Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis
Abstract
:1. Introduction
2. Epidemiology of Osteoporosis and Fractures Due to Hyperprolactinemia
3. Effect of Hyperprolactinemia on the GnRH-LH/FSH Axis
4. Effects of Prolactin on Osteoblasts and Osteoclasts
5. Protective Effects of Prolactin on Bone
6. Treatment
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halbreich, U.; Kinon, B.J.; Gilmore, J.A.; Kahn, L.S. Elevated prolactin levels in patients with schizophrenia: Mechanisms and related adverse effects. Psychoneuroendocrino 2003, 28 (Suppl. S1), 53–67. [Google Scholar] [CrossRef] [PubMed]
- Biller, B.M.; Luciano, A.; Crosignani, P.G.; Molitch, M.; Olive, D.; Rebar, R.; Sanfilippo, J.; Webster, J.; Zacur, H. Guidelines for the diagnosis and treatment of hyperprolactinemia. J. Reprod. Med. 1999, 44 (Suppl. Sl), 1075–1084. [Google Scholar] [PubMed]
- Souter, I.; Baltagi, L.M.; Toth, T.L.; Petrozza, J.C. Prevalence of hyperprolactinemia and abnormal magnetic resonance imaging findings in a population with infertility. Fertil. Steril. 2010, 94, 1159–1162. [Google Scholar] [CrossRef]
- Sarac, F.; Tutuncuoglu, P.; Ozgen, A.G.; Saygili, F.; Yilmaz, C.; Bilgen, I.; Memis, A. Prolactin levels and examination with breast ultrasound or mammography. Adv. Ther. 2008, 25, 59–66. [Google Scholar] [CrossRef]
- Tyson, J.E.; Hwang, P.; Guyda, H.; Friesen, H.G. Studies of prolactin secretion in human pregnancy. Am. J. Obstet. Gynecol. 1972, 113, 14–20. [Google Scholar] [CrossRef]
- Kaye, T.B. Hyperprolactinemia. Causes, consequences, and treatment options. Postgrad. Med. 1996, 99, 265–268. [Google Scholar] [CrossRef]
- Lim, V.S.; Kathpalia, S.C.; Frohman, L.A. Hyperprolactinemia and impaired pituitary response to suppression and stimulation in chronic renal failure: Reversal after transplantation. J. Clin. Endocrinol. Metab. 1979, 48, 101–107. [Google Scholar] [CrossRef]
- Torre, D.L.; Falorni, A. Pharmacological causes of hyperprolactinemia. Ther. Clin. Risk Manag. 2007, 3, 929–951. [Google Scholar]
- Melmed, S.; Polonsky, K.S.; Larsen, P.R.; Kronenberg, H.M. Williams Textbook of Endocrinology E-Book; Elsevier Health Sciences: New York, NY, USA, 2015. [Google Scholar]
- Molitch, M.E. Medication-induced hyperprolactinemia. Mayo Clin. Proc. 2005, 80, 1050–1057. [Google Scholar] [CrossRef]
- Molitch, M.E. Drugs and prolactin. Pituitary 2008, 11, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J.; Peachey, H.; Hannoush, P.; Berlin, J.A.; Loh, L.; Holmes, J.H.; Dlewati, A.; Staley, J.; Santanna, J.; Kapoor, S.C.; et al. Effect of Testosterone Treatment on Bone Mineral Density in Men Over 65 Years of Age1. J. Clin. Endocrinol. Metab. 1999, 84, 1966–1972. [Google Scholar] [CrossRef]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef]
- Gillespie, C.W.; Morin, P.E. Trends and Disparities in Osteoporosis Screening Among Women in the United States, 2008–2014. Am. J. Med. 2017, 130, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Korea Centers for Disease Control and Prevention. Korea National Health and Nutrition Examination Survey (Knhanes 2016–2018); Korea Centers for Disease Control and Prevention: Seoul, Republic of Korea, 2020.
