Genome-Wide Analysis of the Metallocarboxypeptidase Inhibitor Family Reveals That AbMCPI8 Affects Root Development and Tropane Alkaloid Production in Atropa belladonna
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Analysis of MCPI Gene Family in A. belladonna
2.2. Phylogenetic Analysis of the MCPI Family
2.3. Chromosome Location and Syntenic Analysis
2.4. Gene Structure and Conserved Sequence Analysis
2.5. Cis-Regulatory Element and Gene Expression Analysis of AbMCPI Genes in A. belladonna
2.6. Molecular Cloning and Sequence Analysis of AbMCPI8 Gene
2.7. Effects of Silencing AbMCPI8 on Root Development and Biosynthesis of Tropane Alkaloids
3. Materials and Methods
3.1. Identification of the MCPI Family in Atropa belladonna
3.2. Phylogenetic Analysis of the MCPI Family
3.3. Chromosome Location and Syntenic Analysis of the MCPI Family
3.4. Gene Structure and Conserved Motif Analysis
3.5. Analysis of Upstream Cis-Regulatory Element of MCPI Gene in A. belladonna
3.6. Tissue Expression by RNA-Seq
3.7. Sequence Cloning and Analysis
3.8. RNA Extraction and RT-qPCR Analysis
3.9. Silencing of AbMCPI8 in Atropa belladonna Plants
3.10. Tropane Alkaloid Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griffin, W.J.; Lin, G.D. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 2000, 53, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Grynkiewicz, G.; Gadzikowska, M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharm. Rep. 2008, 60, 439–463. [Google Scholar]
- Ullrich, S.F.; Hagels, H.; Kayser, O. Scopolamine: A journey from the field to clinics. Phytochem. Rev. 2017, 16, 333–353. [Google Scholar] [CrossRef]
- Suzuki, K.I.; Yamada, Y.; Hashimoto, T. Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol. 1999, 40, 289–297. [Google Scholar] [CrossRef]
- Bedewitz, M.A.; Jones, A.D.; D’Auria, J.C.; Barry, C.S. Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization. Nat. Commun. 2018, 9, 5281. [Google Scholar] [CrossRef]
- Nakajima, K.; Hashimoto, T.; Yamada, Y. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Proc. Natl Acad. Sci. USA 1993, 90, 9591–9595. [Google Scholar] [CrossRef]
- Bedewitz, M.A.; Góngora-Castillo, E.; Uebler, J.B.; Gonzales-Vigil, E.; Wiegert-Rininger, K.E.; Childs, K.L.; Hamilton, J.P.; Vaillancourt, B.; Yeo, Y.S.; Chappell, J.; et al. A root-expressed L-phenylalanine: 4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 2014, 26, 3745–3762. [Google Scholar] [CrossRef]
- Li, R.; Reed, D.W.; Liu, E.; Nowak, J.; Pelcher, L.E.; Page, J.E.; Covello, P.S. Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement. Chem. Biol. 2006, 13, 513–520. [Google Scholar] [CrossRef]
- Hashimoto, T.; Matsuda, J.; Yamada, Y. Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase. FEBS Lett. 1993, 329, 35–39. [Google Scholar] [CrossRef]
- Qiang, W.; Wang, Y.; Zhang, Q.; Li, J.; Xia, K.; Wu, N.; Liao, Z. Expression pattern of genes involved in tropane alkalois biosynthesis and tropane alkaloids accumulation in Atropa belladonna. Zhongguo Zhong Yao Za Zhi 2014, 39, 52–58. [Google Scholar]
- Fernández, D.; Pallarès, I.; Covaleda, G.; Avilés, F.X.; Vendrell, J. Metallocarboxypeptidases and their inhibitors: Recent developments in biomedically relevant protein and organic ligands. Curr. Med. Chem. 2013, 20, 1595–1608. [Google Scholar] [CrossRef]
- Ryan, C.A. Proteinase inhibitors in plants: Genes for improving defenses against insects and pathogens. Ann. Rev. Phytopathol. 1990, 28, 425–449. [Google Scholar] [CrossRef]
- Hartl, M.; Giri, A.P.; Kaur, H.; Baldwi, I.T. The multiple functions of plant serine protease inhibitors: Defense against herbivores and beyond. Plant Signal. Behav. 2011, 6, 1009–1011. [Google Scholar] [CrossRef]
- Quilis, J.; López-García, B.; Meynard, D.; Guiderdoni, E.; San Segundo, B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol. J. 2014, 12, 367–377. [Google Scholar] [CrossRef]
- Graham, J.S.; Ryan, C.A. Accumulation of metallocarboxypeptidase inhibitor in leaves of wounded potato plants. Biochem. Biophys. Res. Comm. 1997, 101, 1164–1170. [Google Scholar] [CrossRef]
- Quilis, J.; Meynard, D.; Vila, L.; Aviles, F.X.; Guiderdoni, E.; San Segundo, B. A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol. J. 2007, 5, 537–553. [Google Scholar] [CrossRef]
- Molesini, B.; Rotino, G.L.; Dusi, V.; Chignola, R.; Sala, T.; Mennella, G.; Francese, G.; Pandolfini, T. Two metallocarboxypeptidase inhibitors are implicated in tomato fruit development and regulated by the Inner No Outer transcription factor. Plant Sci. 2018, 266, 19–26. [Google Scholar] [CrossRef]
