suppression of Nrf2/HO-1 antioxidative response. | Implicated in chemoresistance and worse overall survival. | [44,45,46] |
Oral squamous cell carcinoma (OSCC) | ||
Overexpressed in grade III OSCC; correlates with LYN kinase, Slug, and tumor-associated macrophages. | Associated with advanced tumor grade but not overall survival. | [47] |
Colorectal cancer (CRC) | ||
Inversely correlated with MOB1 levels; overexpression restores functions disrupted by MCM7 knockdown. | Facilitates proliferation and migration, highlighting interplay with MOB1 and MCM7. | [26,35,48] |
Pancreatic cancer | ||
Activates TGF-β signaling to drive pancreatic cancer liver metastasis; correlated with reduced differentiation and enhanced tumor-microenvironment interaction. | Promotes metastatic progression and interaction with the tumor niche. | [49] |
Clear cell renal cell carcinoma (ccRCC) | ||
High expression linked to poor survival outcomes. | Serves as a potential prognostic biomarker. | [50] |
Non-small-cell lung cancer (NSCLC) | ||
Counteracts tumor-suppressive effects of miR-7-5p, including cell cycle arrest and apoptosis. | Acts as an antagonist of miR-7-5p, driving tumor progression. | [51,52] |
Prostate cancer | ||
Regulates SOX2 expression, promoting stemness and treatment resistance. | Enhances tumor plasticity and contributes to castration-resistant progression. | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Sarkar, C.; Guo, B. Regulation of Cancer Metastasis by PAK2. Int. J. Mol. Sci. 2024, 25, 13443. https://doi.org/10.3390/ijms252413443
Wu M, Sarkar C, Guo B. Regulation of Cancer Metastasis by PAK2. International Journal of Molecular Sciences. 2024; 25(24):13443. https://doi.org/10.3390/ijms252413443
Chicago/Turabian StyleWu, Megan, Chandan Sarkar, and Bin Guo. 2024. "Regulation of Cancer Metastasis by PAK2" International Journal of Molecular Sciences 25, no. 24: 13443. https://doi.org/10.3390/ijms252413443
APA StyleWu, M., Sarkar, C., & Guo, B. (2024). Regulation of Cancer Metastasis by PAK2. International Journal of Molecular Sciences, 25(24), 13443. https://doi.org/10.3390/ijms252413443