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Schlechte, J.; el-Khoury, G.; Kathol, M.; Walkner, L. Forearm and vertebral bone mineral in treated and untreated hyperprolactinemic amenorrhea. J. Clin. Endocrinol. Metab. 1987, 64, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Biller, B.M.; Baum, H.B.; Rosenthal, D.I.; Saxe, V.C.; Charpie, P.M.; Klibanski, A. Progressive trabecular osteopenia in women with hyperprolactinemic amenorrhea. J. Clin. Endocrinol. Metab. 1992, 75, 692–697. [Google Scholar] [PubMed]
- Schlechte, J.; Walkner, L.; Kathol, M. A longitudinal analysis of premenopausal bone loss in healthy women and women with hyperprolactinemia. J. Clin. Endocrinol. Metab. 1992, 75, 698–703. [Google Scholar] [PubMed]
- Suh, H.K.; Frantz, A.G. Size heterogeneity of human prolactin in plasma and pituitary extracts. J. Clin. Endocrinol. Metab. 1974, 39, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Follenius, M.; Simon, C.; Saini, J.; Ehrhart, J.; Brandenberger, G. Prolactin Secretion and Sleep. Sleep 1994, 17, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Ben-Jonathan, N. Dopamine: A prolactin-inhibiting hormone. Endocr. Rev. 1985, 6, 564–589. [Google Scholar] [CrossRef] [PubMed]
- Schofield, S.P.; Everitt, B.J. The organisation of catecholamine-containing neurons in the brain of the rhesus monkey (Macaca mulatta). J. Anat. 1981, 132, 391–418. [Google Scholar] [PubMed]
- Domae, M.; Yamada, K.; Hanabusa, Y.; Furukawa, T. Inhibitory effects of endothelin-1 and endothelin-3 on prolactin release: Possible involvement of endogenous endothelin isopeptides in the rat anterior pituitary. Life Sci. 1992, 50, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Grattan, D.R. The actions of prolactin in the brain during pregnancy and lactation. Prog. Brain Res. 2001, 133, 153–171. [Google Scholar]
- Drago, F.; Bohus, B.; Gispen, W.H.; Scapagnini, U.; De Wied, D. Prolactin-enhanced grooming behavior: Interaction with ACTH. Brain Res. 1983, 263, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kelly, P.A.; Buntin, J.D. Inhibitory effects of anti-prolactin receptor antibodies on prolactin binding in brain and prolactin-induced feeding behavior in ring doves. Neuroendocrinology 1995, 61, 125–135. [Google Scholar] [CrossRef]
- Malarkey, W.B.; Hall, J.C.; Pearl, D.K.; Kiecolt-Glaser, J.K.; Glaser, R. The influence of academic stress and season on 24-hour concentrations of growth hormone and prolactin. J. Clin. Endocrinol. Metab. 1991, 73, 1089–1092. [Google Scholar] [CrossRef]
- Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Asher, I.; Kaplan, B.; Modai, I.; Neri, A.; Valevski, A.; Weizman, A. Mood and hormonal changes during late pregnancy and puerperium. Clin. Exp. Obstet. Gynecol. 1995, 22, 321–325. [Google Scholar]
- Chen, H.W.; Meier, H.; Heiniger, H.J.; Huebner, R.J. Tumorigenesis in strain DW-J mice and induction by prolactin of the group-specific antigen of endogenous C-type RNA tumor virus. J. Natl. Cancer Inst. 1972, 49, 1145–1154. [Google Scholar]
- Viselli, S.M.; Stanek, E.M.; Mukherjee, P.; Hymer, W.C.; Mastro, A.M. Prolactin-induced mitogenesis of lymphocytes from ovariectomized rats. Endocrinology 1991, 129, 983–990. [Google Scholar] [CrossRef]
- Shiu, R.P.; Elsholtz, H.P.; Tanaka, T.; Friesen, H.G.; Gout, P.W.; Beer, C.T.; Noble, R.L. Receptor-mediated mitogenic action of prolactin in a rat lymphoma cell line. Endocrinology 1983, 113, 159–165. [Google Scholar] [CrossRef]
