A Clinical Case of Probable Sitosterolemia
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Materials and Methods
4.1. Measurement of Serum Lipids
4.2. Targeted Gene Sequencing Analysis
4.3. Bioinformatics Analysis for Predicting Pathogenicity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berge, K.E.; Tian, H.; Graf, G.A.; Yu, L.; Grishin, N.V.; Schultz, J.; Kwiterovich, P.; Shan, B.; Barnes, R.; Hobbs, H.H. Accumulation of Dietary Cholesterol in Sitosterolemia Caused by Mutations in Adjacent ABC Transporters. Science 2000, 290, 1771–1775. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Nohara, A.; Inazu, A.; Sakuma, N.; Mabuchi, H.; Kawashiri, M.A. Sitosterolemia, Hypercholesterolemia, and Coronary Artery Disease. J. Atheroscler. Thromb. 2018, 25, 783–789. [Google Scholar] [CrossRef]
- Sakuma, N.; Tada, H.; Mabuchi, H.; Hibino, T.; Kasuga, H. Lipoprotein Apheresis for Sitosterolemia. Ann. Intern. Med. 2017, 167, 896. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Okada, H.; Nomura, A.; Yashiro, S.; Nohara, A.; Ishigaki, Y.; Takamura, M.; Kawashiri, M.A. Rare and Deleterious Mutations in ABCG5/ABCG8 Genes Contribute to Mimicking and Worsening of Familial Hypercholesterolemia Phenotype. Circ. J. 2019, 83, 1917–1924. [Google Scholar] [CrossRef] [PubMed]
- Buonuomo, P.S.; Iughetti, L.; Pisciotta, L.; Rabacchi, C.; Papadia, F.; Bruzzi, P.; Tummolo, A.; Bartuli, A.; Cortese, C.; Bertolini, S.; et al. Timely diagnosis of sitosterolemia by next generation sequencing in two children with severe hypercholesterolemia. Atherosclerosis 2017, 262, 71–77. [Google Scholar] [CrossRef]
- Bastida, J.M.; Girós, M.L.; Benito, R.; Janusz, K.; Hernández-Rivas, J.M.; González-Porras, J.R. Sitosterolemia: Diagnosis, Metabolic and Hematological Abnormalities, Cardiovascular Disease and Management. Curr. Med. Chem. 2019, 26, 6766–6775. [Google Scholar] [CrossRef]
- Graf, G.A.; Yu, L.; Li, W.P.; Gerard, R.; Tuma, P.L.; Cohen, J.C.; Hobbs, H.H. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 2003, 278, 48275–48282. [Google Scholar] [CrossRef]
- Hooper, A.J.; Bell, D.A.; Hegele, R.A.; Burnett, J.R. Clinical utility gene card for: Sitosterolaemia. Eur. J. Hum. Genet. 2017, 25, 512. [Google Scholar] [CrossRef]
- Kidambi, S.; Patel, S.B. Sitosterolaemia: Pathophysiology, clinical presentation and laboratory diagnosis. J. Clin. Pathol. 2008, 61, 588–594. [Google Scholar] [CrossRef]
- Harada-Shiba, M.; Arai, H.; Ohmura, H.; Okazaki, H.; Sugiyama, D.; Tada, H.; Dobashi, K.; Matsuki, K.; Minamino, T.; Yamashita, S.; et al. Guidelines for the Diagnosis and Treatment of Adult Familial Hypercholesterolemia 2022. J. Atheroscler. Thromb. 2023, 30, 558–586. [Google Scholar] [CrossRef]
- Tada, H.; Nomura, A.; Ogura, M.; Ikewaki, K.; Ishigaki, Y.; Inagaki, K.; Tsukamoto, K.; Dobashi, K.; Nakamura, K.; Hori, M.; et al. Diagnosis and Management of Sitosterolemia 2021. J. Atheroscler. Thromb. 2021, 28, 791–801. [Google Scholar] [CrossRef]
- Xia, Y.; Duan, Y.; Zheng, W.; Liang, L.; Zhang, H.; Luo, X.; Gu, X.; Sun, Y.; Xiao, B.; Qiu, W. Clinical, genetic profile and therapy evaluation of 55 children and 5 adults with sitosterolemia. J. Clin. Lipidol. 2022, 16, 40–51. [Google Scholar] [CrossRef]
- Tada, H.; Kojima, N.; Yamagami, K.; Takamura, M.; Kawashiri, M.-A. Clinical and genetic features of sitosterolemia in Japan. Clin. Chim. Acta 2022, 530, 39–44. [Google Scholar] [CrossRef]
