Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Yeast Growth on Glycerol Using Drop-Test Analysis
2.2. Evaluation of Yeast Growth Kinetics in the Presence of Glycerol by Microculture Method
2.3. Citrates Biosynthesis
2.4. Biosynthesis of Erythritol
3. Materials and Methods
3.1. Microorganisms
3.2. Media
3.3. Culture Conditions
3.4. Microcultures
3.5. Bioreactors Studies
3.6. Analytical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CA | citric acid |
ERY | erythritol |
GLY | glycerol |
ICA | isocitric acid |
MAN | mannitol |
µmax | maximal specific growth rate in logarithmic phase |
OD | optical density measured at λ = 600 nm |
X | biomass |
QGLY | volumetric consumption rate of glycerol |
QCA, QERY | volumetric production rates of citrates (CA) and erythritol (ERY) |
qGLY | specific consumption rate of glycerol |
qCA, qERY | specific production rates of citrates (CA) and erythritol (ERY) |
YCA, YERY | yield of citrates (CA) and erythritol (ERY) (g of product per g of used substrate) |
References
- Park, Y.K.; Ledesma-Amaro, R. What makes Yarrowia lipolytica well suited for industry? Trends Biotechnol. 2023, 41, 242–254. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.T.; Arias-Roth, E.; Jakob, E. Cheese yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Hassanshahian, M.; Tebyanian, H.; Cappello, S. Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar. Pollut. Bull. 2012, 64, 1386–1391. [Google Scholar] [CrossRef]
- Barth, G.; Gaillardin, C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 1997, 19, 219–237. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Amaro, R.; Nicaud, J.M. Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol. 2016, 34, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Beopoulos, A.; Cescut, J.; Haddouche, R.; Uribelarrea, J.L.; Molina-Jouve, C.; Nicaud, J.M. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid. Res. 2009, 48, 375–387. [Google Scholar] [CrossRef]
- Fickers, P.; Benetti, P.H.; Wache, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.M. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 2005, 5, 527–543. [Google Scholar] [CrossRef]
- Thevenieau, F.; Nicaud, J.M.; Gaillardin, C. Applications of the non-conventional yeast Yarrowia lipolytica. In Yeast Biotechnology: Diversity and Applications; Satyanarayana, T., Kunze, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 589–613. [Google Scholar] [CrossRef]
- Fabiszewska, A.; Paplińska-Goryca, M.; Misiukiewicz-Stępień, P.; Wołoszynowska, M.; Nowak, D.; Zieniuk, B. Expression profile of selected genes involved in storage lipid synthesis in a model oleaginous yeast species Yarrowia lipolytica. Int. J. Mol. Sci. 2022, 23, 1041. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.S.; Lopes, M.; Belo, I. From crude glycerol and volatile fatty acids to biodiesel and other bioproducts using Yarrowia lipolytica NCYC 2904 as a cell factory. Sustain. Energ. Fuel. 2023, 7, 4687–4696. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Sarris, D.; Tchakouteu, S.S.; Xenopoulos, E.; Papanikolaou, S. Growth response of non-conventional yeasts on sugar-rich media: Part 1: High production of lipid by Lipomyces starkeyi and citric acid by Yarrowia lipolytica. Microorganisms 2023, 11, 1863. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Chatzifragkou, A.; Fakas, S.; Galiotou-Panayotou, M.; Komaitis, M.; Nicaud, J.M.; Aggelis, G. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur. J. Lipid Sci. Technol. 2009, 111, 1221–1232. [Google Scholar] [CrossRef]
- Tomaszewska, L.; Rywińska, A.; Gładkowski, W. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 2012, 39, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Xu, Y.; Xu, S.; Bilal, M.; Cheng, H. Engineering thermotolerant Yarrowia lipolytica for sustainable biosynthesis of mannitol and fructooligosaccharides. Biochem. Eng. J. 2022, 187, 108604. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Huang, S.; Stephanopoulos, G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metab. Eng. 2021, 68, 152–161. [Google Scholar] [CrossRef]