- Grattan, D.R. 60 Years of Neuroendocrinology: The hypothalamo-prolactin axis. J. Endocrinol. 2015, 226, T101–T122. [Google Scholar] [CrossRef]
- Ormandy, C.J.; Horseman, N.D.; Naylor, M.J.; Harris, J.; Robertson, F.; Binart, N.; Kelly, P.A. Mammary gland development. In Prolactin; Springer: Boston, MA, USA, 2001; pp. 219–232. [Google Scholar]
- Winklehner-Jennewein, P.; Geymayer, S.; Lechner, J.; Welte, T.; Hansson, L.; Geley, S.; Doppler, W. A distal enhancer region in the human beta-casein gene mediates the response to prolactin and glucocorticoid hormones. Gene 1998, 217, 127–139. [Google Scholar] [CrossRef]
- Ling, C.; Svensson, L.; Oden, B.; Weijdegard, B.; Eden, B.; Eden, S.; Billig, H. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J. Clin. Endocrinol. Metab. 2003, 88, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.S.; True, C.; Grove, K.L. The neuroendocrine basis of lactation-induced suppression of GnRH: Role of kisspeptin and leptin. Brain Res. 2010, 1364, 139–152. [Google Scholar] [CrossRef]
- Millar, R.P.; Sonigo, C.; Anderson, R.A.; George, J.; Maione, L.; Brailly-Tabard, S.; Chanson, P.; Binart, N.; Young, J. Hypothalamic-Pituitary-Ovarian Axis Reactivation by Kisspeptin-10 in Hyperprolactinemic Women with Chronic Amenorrhea. J. Endocr. Soc. 2017, 1, 1362–1371. [Google Scholar] [CrossRef]
- McNeilly, A.S. Lactation and the physiology of prolactin secretion. Postgrad. Med. J. 1975, 51, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Frara, S.; Giustina, A. Pituitary Diseases and Bone. Endocr. Rev. 2018, 39, 440–488. [Google Scholar] [CrossRef]
- Colao, A.; Di Somma, C.; Loche, S.; Di Sarno, A.; Klain, M.; Pivonello, R.; Pietrosante, M.; Salvatore, M.; Lombardi, G. Prolactinomas in adolescents: Persistent bone loss after 2 years of prolactin normalization. Clin. Endocrinol. 2000, 52, 319–327. [Google Scholar] [CrossRef]
- Di Somma, C.; Colao, A.; Di Sarno, A.; Klain, M.; Landi, M.L.; Facciolli, G.; Pivonello, R.; Panza, N.; Salvatore, M.; Lombardi, G. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J. Clin. Endocrinol. Metab. 1998, 83, 807–813. [Google Scholar] [CrossRef]
- Klibanski, A.; Neer, R.M.; Beitins, I.Z.; Ridgway, E.C.; Zervas, N.T.; McArthur, J.W. Decreased bone density in hyperprolactinemic women. N. Engl. J. Med. 1980, 303, 1511–1514. [Google Scholar] [CrossRef] [PubMed]
- Koppelman, M.C.; Kurtz, D.W.; Morrish, K.A.; Bou, E.; Susser, J.K.; Shapiro, J.R.; Loriaux, D.L. Vertebral body bone mineral content in hyperprolactinemic women. J. Clin. Endocrinol. Metab. 1984, 59, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Mancini, T.; Mormando, M.; De Menis, E.; Bianchi, A.; Doga, M.; Porcelli, T.; Vescovi, P.P.; De Marinis, L.; Giustina, A. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary 2011, 14, 299–306. [Google Scholar] [CrossRef]
- Coss, D.; Yang, L.; Kuo, C.B.; Xu, X.; Luben, R.A.; Walker, A.M. Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1216–E1225. [Google Scholar] [CrossRef]
- Klibanski, A.; Biller, B.M.; Rosenthal, D.I.; Schoenfeld, D.A.; Saxe, V. Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J. Clin. Endocrinol. Metab. 1988, 67, 124–130. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast–osteoclast interactions. Connect. Tissue Res. 2018, 59, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.-H. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020, 9, 2073. [Google Scholar] [CrossRef]
