Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Fruit Samples
3.2. Chemicals
3.3. Sample Preparation and Extraction
3.4. SPME Extraction
3.5. GC/GC-MS Method
3.6. Automated Data Processing
3.7. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fruit: World Production by Type 2021. Available online: https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 27 June 2023).
- Giannetti, V.; Boccacci Mariani, M.; Mannino, P.; Marini, F. Volatile Fraction Analysis by HS-SPME/GC-MS and Chemometric Modeling for Traceability of Apples Cultivated in the Northeast Italy. Food Control 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Of the 30,000 Apple Varieties Found All over the World Only 30 Are Used and Traded Commercially—Agri Benchmark. Available online: http://www.agribenchmark.org/agri-benchmark/did-you-know/einzelansicht/artikel//only-5500-wi.html (accessed on 27 June 2023).
- Hampson, C.R.; Quamme, H.A.; Hall, J.W.; MacDonald, R.A.; King, M.C.; Cliff, M.A. Sensory Evaluation as a Selection Tool in Apple Breeding. Euphytica 2000, 111, 79–90. [Google Scholar] [CrossRef]
- Mehinagic, E.; Royer, G.; Bertrand, D.; Symoneaux, R.; Laurens, F.; Jourjon, F. Relationship between Sensory Analysis, Penetrometry and Visible–NIR Spectroscopy of Apples Belonging to Different Cultivars. Food Qual. Prefer. 2003, 14, 473–484. [Google Scholar] [CrossRef]
- Aprea, E.; Charles, M.; Endrizzi, I.; Laura Corollaro, M.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet Taste in Apple: The Role of Sorbitol, Individual Sugars, Organic Acids and Volatile Compounds. Sci. Rep. 2017, 7, 44950. [Google Scholar] [CrossRef]
- Rowan, D.D.; Hunt, M.B.; Alspach, P.A.; Whitworth, C.J.; Oraguzie, N.C. Heritability and Genetic and Phenotypic Correlations of Apple (Malus × Domestica) Fruit Volatiles in a Genetically Diverse Breeding Population. J. Agric. Food Chem. 2009, 57, 7944–7952. [Google Scholar] [CrossRef] [PubMed]
- Vikram, A.; Prithiviraj, B.; Hamzehzarghani, H.; Kushalappa, A. Volatile Metabolite Profiling to Discriminate Diseases of McIntosh Apple Inoculated with Fungal Pathogens. J. Sci. Food Agric. 2004, 84, 1333–1340. [Google Scholar] [CrossRef]
- Yang, S.; Hao, N.; Meng, Z.; Li, Y.; Zhao, Z. Identification, Comparison and Classification of Volatile Compounds in Peels of 40 Apple Cultivars by HS–SPME with GC–MS. Foods 2021, 10, 1051. [Google Scholar] [CrossRef] [PubMed]
- Risticevic, S.; DeEll, J.R.; Pawliszyn, J. Solid Phase Microextraction Coupled with Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry for High-Resolution Metabolite Profiling in Apples: Implementation of Structured Separations for Optimization of Sample Preparation Procedure in Complex Samples. J. Chromatogr. A 2012, 1251, 208–218. [Google Scholar] [CrossRef]
- Komthong, P.; Hayakawa, S.; Katoh, T.; Igura, N.; Shimoda, M. Determination of Potent Odorants in Apple by Headspace Gas Dilution Analysis. LWT-Food Sci. Technol. 2006, 39, 472–478. [Google Scholar] [CrossRef]
- Schaffer, R.J.; Friel, E.N.; Souleyre, E.J.F.; Bolitho, K.; Thodey, K.; Ledger, S.; Bowen, J.H.; Ma, J.-H.; Nain, B.; Cohen, D.; et al. A Genomics Approach Reveals That Aroma Production in Apple Is Controlled by Ethylene Predominantly at the Final Step in Each Biosynthetic Pathway. Plant Physiol. 2007, 144, 1899–1912. [Google Scholar] [CrossRef]
- Ferreira, L.; Perestrelo, R.; Caldeira, M.; Câmara, J.S. Characterization of Volatile Substances in Apples from Rosaceae Family by Headspace Solid-Phase Microextraction Followed by GC-qMS. J. Sep. Sci. 2009, 32, 1875–1888. [Google Scholar] [CrossRef] [PubMed]
- Aprea, E.; Corollaro, M.L.; Betta, E.; Endrizzi, I.; Demattè, M.L.; Biasioli, F.; Gasperi, F. Sensory and Instrumental Profiling of 18 Apple Cultivars to Investigate the Relation between Perceived Quality and Odour and Flavour. Food Res. Int. 2012, 49, 677–686. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Lotti, C.; Masuero, D.; Carlin, S.; Weingart, G.; Mattivi, F. Quantitative Metabolic Profiling of Grape, Apple and Raspberry Volatile Compounds (VOCs) Using a GC/MS/MS Method. J. Chromatogr. B 2014, 966, 132–139. [Google Scholar] [CrossRef]
- Wu, X.; Bi, J.; Fauconnier, M.-L. Characteristic Volatiles and Cultivar Classification in 35 Apple Varieties: A Case Study of Two Harvest Years. Foods 2022, 11, 690. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.; Hewett, E.W. Factors Affecting Apple Aroma/Flavour Volatile Concentration: A Review. N. Z. J. Crop Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef]
- The Good Scents Company—Flavor, Fragrance, Food and Cosmetics Ingredients Information. Available online: http://www.thegoodscentscompany.com/ (accessed on 23 September 2021).
