Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex
Abstract
:1. Introduction
2. Results
2.1. Structural Features of the E2 Complex of B. stearothermophilus
2.2. Reconstruction of the E2 Complex, Determined Using Various Applied Symmetry Parameters
2.3. Comparison of the Pseudo-Atomic Models of the E2 Complex with C1 Cryo-EM Map
3. Discussion
4. Materials and Methods
4.1. Protein Expression and Purification
4.2. Conventional Transmission Electron Microscopy
4.3. Cryo-EM Sample Preparation
4.4. Data Collection and Image Processing
4.5. Model Building
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amunts, A.; Brown, A.; Bai, X.C.; Llacer, J.L.; Hussain, T.; Emsley, P.; Long, F.; Murshudov, G.; Scheres, S.H.W.; Ramakrishnan, V. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014, 343, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Kuhlbrandt, W. Biochemistry. The resolution revolution. Science 2014, 343, 1443–1444. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.U.; Jung, H.S. Cryo-EM as a powerful tool for drug discovery: Recent structural based studies of SARS-CoV-2. Appl. Microsc. 2021, 51, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-U.; An, M.Y.; Jung, H.S. Cryo-electron tomography: A triumphant breakthrough in structural biology. Biodesign 2023, 11, 33–38. [Google Scholar] [CrossRef]
- Chua, E.Y.D.; Mendez, J.H.; Rapp, M.; Ilca, S.L.; Tan, Y.Z.; Maruthi, K.; Kuang, H.; Zimanyi, C.M.; Cheng, A.; Eng, E.T.; et al. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Annu. Rev. Biochem. 2022, 91, 1–32. [Google Scholar] [CrossRef]
- Renaud, J.P.; Chari, A.; Ciferri, C.; Liu, W.T.; Remigy, H.W.; Stark, H.; Wiesmann, C. Cryo-EM in drug discovery: Achievements, limitations and prospects. Nat. Rev. Drug Discov. 2018, 17, 471–492. [Google Scholar] [CrossRef] [PubMed]
- Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 2019, 294, 5181–5197. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, S.C.; Ando, N. X-rays in the Cryo-Electron Microscopy Era: Structural Biology’s Dynamic Future. Biochemistry 2018, 57, 277–285. [Google Scholar] [CrossRef]
- Kim, H.-U.; Jeong, H.; Chung, J.M.; Jeoung, D.; Hyun, J.; Jung, H.S. Comparative analysis of human and bovine thyroglobulin structures. J. Anal. Sci. Technol. 2022, 13, 25. [Google Scholar] [CrossRef]
- Robertson, M.J.; Meyerowitz, J.G.; Skiniotis, G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem. Sci. 2022, 47, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.R.D.; Ignatiou, A.; Orlova, E.V. Structural Analysis of Protein Complexes by Cryo Electron Microscopy. Methods Mol. Biol. 2017, 1615, 377–413. [Google Scholar] [PubMed]
- Plaxco, K.W.; Gross, M. Protein complexes: The evolution of symmetry. Curr. Biol. 2009, 19, R25–R26. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, D.S.; Olson, A.J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 105–153. [Google Scholar] [CrossRef]
- Elmlund, D.; Elmlund, H. Cryogenic electron microscopy and single-particle analysis. Annu. Rev. Biochem. 2015, 84, 499–517. [Google Scholar] [CrossRef]
- Zhang, X.; Settembre, E.; Xu, C.; Dormitzer, P.R.; Bellamy, R.; Harrison, S.C.; Grigorieff, N. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. USA 2008, 105, 1867–1872. [Google Scholar] [CrossRef] [PubMed]
- Nakane, T.; Kotecha, A.; Sente, A.; McMullan, G.; Masiulis, S.; Brown, P.; Grigoras, I.T.; Malinauskaite, L.; Malinauskas, T.; Miehling, J.; et al. Single-particle cryo-EM at atomic resolution. Nature 2020, 587, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Vilas, J.L.; Carazo, J.M.; Sorzano, C.O.S. Emerging Themes in CryoEM horizontal line Single Particle Analysis Image Processing. Chem. Rev. 2022, 122, 13915–13951. [Google Scholar] [CrossRef] [PubMed]
- Vilas, J.L.; Tabassum, N.; Mota, J.; Maluenda, D.; Jimenez-Moreno, A.; Majtner, T.; Carazo, J.M.; Acton, S.T.; Sorzano, C.O.S. Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead. Curr. Opin. Struct. Biol. 2018, 52, 127–145. [Google Scholar] [CrossRef]
- Scapin, G.; Potter, C.S.; Carragher, B. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chem. Biol. 2018, 25, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Guaita, M.; Watters, S.C.; Loerch, S. Recent advances and current trends in cryo-electron microscopy. Curr. Opin. Struct. Biol. 2022, 77, 102484. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Hiromasa, Y.; Tsen, H.; Stoops, J.K.; Roche, T.E.; Zhou, Z.H. Structures of the human pyruvate dehydrogenase complex cores: A highly conserved catalytic center with flexible N-terminal domains. Structure 2008, 16, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Baiesc, F.L.; Hiromasa, Y.; Yu, X.; Hui, W.H.; Dai, X.; Roche, T.E.; Zhou, Z.H. Atomic Structure of the E2 Inner Core of Human Pyruvate Dehydrogenase Complex. Biochemistry 2018, 57, 2325–2334. [Google Scholar] [CrossRef] [PubMed]