- Larroude, M.; Celińska, E.; Back, A.; Thomas, S.; Nicaud, J.M.; Ledesma-Amaro, R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol. Bioeng. 2018, 115, 464–472. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Ye, J.; Qi, Q.; Hou, J. Morphological and Metabolic Engineering of Yarrowia lipolytica to increase β-carotene production. ACS Synth. Biol. 2021, 10, 3551–3560. [Google Scholar] [CrossRef] [PubMed]
- Arnesen, J.A.; Kildegaard, K.R.; Pastor, M.C.; Jayachandran, S.; Kristensen, M.; Borodina, I. Yarrowia lipolytica strains engineered for the production of terpenoids. Front. Bioeng. Biotechnol. 2020, 8, 945. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, Y.Z.; Wang, L.R.; Shi, T.Q.; Sun, X.M.; Huang, H. Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica. J. Agric. Food Chem. 2021, 69, 2367–2381. [Google Scholar] [CrossRef]
- Fiedurek, J.; Trytek, M. The efect of acid and osmotic stress on metabolite production by microorganisms (in polish). Post. Mikrobiol.-Adv. Microbiol. 2016, 55, 2. [Google Scholar]
- Tomaszewska, L.; Rakicka, M.; Rymowicz, W.; Rywińska, A. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Res. 2014, 14, 966–976. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Papanikolaou, S. Biotechnological production of sugar-alcohols: Focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem. 2023, 124, 113–131. [Google Scholar] [CrossRef]
- Yokozawa, T.; Kim, H.Y.; Cho, E.J. Erythritol attenuates the diabetic oxidative stress through modulating glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. J. Agric. Food Chem. 2002, 50, 5485–5489. [Google Scholar] [CrossRef]
- Wang, N.; Chi, P.; Zou, Y.; Xu, Y.; Xu, S.; Bilal, M.; Fickers, P.; Cheng, H. Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity. Biotechnol. Biofuels 2020, 13, 176. [Google Scholar]
- Rane, K.D.; Sims, K.A. Citric acid production by Yarrowia lipolytica: Effect of nitrogen and biomass concentration on yield and productivity. Biotechnol. Lett. 1996, 18, 1139–1144. [Google Scholar] [CrossRef]
- Sabra, W.; Bommareddy, R.R.; Maheshwari, G.; Papanikolaou, S.; Zeng, A.P. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: Insights through transcriptome and fluxome analyses. Microb. Cell Fact. 2017, 16, 78. [Google Scholar] [CrossRef]
- Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric acid: Emerging applications of key biotechnology industrial product. Chem. Cent. J. 2017, 8, 22. [Google Scholar] [CrossRef]
- Radovčić, M.N.; Karlović, S.; Medić, H.; Režek Jambrak, A. Effect of citric acid addition on functional properties of pasteurized liquid whole eggs. J. Food Sci. Technol. 2021, 58, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Nangare, S.; Vispute, Y.; Tade, R.; Dugam, S.; Patil, P. Pharmaceutical applications od citric acid. Futur. J. Pharm. Sci. 2021, 7, 54. [Google Scholar] [CrossRef]
- Chung, Y.B.; Song, H.; Jo, K.; Suh, H.J. Effect of ascorbic acid and citric acid on the quality of salted Chinese cabbage during storage. Food Sci. Biotechnol. 2021, 30, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Ounkaew, A.; Kasemsiri, P.; Kamwilaisak, K.; Saengprachatanarug, K.; Mongkolthanaruk, W.; Souvanh, M.; Pongsa, U.; Chindaprasirt, P. Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J. Polym. Environ. 2018, 26, 3762–3772. [Google Scholar] [CrossRef]
- Wang, S.; Ren, J.; Li, W.; Sun, R.; Liu, S. Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydr. Polym. 2014, 103, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Abhari, N.; Madadlou, A.; Dini, A.; Naveh, O.H. Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel. Food Chem. 2017, 214, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Montazer, M.; Kahali, P. A novel polyvinyl alcohol–tragacanth/nano silver hydrogel on polyester fabric through in situ synthesis method. J. Ind. Text. 2016, 45, 1635–1651. [Google Scholar] [CrossRef]
- Expert Market Research. Available online: https://www.expertmarketresearch.com/reports/citric-acid-market (accessed on 1 December 2023).