- Ciesa, F.; Höller, I.; Guerra, W.; Berger, J.; Dalla Via, J.; Oberhuber, M. Chemodiversity in the Fingerprint Analysis of Volatile Organic Compounds (VOCs) of 35 Old and 7 Modern Apple Cultivars Determined by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) in Two Different Seasons. Chem. Biodivers. 2015, 12, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Farneti, B.; Khomenko, I.; Cappellin, L.; Ting, V.; Costa, G.; Biasioli, F.; Costa, F. Dynamic Volatile Organic Compound Fingerprinting of Apple Fruit during Processing. LWT-Food Sci. Technol. 2015, 63, 21–28. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Zhang, J.; Wang, Z.; Qi, K.; Li, H.; Tian, R.; Wu, X.; Qiao, X.; Zhang, S.; et al. Comparative Analysis of Volatile Aromatic Compounds from a Wide Range of Pear (Pyrus L.) Germplasm Resources Based on HS-SPME with GC–MS. Food Chem. 2023, 418, 135963. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, H.; Zhou, Z.; Li, Z.; Li, X. Production Region Significantly Influences the Main Volatiles of ‘Fuji’ Apple. Food Meas. 2022, 16, 1000–1011. [Google Scholar] [CrossRef]
- Orcheski, B.; Hedderley, D.; Hunt, M.; Rowan, D.; Volz, R. Profiling Apple Volatile Organic Compounds in a New Zealand Collection of Germplasm as a Resource for Breeding Cultivars with Desirable Flavors. Euphytica 2023, 219, 116. [Google Scholar] [CrossRef]
- Lin, M.; Chen, J.; Wu, D.; Chen, K. Volatile Profile and Biosynthesis of Post-Harvest Apples Are Affected by the Mechanical Damage. J. Agric. Food Chem. 2021, 69, 9716–9724. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Vareda, J.; Pereira, R.; Silva, C.; Câmara, J.S.; Perestrelo, R. Geographical Differentiation of Apple Ciders Based on Volatile Fingerprint. Food Res. Int. 2020, 137, 109550. [Google Scholar] [CrossRef]
- Li, R.; Shi, J.; Li, C.; Ren, X.; Tao, Y.; Ma, F.; Liu, Z.; Liu, C. Characterization of the Key Odorant Compounds in ‘Qinguan’ Apples (Malus × Domestica). LWT 2023, 184, 115052. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, X.; Yan, Z.; Cheng, Y.; Li, H.; Xu, G. Monitoring Volatile Organic Compounds in Different Pear Cultivars during Storage Using HS-SPME with GC-MS. Foods 2022, 11, 3778. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Wu, B.; Liu, W.; Wang, L.; Yang, C.; Wang, Y.; Fang, J.; Liu, Y.; Li, S. Volatiles of Plums Evaluated by HS-SPME with GC–MS at the Germplasm Level. Food Chem. 2012, 130, 432–440. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, S.; Lin, X.; Peng, J.; Luo, D.; Wan, X.; Zhang, Y.; Dong, X.; Ma, Y. Analysis of Volatile Compounds in Different Varieties of Plum Fruits Based on Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry Technique. Horticulturae 2023, 9, 1069. [Google Scholar] [CrossRef]