- Ryan, M.R.; Shepherd, R.; Leavey, J.K.; Gao, Y.; Grassi, F.; Schnell, F.J.; Qian, W.P.; Kersh, G.J.; Weitzmann, M.N.; Pacifici, R. An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proc. Natl. Acad. Sci. USA 2005, 102, 16735–16740. [Google Scholar] [CrossRef]
- Kwan Tat, S.; Padrines, M.; Théoleyre, S.; Heymann, D.; Fortun, Y. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor. Rev. 2004, 15, 49–60. [Google Scholar]
- Zhang, C.; Li, H.; Li, J.; Hu, J.; Yang, K.; Tao, L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed. Pharmacother. 2023, 163, 114834. [Google Scholar] [CrossRef]
- Guggenbuhl, P.; Filmon, R.; Mabilleau, G.; Baslé, M.F.; Chappard, D. Iron inhibits hydroxyapatite crystal growth in vitro. Metab. Clin. Exp. 2008, 57, 903–910. [Google Scholar] [CrossRef]
- Naliato, E.C.; Farias, M.L.; Braucks, G.R.; Costa, F.S.; Zylberberg, D.; Violante, A.H. Prevalence of osteopenia in men with prolactinoma. J. Endocrinol. Investig. 2005, 28, 12–17. [Google Scholar] [CrossRef]
- Greenspan, S.L.; Oppenheim, D.S.; Klibanski, A. Importance of gonadal steroids to bone mass in men with hyperprolactinemic hypogonadism. Ann. Intern. Med. 1989, 110, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Ominsky, M.S.; Stolina, M.; Warmington, K.S.; Geng, Z.P.; Niu, Q.T.; Asuncion, F.J.; Tan, H.L.; Grisanti, M.; Dwyer, D.; et al. Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 2009, 45, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.Y.; Ima-Nirwana, S. The effects of orchidectomy and supraphysiological testosterone administration on trabecular bone structure and gene expression in rats. Aging Male 2015, 18, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Bellido, T.; Jilka, R.L.; Boyce, B.F.; Girasole, G.; Broxmeyer, H.; Dalrymple, S.A.; Murray, R.; Manolagas, S.C. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J. Clin. Investig. 1995, 95, 2886–2895. [Google Scholar] [CrossRef] [PubMed]
- D’Sylva, C.; Khan, T.; Van Uum, S.; Fraser, L.-A. Osteoporotic fractures in patients with untreated hyperprolactinemia vs. those taking dopamine agonists: A systematic review and meta-analysis. Neuroendocrinol. Lett. 2015, 36, 745–749. [Google Scholar] [PubMed]
- Bataille-Simoneau, N.; Gerland, K.; Chappard, D.; Basle, M.F.; Mercier, L. Expression of prolactin receptors in human osteosarcoma cells. Biochem. Biophys. Res. Commun. 1996, 229, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Seriwatanachai, D.; Thongchote, K.; Charoenphandhu, N.; Pandaranandaka, J.; Tudpor, K.; Teerapornpuntakit, J.; Suthiphongchai, T.; Krishnamra, N. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 2008, 42, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Seriwatanachai, D.; Krishnamra, N.; van Leeuwen, J.P. Evidence for direct effects of prolactin on human osteoblasts: Inhibition of cell growth and mineralization. J. Cell Biochem. 2009, 107, 677–685. [Google Scholar] [CrossRef]
- Wongdee, K.; Tulalamba, W.; Thongbunchoo, J.; Krishnamra, N.; Charoenphandhu, N. Prolactin alters the mRNA expression of osteoblast-derived osteoclastogenic factors in osteoblast-like UMR106 cells. Mol. Cell Biochem. 2011, 349, 195–204. [Google Scholar] [CrossRef]