- Nakagawa, Y.; Kasumi, T.; Ogihara, J.; Tamura, M.; Arai, T.; Tomishige, K. Erythritol: Another C4 platform chemical in biomass refinery. ACS Omega 2020, 5, 2520–2530. [Google Scholar] [CrossRef] [PubMed]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Screening various Yarrowia lipolytica strains for citric acid production. Yeast 2019, 36, 319–327. [Google Scholar] [CrossRef]
- Spagnuolo, M.; Hussain, M.S.; Gambill, L.; Blenner, M. Alternative substrate metabolism in Yarrowia lipolytica. Front. Microbiol. 2018, 9, 1077. [Google Scholar] [CrossRef]
- Rakicka, M.; Wolniak, J.; Lazar, Z.; Rymowicz, W. Production of high titer of citric acid from inulin. BMC Biotechnol. 2019, 19, 11. [Google Scholar] [CrossRef]
- Zhang, L.; Nie, M.Y.; Liu, F.; Chen, J.; Wei, L.J.; Hua, Q. Multiple gene integration to promote erythritol production on glycerol in Yarrowia lipolytica. Biotechnol. Lett. 2021, 43, 1277–1287. [Google Scholar] [CrossRef]
- Dujon, B.; Sherman, D.; Fischer, G.; Durrens, P.; Casaregola, S.; Lafontaine, I.; De Montigny, J.; Marck, C.; Neuvéglise, C.; Talla, E.; et al. Genome evolution in yeasts. Nature 2004, 430, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.H.; Tahar, I.B.; Wang, Z.Y.; Ong, K.L.; Li, C.; Qin, Z.H.; Wang, X.; Lin, C.S.K.; Fickers, P. Enhancing the recombinant protein productivity of Yarrowia lipolytica using insitu fibrous bed bioreactor. Bioresour. Technol. 2021, 340, 125672. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Rzechonek, D.A.; Biegalska, A.; Rakicka, M.; Dobrowolski, A. A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol. Biotechnol. Biofuels 2016, 9, 180. [Google Scholar] [CrossRef]
- Hapeta, P.; Rakicka-Pustułka, M.; Juszczyk, P.; Robak, M.; Rymowicz, W.; Lazar, Z. Overexpression of citrate synthase increases isocitric acid biosynthesis in the yeast Yarrowia lipolytica. Sustainability 2020, 12, 7364. [Google Scholar] [CrossRef]
- Krzyczkowska, J.; Fabiszewska, A.U. Yarrowia lipolytica—Non-conventional yeast in biotechnology. Post. Mikrobiol.-Adv. Microbiol. 2015, 54, 33–43. (In Polish) [Google Scholar]
- Tomaszewska-Hetman, L.; Rywińska, A.; Lazar, Z.; Juszczyk, P.; Rakicka-Pustułka, M.; Janek, T.; Kuźmińska-Bajor, M.; Rymowicz, W. Application of a new engineered strain of Yarrowia lipolytica for effective production of calcium ketoglutarate dietary supplements. Int. J. Mol. Sci. 2021, 22, 7577. [Google Scholar] [CrossRef]
- Celińska, E.; Grajek, W. A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica. Microb. Cell Fact. 2013, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Rakicka, M.; Lazar, Z.; Rywińska, A.; Rymowicz, W. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using expressing inulinase. Chem. Pap. 2016, 70, 1452–1459. [Google Scholar] [CrossRef]
- Tan, M.J.; Chen, X.; Wang, Y.K.; Liu, G.L.; Chi, Z.M. Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst. Eng. 2016, 39, 1289–1296. [Google Scholar] [CrossRef]