- de Marco, A.; Casatta, E.; Savaresi, S.; Geerlof, A. Recombinant proteins fused to thermostable partners can be purified by heat incubation. J. Biotechnol. 2004, 107, 125–133. [Google Scholar] [CrossRef]
- Liu, S.; Xia, X.; Zhen, J.; Li, Z.; Zhou, Z.H. Structures and comparison of endogenous 2-oxoglutarate and pyruvate dehydrogenase complexes from bovine kidney. Cell Discov. 2022, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, B.O.; Aibara, S.; Howard, R.J.; Mortezaei, N.; Lindahl, E. Arrangement and symmetry of the fungal E3BP-containing core of the pyruvate dehydrogenase complex. Nat. Commun. 2020, 11, 4667. [Google Scholar] [CrossRef] [PubMed]
- Jamali, K.; Käll, L.; Zhang, R.; Brown, A.; Kimanius, D.; Scheres, S.H. Automated model building and protein identification in cryo-EM maps. Nature 2024, 628, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, R.P.; Chakrabarti, P.; Janin, J. Protein–protein interaction and quaternary structure. Q. Rev. Biophys. 2008, 41, 133–180. [Google Scholar]
- Yeates, T.O.; Liu, Y.; Laniado, J. The design of symmetric protein nanomaterials comes of age in theory and practice. Curr. Opin. Struct. Biol. 2016, 39, 134–143. [Google Scholar] [CrossRef]
- Kim, H.-u.; Park, Y.H.; An, M.Y.; Kim, Y.K.; Song, C.; Jung, H.S. Structural insights into calcium-induced conformational changes in human gelsolin. Biochem. Biophys. Res. Commun. 2024, 735, 150826. [Google Scholar] [CrossRef]
- Izard, T.; Aevarsson, A.; Allen, M.D.; Westphal, A.H.; Perham, R.N.; de Kok, A.; Hol, W.G. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 1999, 96, 1240–1245. [Google Scholar] [CrossRef]
- Kim, H.-u.; Bharda, A.V.; Moon, J.C.; Jeoung, D.; Chung, J.M.; Jung, H.S. Microscopic studies on severing properties of actin-binding protein: Its potential use in therapeutic treatment of actin-rich inclusions. J. Anal. Sci. Technol. 2021, 12, 49. [Google Scholar] [CrossRef]
- Tang, G.; Peng, L.; Baldwin, P.R.; Mann, D.S.; Jiang, W.; Rees, I.; Ludtke, S.J. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 2007, 157, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Punjani, A.; Rubinstein, J.L.; Fleet, D.J.; Brubaker, M.A. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 2017, 14, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Dong, Z.; Xu, K.; Zhang, Q.C. CryoRes: Local Resolution Estimation of Cryo-EM Density Maps by Deep Learning. J. Mol. Biol. 2023, 435, 168059. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75 Pt 10, 861–877. [Google Scholar] [CrossRef]
Data Collection | |||||
---|---|---|---|---|---|
Dataset | C1 EMD-38333 | C5 EMD-38334 | D2 EMD-38335 | TEMD-38340 | IEMD-38336 |
Particles | 69,946 | 69,946 | 69,946 | 69,946 | 69,946 |
Pixel size (Å) | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Defocus range (μm) | −1.5 to −2.6 | −1.5 to −2.6 | −1.5 to −2.6 | −1.5 to −2.6 | −1.5 to −2.6 |
Total electron dose (e-/Å2) | 40 | 40 | 40 | 40 | 40 |
Refinement | |||||
Resolution (Å) | 4.93 | 4.76 | 4.79 | 4.36 | 4.20 |
Map-sharpening B-factor (Å) | −112.7 | −142.8 | −146.7 | −179.7 | −212.7 |
Average B-factor (Å) | −132.7 | −162.8 | −166.7 | −199.7 | −232.7 |
RMSD | |||||
Bond length (Å) | 0.155 | 0.156 | 0.118 | 0.109 | |
Bond angle (°) | 18.492 | 19.857 | 12.514 | 11.822 | |
Ramachandran plot | |||||
Favored (%) | 43.31 | 41.57 | 67.23 | 70.75 | |
Allowed (%) | 19.48 | 20.90 | 16.29 | 13.19 | |
Disallowed (%) | 37.21 | 37.53 | 16.48 | 16.06 | |
MolProbity score | 5.12 | 5.23 | 4.65 | 4.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-u.; Jeong, M.S.; An, M.Y.; Park, Y.H.; Park, S.H.; Chung, S.J.; Yi, Y.-s.; Jun, S.; Kim, Y.K.; Jung, H.S. Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex. Int. J. Mol. Sci. 2024, 25, 13731. https://doi.org/10.3390/ijms252413731
Kim H-u, Jeong MS, An MY, Park YH, Park SH, Chung SJ, Yi Y-s, Jun S, Kim YK, Jung HS. Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex. International Journal of Molecular Sciences. 2024; 25(24):13731. https://doi.org/10.3390/ijms252413731
Chicago/Turabian StyleKim, Han-ul, Myeong Seon Jeong, Mi Young An, Yoon Ho Park, Sun Hee Park, Sang J. Chung, Yoon-sun Yi, Sangmi Jun, Young Kwan Kim, and Hyun Suk Jung. 2024. "Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex" International Journal of Molecular Sciences 25, no. 24: 13731. https://doi.org/10.3390/ijms252413731
APA StyleKim, H.-u., Jeong, M. S., An, M. Y., Park, Y. H., Park, S. H., Chung, S. J., Yi, Y.-s., Jun, S., Kim, Y. K., & Jung, H. S. (2024). Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex. International Journal of Molecular Sciences, 25(24), 13731. https://doi.org/10.3390/ijms252413731