- Takahashi, H.; Suzuki, N.; Takagi, C.; Ikegame, M.; Yamamoto, T.; Takahashi, A.; Moriyama, S.; Hattori, A.; Sakamoto, T. Prolactin inhibits osteoclastic activity in the goldfish scale: A novel direct action of prolactin in teleosts. Zoolog Sci. 2008, 25, 739–745. [Google Scholar] [CrossRef]
- Ledesma-Colunga, M.G.; Adan, N.; Ortiz, G.; Solis-Gutierrez, M.; Lopez-Barrera, F.; Martinez de la Escalera, G.; Clapp, C. Prolactin blocks the expression of receptor activator of nuclear factor kappaB ligand and reduces osteoclastogenesis and bone loss in murine inflammatory arthritis. Arthritis Res. Ther. 2017, 19, 93. [Google Scholar] [CrossRef]
- Adan, N.; Guzman-Morales, J.; Ledesma-Colunga, M.G.; Perales-Canales, S.I.; Quintanar-Stephano, A.; Lopez-Barrera, F.; Mendez, I.; Moreno-Carranza, B.; Triebel, J.; Binart, N.; et al. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J. Clin. Investig. 2013, 123, 3902–3913. [Google Scholar] [CrossRef]
- Stovall, D.W.; Pinkerton, J.V. Estrogen Agonists/Antagonists in Combination with Estrogen for Prevention and Treatment of Menopause-Associated Signs and Symptoms. Women’s Health 2008, 4, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, B.; Black, D.M.; Mitlak, B.H.; Knickerbocker, R.K.; Nickelsen, T.; Genant, H.K.; Christiansen, C.; Delmas, P.D.; Zanchetta, J.R.; Stakkestad, J. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. JAMA 1999, 282, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Silverman, S.L.; Chines, A.A.; Kendler, D.L.; Kung, A.W.; Teglbjærg, C.S.; Felsenberg, D.; Mairon, N.; Constantine, G.D.; Adachi, J.D. Sustained efficacy and safety of bazedoxifene in preventing fractures in postmenopausal women with osteoporosis: Results of a 5-year, randomized, placebo-controlled study. Osteoporos. Int. 2012, 23, 351–363. [Google Scholar] [CrossRef]
- Anthamatten, A.; Parish, A. Clinical Update on Osteoporosis. J. Midwifery Women’s Health 2019, 64, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Barrionuevo, P.; Kapoor, E.; Asi, N.; Alahdab, F.; Mohammed, K.; Benkhadra, K.; Almasri, J.; Farah, W.; Sarigianni, M.; Muthusamy, K.; et al. Efficacy of Pharmacological Therapies for the Prevention of Fractures in Postmenopausal Women: A Network Meta-Analysis. J. Clin. Endocrinol. Metab. 2019, 104, 1623–1630. [Google Scholar] [CrossRef]
- Bone, H.G.; Hosking, D.; Devogelaer, J.-P.; Tucci, J.R.; Emkey, R.D.; Tonino, R.P.; Rodriguez-Portales, J.A.; Downs, R.W.; Gupta, J.; Santora, A.C.; et al. Ten Years’ Experience with Alendronate for Osteoporosis in Postmenopausal Women. N. Engl. J. Med. 2004, 350, 1189–1199. [Google Scholar] [CrossRef]
- Harris, S.T.; Watts, N.B.; Genant, H.K.; McKeever, C.D.; Hangartner, T.; Keller, M.; Chesnut, C.H., III; Brown, J.; Eriksen, E.F.; Hoseyni, M.S.; et al. Effects of Risedronate Treatment on Vertebral and Nonvertebral Fractures in Women with Postmenopausal OsteoporosisA Randomized Controlled Trial. JAMA 1999, 282, 1344–1352. [Google Scholar] [CrossRef]
- Black, D.M.; Delmas, P.D.; Eastell, R.; Reid, I.R.; Boonen, S.; Cauley, J.A.; Cosman, F.; Lakatos, P.; Leung, P.C.; Man, Z.; et al. Once-Yearly Zoledronic Acid for Treatment of Postmenopausal Osteoporosis. N. Engl. J. Med. 2007, 356, 1809–1822. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.-Y.; Adami, S.; Lakatos, P.; Greenwald, M.; Stepan, J.J.; Silverman, S.L.; Christiansen, C.; Rowell, L.; Mairon, N.; Bonvoisin, B.; et al. Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. Ann. Rheum. Dis. 2006, 65, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.-L.; Low, N.Y.; Chin, K.-Y. A Review on the Role of Denosumab in Fracture Prevention. Drug Des. Dev. Ther. 2020, 14, 4029–4051. [Google Scholar] [CrossRef] [PubMed]