- Fu, G.Y.; Lu, Y.; Chi, Z.; Liu, G.L.; Zhao, S.F.; Jiang, H.; Chi, Z.M. Cloning and characterization of a pyruvate carboxylase gene from Penicillium rubens and overexpression of the genein the yeast Yarrowia lipolytica for enhanced citric acid production. Mar. Biotechnol. 2016, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mironczuk, A.M. Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. Bioresour. Technol. 2019, 271, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Förster, A.; Jacobs, K.; Juretzek, T.; Mauersberger, S.; Barth, G. Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2007, 77, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Rywińska, A.; Rymowicz, W.; Żarowska, B.; Skrzypiński, A. Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World J. Microbiol. Biotechnol. 2010, 26, 1217–1224. [Google Scholar] [CrossRef]
- Hapeta, P.; Szczepańska, P.; Witkowski, T.; Nicaud, J.M.; Crutz-Le Coq, A.M.; Lazar, Z. The role of hexokinase and hexose transporters in preferential use of glucose over fructose and downstream metabolic pathways in the yeast Yarrowia lipolytica. Int. J. Mol. Sci. 2021, 27, 9282. [Google Scholar] [CrossRef]
- Carly, F.; Vandermies, M.; Telek, S.; Steels, S.; Thomas, S.; Nicaud, J.M.; Fickers, P. Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metab. Eng. 2017, 42, 19–24. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Biegalska, A.; Dobrowolski, A. Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica. Biotechnol. Biofuels 2017, 10, 77. [Google Scholar] [CrossRef]
- Liu, X.; Lv, J.; Xu, J.; Xia, J.; Dai, B.; Xu, X.; Xu, J. Erythritol production by Yarrowia lipolytica mutant strain M53 generated through atmospheric and room temperature plasma mutagenesis. Food Sci. Biotechnol. 2017, 26, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Janek, T.; Dobrowolski, A.; Biegalska, A.; Mirończuk, A.M. Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Microb. Cell Fact. 2017, 16, 118. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk, A.M.; Dobrowolski, A.; Rakicka, M.; Rywińska, A.; Rymowicz, W. Newly isolated mutant of Yarrowia lipolytica MK1 as a proper host for efficient erythritol biosynthesis from glycerol. Proc. Biochem. 2015, 50, 61–68. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Kosiorowska, K.E.; Biegalska, A.; Rakicka-Pustułka, M.; Szczepańczyk, M.; Dobrowolski, A. Heterologous overexpression of bacterial hemoglobin VHb improves erythritol biosynthesis by yeast Yarrowia lipolytica. Microb. Cell Fact. 2019, 18, 176. [Google Scholar] [CrossRef] [PubMed]
No. | Strain | OD600 | µmax [h−1] |
---|---|---|---|
1 | A-101 | 0.45 | 0.100 |
2 | Wratislavia 1.31 | 0.25 | 0.081 |
3 | 1.31.GUT1/6 | 0.37 | 0.065 |
4 | 1.31.GUT1/6.CIT1/3 | 0.42 | 0.080 |
5 | 1.31.GUT1/6.CIT1/3.E34672 | 0.48 | 0.087 |