- Rather, S.A.; Mir, N.A.; Hussain, P.R.; Suradkar, P. Free and Glycosidically Bound Volatile Compounds in Quince (Cydonia oblonga Mill.) from Kashmir, India. Food Chem. Adv. 2024, 4, 100608. [Google Scholar] [CrossRef]
- Bonikowski, R.; Paoli, M.; Szymczak, K.; Krajewska, A.; Wajs-Bonikowska, A.; Tomi, F.; Kalemba, D. Chromatographic and Spectral Characteristic of Some Esters of a Common Monoterpene Alcohols. Flavour Fragr. J. 2016, 31, 290–292. [Google Scholar] [CrossRef]
Number of Identified VOCs | Technique | Number of Cultivars | Year of Publication | Literature |
---|---|---|---|---|
498 | HS GC-MS | 1 | 2004 | [8] |
33 | HS GC-MS | 1 | 2006 | [11] |
30 | HS | 1 | 2007 | [12] |
100 | SPME GC-MS | 3 | 2009 | [13] |
72 | SPME GC-MS | 18 | 2012 | [14] |
399 | SPME GC/GC-MS | 1 | 2012 | [10] |
69 | SPE GC-MS/MS | 5 | 2014 | [15] |
118 | HS-SPME GC-MS | 42 | 2017 | [2] |
95 | SPME GC-MS | 17 | 2017 | [6] |
78 | HS-SPME GC-MS | 40 | 2021 | [9] |
39 | HS-SPME GC-MS | 35 | 2022 | [16] |
119 | HS-SPME GC/GC-MS | 37 | Current study |
Compound | Flavor | Odor Detection Threshold [ppb] | |
---|---|---|---|
Aldehydes | Acetaldehyde | pungent, fresh, aldehydic, refreshing, green | 15–120 |
2-Hexenal | sweet, almond, fruity, green, leafy, apple, plum, vegetable | 17 | |
Hexanal | green, woody, vegetative, apple, grassy, citrus | 4.5–5 | |
Alcohols | Butanol | oily, sweet, balsamic | 500 |
Hexanol | green, herbaceous, woody, sweet | 2500 | |
2-Hexenol | sharp, green, leafy, fruity, unripe banana | 70 | |
Esters | Butyl acetate | sharp, ethereal, fruity, banana | 2 |
Pentyl acetate | ethereal, fruity, banana, pear, apple | 15 | |
Hexyl acetate | fruity, green, apple, banana, sweet | 2 | |
2-Methylbutyl acetate | sweet, banana, fruity, ripe, estery, tropical | 22 | |
Ethyl butyrate | strong, ethereal, fruity, banana, pineapple | 1 | |
Ethyl 2-methylbutyrate | fruity, fresh, berry, grape, pineapple, mango, cherry | 0.1–0.3 | |
Estragole | sweet, phenolic, anise, harsh, spice, green, herbal, minty | 10 | |
Methyl 2-methylbutyrate | ethereal, fruity, green, sweet | 0.25 | |
Propyl 2-methylbutyrate | winey, fruity, apple, pineapple | 7 | |
Butyl 2-methylbutyrate | fruity, tropical, green, ethereal, herbal, celery, cocoa, peach, grassy | 17 | |
Hexyl 2-methylbutyrate | green, waxy, fruity, apple, banana, woody | 22 | |
Butyl hexanoate | fruity, pineapple, berry, apple, juicy, green, winey, waxy | 250 | |
Hexyl propanoate | pear, green, fruity, musty, rotting | 8 | |
Butyl butyrate | fruity, banana, pineapple, green, cherry, tropical, ripe fruit | 100 | |
Butyl propanoate | fruity, sweet, banana, tropical, tutti-frutti | 25–200 | |