- Bone, H.G.; Wagman, R.B.; Brandi, M.L.; Brown, J.P.; Chapurlat, R.; Cummings, S.R.; Czerwiński, E.; Fahrleitner-Pammer, A.; Kendler, D.L.; Lippuner, K.; et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: Results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017, 5, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.L.; Chines, A.; Brandi, M.L.; Papapoulos, S.; Lewiecki, E.M.; Reginster, J.Y.; Muñoz Torres, M.; Wang, A.; Bone, H.G. The risk of subsequent osteoporotic fractures is decreased in subjects experiencing fracture while on denosumab: Results from the FREEDOM and FREEDOM Extension studies. Osteoporos. Int. 2019, 30, 71–78. [Google Scholar] [CrossRef]
- Cosman, F.; Dempster, D.W. Anabolic Agents for Postmenopausal Osteoporosis: How Do You Choose? Curr. Osteoporos. Rep. 2021, 19, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, Y.; Zhang, S.; Zhang, W.; Zhang, B.; Tang, Q.; Li, Z.; Wu, J. Romosozumab treatment in postmenopausal women with osteoporosis: A meta-analysis of randomized controlled trials. Climacteric 2018, 21, 189–195. [Google Scholar] [CrossRef]
- Canalis, E.; Giustina, A.; Bilezikian, J.P. Mechanisms of anabolic therapies for osteoporosis. N. Engl. J. Med. 2007, 357, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Bilezikian, J.; Canalis, E.; Cocchi, D.; Giustina, A. New understanding and treatments for osteoporosis. Endocrine 2012, 41, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Suh, K.S.; Jung, W.-W.; Chin, S.O. Spironolactone Attenuates Methylglyoxal-induced Cellular Dysfunction in MC3T3-E1 Osteoblastic Cells. J. Korean Med. Sci. 2021, 36, 1147523. [Google Scholar] [CrossRef] [PubMed]
Disease Origin | ||
---|---|---|
Physiologic | Pathologic | Pharmacologic |
Pregnancy | Pituitary tumor | Antipsychotics |
Breastfeeding | Hypothyroidism | Antidepressants |
Stress | Chronic kidney disease | Antiemetics |
Nipple stimulation | Hypophysitis | Antihistamine (H2) |
Exercise | Polycystic ovarian syndrome | Cholinergic agonists |
Chest wall injury | Domperidone | |
Methyldopa | ||
Metoclopramide | ||
Verapamil |
Signs and Symptoms |
---|
Amenorrhea |
Low bone mass |
Vaginal dryness |
Hypogonadotropic hypogonadism |
Galactorrhea |
Infertility |
Erectile dysfunction |
Gynecomastia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.J.; Sang, H.; Park, S.Y.; Chin, S.O. Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis. Int. J. Mol. Sci. 2024, 25, 1474. https://doi.org/10.3390/ijms25031474
Yun SJ, Sang H, Park SY, Chin SO. Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis. International Journal of Molecular Sciences. 2024; 25(3):1474. https://doi.org/10.3390/ijms25031474
Chicago/Turabian StyleYun, Soo Jin, Hyunji Sang, So Young Park, and Sang Ouk Chin. 2024. "Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis" International Journal of Molecular Sciences 25, no. 3: 1474. https://doi.org/10.3390/ijms25031474
APA StyleYun, S. J., Sang, H., Park, S. Y., & Chin, S. O. (2024). Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis. International Journal of Molecular Sciences, 25(3), 1474. https://doi.org/10.3390/ijms25031474