6 | 1.31.E34672g | 0.42 | 0.094 |
7 | 1.31.CIT1/3 | 0.42 | 0.097 |
Strain of Y. lipolytica | Substrate | Culture Mode | CA + ICA [g/L] | CA [g/L] | CA | QCA+ICA [g/Lh] | QCA [g/Lh] | YCA+ICA [g/g] | YCA [g/g] | References |
---|---|---|---|---|---|---|---|---|---|---|
NCYC3825 | glycerol | fed-batch | 58.8 | - | no data | 0.86 | - | 0.17 | - | [47] |
AJDpADUTGut1 | glycerol | batch | 60.4 | - | no data | 0.63 | - | 0.40 | - | [43] |
K1 INU 6 | fructose | fed-batch | 124.0 | 94.0 | 75.8 | 0.53 | 0.40 | 0.62 | 0.48 | [48] |
inulin | 120.2 | 105.2 | 87.5 | 0.51 | 0.44 | 0.60 | 0.53 | |||
PG86 | glucose | fed-batch | 101.0 | - | no data | 0.42 | - | 0.89 | - | [49] |
PR32 | glucose | fed-batch | 111.1 | - | no data | 0.46 | - | 0.93 | - | [50] |
XYL+ | xylose | batch | 79.4 | - | no data | 0.53 | - | 0.91 | - | [5] |
AJDpADUT-Gut1/2 | glycerol | batch | 75.9 | 42.5 | 56.0 | 0.53 | 0.23 | 0.50 | 0.22 | [51] |
AWG7 | fructose | batch | 50.7 | 48.7 | 96.0 | 0.44 | 0.42 | 0.50 | 0.49 | [39] |
AWG 7 INU 8 | inulin | 77.0 | 75.5 | 98.0 | 0.82 | 0.80 | 0.77 | 0.76 | ||
1.31.CIT2 | glycerol | batch | 92.8 | 72.1 | 77.7 | 0.64 | 0.53 | 0.57 | 0.43 | [44] |
GUT.1/6 | glycerol | batch | 87.5 | 60.4 | 69.0 | 0.77 | 0.53 | 0.60 | 0.41 | This work |
Strain | CA | ICA | CA + ICA | CA/ (CA + ICA) | ERY | MAN | QCA+ICA | QCA | YCA+ICA | YCA | qCA+ICA | qCA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[g/L] | (%) | [g/L] | [g/Lh] | [g/g] | [g/gh] | |||||||
1.31.GUT.1/6 | 60.4 | 27.1 | 87.5 | 69.0 | 24.2 | 0.0 | 0.77 | 0.53 | 0.60 | 0.41 | 0.066 | 0.045 |
1.31.GUT1/6.CIT1/3 | 53.3 | 27.7 | 81.0 | 65.8 | 28.7 | 7.1 | 0.91 | 0.60 | 0.53 | 0.35 | 0.063 | 0.041 |
A-101 | 66.5 | 17.8 | 84.3 | 70.6 | 3.4 | 4.9 | 0.83 | 0.66 | 0.59 | 0.47 | 0.058 | 0.046 |
Wratislavia 1.31 | 73.3 | 3.2 | 76.5 | 95.8 | 4.8 | 2.9 | 0.79 | 0.76 | 0.50 | 0.48 | 0.057 | 0.055 |
Strain of Y. lipolytica | Improvement Strategy | Culture System; Production Volume | Carbon Source [g/L] | ERY [g/L] | YERY [g/g] | QERY [g/Lh] | Ref. |
---|---|---|---|---|---|---|---|
M53 | Mutagenesis ARTP | Bioreactor batch culture 3 L | Waste cooking oil—30 | 22.1 | 0.74 | 0.32 | [57] |
Wratislavia K1 | Isolation from the acetate-negative mutant Wratislavia 1.31 strain in the course of continuous citric acid production from glucose in a nitrogen-limited chemostat culture at a dilution rate of D = 0.016 h−1 | Bioreactor batch culture; 2 L | Pure glycerol—150 | 84.1 | 0.50 | 0.86 | [13] |
Crude glycerol—150 | 80.0 | 0.49 | 1.00 | ||||
AMM pAD-YlER | Overexpression of YALI0F18590g gene encoding predicted erythrose reductase in UV mutant (MK1 strain) | Bioreactor batch culture; 2 L | Pure glycerol—150 | 79.0 | 0.53 | 1.00 | [58] |
AJD pADUTGut1 | Overexpression of YALI0F00484g gene (GUT1) encoding glycerol kinase and gene YALI0B02948g (GUT2) encoding glycerol-3-P dehydrogenase | Bioreactor batch culture; 2 L | Pure glycerol—150 | 71.3 | 0.48 | 0.99 | [43] |