Hexyl butanoate | green, sweet, fruity, apple, waxy | 250 | |
Hexyl hexanoate | green, sweet, waxy, fruity, tropical, berry | unknown |
Old Cultivars | Commercial Cultivars | All | |||||
---|---|---|---|---|---|---|---|
Min | Mean | Max | Min | Mean | Max | ||
Mass of VOCs [mg/kg] | 6.18 | 18.14 | 50.52 | 13.94 | 27.53 | 44.49 | - |
Number of VOCs detected | 24 | 39.3 | 61 | 26 | 35.1 | 44 | 119 |
Number of esters | 4 | 16.8 | 27 | 8 | 14.8 | 19 | 53 |
Number of alcohols | 5 | 9.5 | 15 | 6 | 9.7 | 13 | 20 |
Number of aldehydes | 2 | 6.1 | 14 | 2 | 4.3 | 7 | 17 |
Number of ketones | 0 | 3.0 | 8 | 0 | 2.1 | 4 | 10 |
Number of acids | 1 | 2.1 | 4 | 0 | 2.0 | 5 | 10 |
Number of other VOCs | 0 | 1.8 | 6 | 1 | 2.3 | 4 | 9 |
Compound Name | Boskoop | Galloway Pippin | Golden Delicious 1 | Grafsztynek Inflancki | Grochówka | Jakub Lebel | Kantówka Gdańska | Kosztela | Kronselska | Krótkonóżka Królewska | Książę Albert | Melrose 6 | Red Prince 5 | Szampion 3 | Szara Reneta 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2-Methylbutyl acetate | 1379.3 | 1823.7 | 828.7 | 363.5 | 1453.3 | 552.1 | 298.1 | 7850.7 | 3878.1 | 253.0 | |||||
2-Methylbutanol | 702.2 | 906.5 | 774.4 | 338.1 | 1539.3 | 231.0 | 252.4 | 1089.3 | 1384.2 | 968.0 | 532.8 | 999.0 | 274.6 | 627.1 | |
2-Methylbutyl butyrate | 75.6 | 616.3 | 128.0 | 109.5 | 81.8 | 52.6 | |||||||||
2-Methylpropanol | 188.2 | 239.6 | 307.1 | 132.2 | 75.5 | 313.5 | 164.8 | ||||||||
6-Methylhept-5-en-2-ol | 317.4 | 119.8 | 588.5 | 453.5 | 442.0 | 56.0 | 400.4 | 208.0 | 102.1 | 71.7 | 422.7 | ||||
6-Methylhept-5-en-2-one | 51.6 | 74.9 | 84.4 | 492.9 | 43.5 | 225.1 | 281.0 | 11.8 | 71.1 | 29.3 | 201.0 | 25.2 | 23.1 | 13.9 | |
Butanol | 1345.0 | 407.3 | 677.4 | 882.1 | 435.5 | 578.3 | 1502.4 | 436.0 | 1195.4 | 252.9 | 826.3 | 220.7 | 617.4 | 946.6 | 1704.0 |
Butyl 2-methylbutyrate | 46.4 | 183.0 | 1143.0 | 912.3 | 99.3 | 474.7 | 843.2 | 117.4 | 1693.4 | 54.6 | 148.1 | 145.2 | 249.8 | ||
Butyl acetate | 253.7 | 685.4 | 9168.5 | 2340.6 | 1318.2 | 1062.1 | 5164.3 | 540.1 | 266.4 | 130.1 | 2046.8 | 10,945.3 | 7716.6 | ||
Butyl butyrate | 224.2 | 730.6 | 359.1 | 290.4 | 320.8 | 882.3 | 2542.0 | 2081.5 | 292.0 | 78.3 | 3073.6 | 163.0 | 787.9 | 3050.3 | |
Butyl hexanoate | 193.8 | 758.0 | 853.0 | 1532.2 | 292.1 | 1131.7 | 70.4 | 445.4 | 378.9 | 1025.0 | 1046.6 | 174.9 | |||
Butyl propanoate | 179.5 | 776.6 | 135.2 | 250.4 | 148.3 | 516.5 | 255.0 | 1168.6 | 59.1 | 117.8 | 866.6 | 578.6 | |||
Ethyl butyrate | 143.1 | 2233.5 | 9102.3 | 751.7 | 307.8 | 4174.7 | 401.6 | 2518.2 | 3365.2 | 591.9 | |||||
Ethyl hexanoate | 200.5 | 449.1 | 1827.4 | 345.3 | 921.3 | 378.8 | 318.3 | 616.9 | 177.7 | 674.0 | 1099.7 | ||||