- Mikami, Y.; Horiike, G.; Kuroyanagi, M.; Noguchi, H.; Shimizu, M.; Niwa, Y.; Kobayashi, H. Gene for a protein capable of enhancing lateral root formation. FEBS Lett. 1999, 451, 45–50. [Google Scholar] [CrossRef]
- Zhang, F.; Qiu, F.; Zeng, J.; Xu, Z.; Tang, Y.; Zhao, T.; Gou, Y.; Su, F.; Wang, S.; Sun, X.; et al. Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family. Nat. Commun. 2023, 14, 1446. [Google Scholar] [CrossRef]
- Liu, Y.; Schiff, M.; Dinesh-Kumar, S.P. Virus-induced gene silencing in tomato. Plant J. 2002, 31, 777–786. [Google Scholar] [CrossRef]
- Mistry, J.; Finn, R.D.; Eddy, S.R.; Bateman, A.; Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013, 41, e121. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Qiu, F.; Qin, B.; Liu, W.; Wu, N.; Lan, X.; Wang, Q.; Liao, Z.; Tang, K. Reference gene selection for gene expression studies using quantitative real-time PCR normalization in Atropa belladonna. Plant Mol. Biol. Rep. 2014, 32, 1002–1014. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, M.; Zeng, L.; Yang, C.; He, P.; Lin, M.; Liao, Z.; Qiu, F. Engineering the production of medicinal tropane alkaloids through enhancement of tropinone and littorine biosynthesis in root cultures of Atropa belladonna. Ind. Crops Prod. 2022, 189, 115778. [Google Scholar] [CrossRef]
mRNA ID | Gene Name | Chr | Number (aa) | MW (Da) | pI | Aliphatic Index | GRAVY | Subcellular Location |
---|---|---|---|---|---|---|---|---|
EVM0064594.1 | AbMCPI1 | LG04 | 113 | 12,100.89 | 5.59 | 92.39 | 0.241 | chloroplast |
EVM0059786.2 | AbMCPI2 | LG19 | 72 | 7811.03 | 6.09 | 65.14 | −0.151 | extracellular |
EVM0058529.1 | AbMCPI3 | LG04 | 113 | 12,158.93 | 5.10 | 91.50 | 0.194 | chloroplast |
EVM0055767.1 | AbMCPI4 | LG21 | 83 | 8953.52 | 4.95 | 84.58 | 0.431 | extracellular |
EVM0046862.2 | AbMCPI5 | LG04 | 113 | 12,100.89 | 5.59 | 92.39 | 0.241 | chloroplast |
EVM0042929.2 | AbMCPI6 | LG13 | 100 | 11,311.24 | 6.93 | 77.10 | 0.115 | extracellular |
EVM0037680.2 | AbMCPI7 | LG29 | 104 | 11,399.30 | 6.51 | 110.67 | 0.393 | extracellular |
EVM0035594.3 | AbMCPI8 | LG30 | 103 | 11,376.30 | 7.53 | 96.60 | 0.221 | chloroplast |
EVM0032194.2 | AbMCPI9 | LG02 | 137 | 15,014.40 | 5.59 | 93.28 | 0.047 | extracellular |
EVM0030066.1 | AbMCPI10 | LG33 | 83 | 9012.59 | 5.38 | 81.08 | 0.339 | extracellular |
EVM0024721.1 | AbMCPI11 | LG05 | 83 | 8906.50 | 6.00 | 84.70 | 0.401 | extracellular |
EVM0022791.2 | AbMCPI12 | LG13 | 102 | 11,559.57 | 5.88 | 88.04 | 0.126 | extracellular |
EVM0018358.1 | AbMCPI13 | LG29 | 104 | 11,326.25 | 7.57 | 107.79 | 0.388 | chloroplast |
EVM0018026.1 | AbMCPI14 | LG04 | 113 | 12,086.87 | 5.59 | 92.39 | 0.240 | chloroplast |
EVM0007668.2 | AbMCPI15 | LG04 | 113 | 12,100.89 | 5.59 | 92.39 | 0.241 | chloroplast |
EVM0002213.2 | AbMCPI16 | LG34 | 174 | 19,637.28 | 4.89 | 52.70 | −0.564 | chloroplast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wang, Y.; Wan, S.; Zhang, C.; Liao, S.; Chen, M.; Lan, X.; Liao, Z.; Zeng, L. Genome-Wide Analysis of the Metallocarboxypeptidase Inhibitor Family Reveals That AbMCPI8 Affects Root Development and Tropane Alkaloid Production in Atropa belladonna. Int. J. Mol. Sci. 2024, 25, 13729. https://doi.org/10.3390/ijms252413729
Yang S, Wang Y, Wan S, Zhang C, Liao S, Chen M, Lan X, Liao Z, Zeng L. Genome-Wide Analysis of the Metallocarboxypeptidase Inhibitor Family Reveals That AbMCPI8 Affects Root Development and Tropane Alkaloid Production in Atropa belladonna. International Journal of Molecular Sciences. 2024; 25(24):13729. https://doi.org/10.3390/ijms252413729
Chicago/Turabian StyleYang, Shengyu, Yi Wang, Shiyu Wan, Can Zhang, Siyuan Liao, Min Chen, Xiaozhong Lan, Zhihua Liao, and Lingjiang Zeng. 2024. "Genome-Wide Analysis of the Metallocarboxypeptidase Inhibitor Family Reveals That AbMCPI8 Affects Root Development and Tropane Alkaloid Production in Atropa belladonna" International Journal of Molecular Sciences 25, no. 24: 13729. https://doi.org/10.3390/ijms252413729
APA StyleYang, S., Wang, Y., Wan, S., Zhang, C., Liao, S., Chen, M., Lan, X., Liao, Z., & Zeng, L. (2024). Genome-Wide Analysis of the Metallocarboxypeptidase Inhibitor Family Reveals That AbMCPI8 Affects Root Development and Tropane Alkaloid Production in Atropa belladonna. International Journal of Molecular Sciences, 25(24), 13729. https://doi.org/10.3390/ijms252413729