AJD pADUTGut2 | 42.0 | 0.28 | 0.58 | ||||
AJD pADUTGut1/2 | 78.0 | 0.52 | 1.08 | ||||
MK1 | UV mutagenesis of Wratislavia K1 strain | Bioreactor batch culture 2 L | Pure glycerol—150 | 82.2 | 0.55 | 0.84 | [59] |
MK1 | Overexpression of YALI0B15598g encoding 6-phosphogluconate dehydrogenase (GND1); YALI0E22649g—glucose-6-phosphate dehydrogenase (ZWF1), YALIOE06479g—transketolase (TLK1) and YALIOF15587g—transaldolase (TAL1) | Baffled flask; 25 mL | Pure glycerol—100 | 54.15 | 0.54 | 0.75 | [56] |
AMM pAD-GND1 | 50.67 | 0.51 | 0.70 | ||||
AMM pAD-ZWF1 | 50.59 | 0.51 | 0.70 | ||||
AMM pAD-TLK1 | 57.99 | 0.58 | 0.81 | ||||
AMM pAD-TAL1 | 43.13 | 0.45 | 0.63 | ||||
FCY218 | Overexpression of GUT1 and TKL1 and disruption of EYK1 in transformant Po1d (ura3-302 leu2-270 xpr2-322) | Bioreactor batch culture; 1 L | Pure glycerol—150 | 80.6 | 0.53 | 1.03 | [55] |
AJD45,13 pAD-VHb | Overexpression of codon-optimized bacterial hemoglobin (VHb) from Vitreoscilla stercoraria | Bioreactor batch culture; 2 L | Pure glycerol—150 | 55.75 | 0.37 | 0.38 | [60] |
Wratislavia K1 | The inulinase gene (INU1 gene; X57202.1) amplified from Kluyveromyces marxianus CBS6432 was cloned into the genome of Y. lipolytica Wratislavia K1 strain | Bioreactor batch culture; 2 L | Glycerol—40 + 200 | 95.0 | 0.48 | 1.28 | [48] |
K1 INU6 | 120.9 | 0.60 | 1.23 | ||||
Wratislavia 1.31 | Overexpression of YALI0F00484g gene (GUT1) encoding glycerol kinase, YALI0E00638g—methylcitrate synthase and mitochondrial transporter YALI0E34672g in Wratislavia 1.31 strain | Bioreactor batch culture; 2 L | Pure glycerol—150 | 74.5 | 0.5 | 0.67 | This study |
GUT.1/6.CIT.1/3.E34672 | 84.0 | 0.54 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rywińska, A.; Tomaszewska-Hetman, L.; Lazar, Z.; Juszczyk, P.; Sałata, P.; Malek, K.; Kawecki, A.; Rymowicz, W. Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol. Int. J. Mol. Sci. 2024, 25, 1475. https://doi.org/10.3390/ijms25031475
Rywińska A, Tomaszewska-Hetman L, Lazar Z, Juszczyk P, Sałata P, Malek K, Kawecki A, Rymowicz W. Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol. International Journal of Molecular Sciences. 2024; 25(3):1475. https://doi.org/10.3390/ijms25031475
Chicago/Turabian StyleRywińska, Anita, Ludwika Tomaszewska-Hetman, Zbigniew Lazar, Piotr Juszczyk, Patrycja Sałata, Karolina Malek, Adrian Kawecki, and Waldemar Rymowicz. 2024. "Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol" International Journal of Molecular Sciences 25, no. 3: 1475. https://doi.org/10.3390/ijms25031475
APA StyleRywińska, A., Tomaszewska-Hetman, L., Lazar, Z., Juszczyk, P., Sałata, P., Malek, K., Kawecki, A., & Rymowicz, W. (2024). Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol. International Journal of Molecular Sciences, 25(3), 1475. https://doi.org/10.3390/ijms25031475