Ethyl octanoate | 42.6 | 1309.1 | 76.7 | 889.4 | 448.3 | 84.7 | |||||||||
Hept-2-enal | 11.9 | 17.8 | 15.7 | 10.3 | 77.9 | 23.4 | 4.6 | 6.9 | 27.5 | 16.8 | 9.4 | 6.7 | |||
Heptanol | 76.7 | 100.4 | 261.4 | 128.5 | 309.7 | 39.0 | 316.6 | 52.0 | 66.5 | 58.7 | 60.1 | 126.9 | 177.3 | ||
Hex-2-en-1-ol | 216.3 | 202.0 | 200.1 | 252.6 | 286.1 | 63.8 | 93.6 | 419.1 | 164.1 | 330.4 | 276.0 | 322.1 | 851.6 | ||
Hex-2-enal | 180.4 | 958.0 | 1854.2 | 439.9 | 1270.7 | 1070.4 | 733.3 | 948.4 | 695.3 | 1639.6 | 669.3 | 2724.6 | 3010.9 | 1294.0 | 2332.1 |
Hexanal | 80.2 | 396.4 | 1198.0 | 369.3 | 380.4 | 226.8 | 474.9 | 98.1 | 232.5 | 177.7 | 146.9 | 353.8 | 404.9 | 327.8 | 299.3 |
Hexanol | 1310.6 | 1568.6 | 2264.7 | 4686.9 | 1946.5 | 1968.3 | 2439.5 | 1196.3 | 1477.8 | 2015.8 | 2888.6 | 2149.4 | 2986.7 | 3014.3 | 1027.7 |
Hexyl 2-methylbutyrate | 353.7 | 1671.4 | 786.0 | 316.0 | 258.6 | 352.5 | 258.2 | 816.1 | 2407.7 | 217.4 | 1168.6 | 562.2 | 1183.3 | 154.0 | 844.0 |
Hexyl acetate | 30.0 | 435.8 | 16,434.0 | 3323.6 | 75.4 | 263.6 | 9791.7 | 573.5 | 31.3 | 118.1 | 4940.9 | 13,763.3 | 3607.2 | ||
Hexyl butyrate | 475.8 | 2580.4 | 364.8 | 2115.8 | 1166.1 | 1219.2 | 1480.3 | 335.4 | 865.3 | 184.1 | 1470.6 | 917.3 | 893.4 | ||
Hexyl hexanoate | 80.7 | 215.9 | 430.5 | 579.4 | 51.9 | 383.9 | 604.8 | 660.0 | 613.8 | 63.2 | 198.3 | 1161.7 | 1496.9 | 119.9 | 959.5 |
Hexyl propanoate | 188.6 | 169.5 | 529.1 | 146.4 | 941.1 | 973.4 | 644.7 | 262.3 | |||||||
Methyl butyrate | 290.1 | 272.2 | 111.4 | 1031.2 | 1013.8 | ||||||||||
Methyl hexanoate | 54.9 | 241.4 | 763.3 | 35.3 | 405.4 | 705.4 | 1340.7 | 216.6 | |||||||
Pentanol | 623.8 | 305.3 | 87.1 | 541.5 | 251.0 | 277.7 | 323.6 | 82.0 | 549.6 | 278.8 | 656.3 | 66.9 | 81.8 | 240.9 | 218.3 |
Propyl butyrate | 401.8 | 298.8 | 142.5 | 1145.9 | 156.0 | 206.3 | 555.8 | 324.8 | 358.7 | 5940.9 | 262.4 | 368.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymczak, K.; Nawrocka, J.; Bonikowski, R. Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS. Int. J. Mol. Sci. 2024, 25, 13478. https://doi.org/10.3390/ijms252413478
Szymczak K, Nawrocka J, Bonikowski R. Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS. International Journal of Molecular Sciences. 2024; 25(24):13478. https://doi.org/10.3390/ijms252413478
Chicago/Turabian StyleSzymczak, Kamil, Justyna Nawrocka, and Radosław Bonikowski. 2024. "Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS" International Journal of Molecular Sciences 25, no. 24: 13478. https://doi.org/10.3390/ijms252413478
APA StyleSzymczak, K., Nawrocka, J., & Bonikowski, R. (2024). Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS. International Journal of Molecular Sciences, 25(24), 13478. https://doi.org/10.3390/ijms252413478