- Tada, H.; Nomura, A.; Yamagishi, M.; Kawashiri, M.-A. First case of sitosterolemia caused by double heterozygous mutations in ABCG5 and ABCG8 genes. J. Clin. Lipidol. 2018, 12, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Inazu, A.; Kobayashi, J.; Higashikata, T.; Nohara, A.; Kawashiri, M.; Katsuda, S.; Takata, M.; Koizumi, J.; Mabuchi, H. ATP-binding cassette transporter G8 M429V polymorphism as a novel genetic marker of higher cholesterol absorption in hypercholesterolaemic Japanese subjects. Clin. Sci. (Lond.) 2005, 109, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, N.; Kawada-Watanabe, E.; Koyanagi, R.; Arashi, H.; Yamaguchi, J.; Nakao, K.; Tobaru, T.; Tanaka, H.; Oka, T.; Endoh, Y.; et al. Low-density lipoprotein cholesterol targeting with pitavastatin + ezetimibe for patients with acute coronary syndrome and dyslipidaemia: The HIJ-PROPER study, a prospective, open-label, randomized trial. Eur. Heart J. 2017, 38, 2264–2276. [Google Scholar] [CrossRef] [PubMed]
- Dayspring, T.D.; Varvel, S.A.; Ghaedi, L.; Thiselton, D.L.; Bruton, J.; McConnell, J.P. Biomarkers of cholesterol homeostasis in a clinical laboratory database sample comprising 667,718 patients. J. Clin. Lipidol. 2015, 9, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Kempen, H.; de Knijff, P.; Boomsma, D.; van der Voort, H.; Leuven, J.G.; Havekes, L. Plasma levels of lathosterol and phytosterols in relation to age, sex, anthropometric parameters, plasma lipids, and apolipoprotein E phenotype, in 160 Dutch families. Metabolism 1991, 40, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Farzam, K.; Morgan, R.T. Sitosterolemia; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [PubMed]
- Lu, X.; Peloso, G.M.; Liu, D.J.; Wu, Y.; Zhang, H.; Zhou, W.; Li, J.; Tang, C.S.; Dorajoo, R.; Li, H.; et al. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease. Nat. Genet. 2017, 49, 1722–1730. [Google Scholar] [CrossRef] [PubMed]
- Tada, M.T.; Rocha, V.Z.; Lima, I.R.; Oliveira, T.G.M.; Chacra, A.P.; Miname, M.H.; Nunes, V.S.; Nakandakare, E.R.; Castelo, M.H.C.G.; Jannes, C.E.; et al. Screening of ABCG5 and ABCG8 Genes for Sitosterolemia in a Familial Hypercholesterolemia Cascade Screening Program. Circ. Genom. Precis. Med. 2022, 15, e003390. [Google Scholar] [CrossRef] [PubMed]
- Nomura, A.; Emdin, C.A.; Won, H.H.; Peloso, G.M.; Natarajan, P.; Ardissino, D.; Danesh, J.; Schunkert, H.; Correa, A.; Bown, M.J.; et al. Heterozygous ABCG5 Gene Deficiency and Risk of Coronary Artery Disease. Circ. Genom. Precis. Med. 2020, 13, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Dateki, S.; Suzuki, E.; Tsuchihashi, T.; Isobe, A.; Banno, S.; Kageyama, T.; Maeda, N.; Hatabu, N.; Sato, R.; et al. Compound heterozygous variants in the ABCG8 gene in a Japanese girl with sitosterolemia. Hum. Genome Var. 2020, 7, 25. [Google Scholar] [CrossRef]
- Miroshnikova, V.V.; Romanova, O.V.; Ivanova, O.N.; Fedyakov, M.A.; Panteleeva, A.A.; Barbitoff, Y.A.; Muzalevskaya, M.V.; Urazgildeeva, S.A.; Gurevich, V.S.; Urazov, S.P.; et al. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed. Rep. 2021, 14, 15. [Google Scholar] [CrossRef]
- Terasaki, M.; Yashima, H.; Mori, Y.; Saito, T.; Matsui, T.; Hiromura, M.; Kushima, H.; Osaka, N.; Ohara, M.; Fukui, T.; et al. A Dipeptidyl Peptidase-4 Inhibitor Inhibits Foam Cell Formation of Macrophages in Type 1 Diabetes via Suppression of CD36 and ACAT-1 Expression. Int. J. Mol. Sci. 2020, 21, 4811. [Google Scholar] [CrossRef] [PubMed]
Hematological data | |
White blood cells (WBCs) | 2600/µL |
Hemoglobin (Hb) | 12.7 g/dL |
Hematocrit | 38.3% |
Platelets (PLTs) | 17.5 × 104/uL |
Biochemical data | |
Total protein (TP) | 7.0 g/dL |
Albumin (Alb) | 4.5 g/dL |
Total bilirubin (T-Bil) | 1.0 mg/dL |
Blood urea nitrogen (BUN) | 9.1 mg/dL |
Creatine (Cr) | 0.65 mg/dL |
Creatine kinase (CK) | 118 IU/L |
Aspartate transaminase (AST) | 23 IU/L |
Alanine transaminase (ALT) | 19 IU/L |
γ-glutamyl transpeptidase (γ-GTP) | 8 IU/L |
Triglycerides | 47 mg/dL |
High-density lipoprotein cholesterol (HDL-C) | 98 mg/dL |
Low-density lipoprotein cholesterol (LDL-C) | 332 mg/dL |
Apolipoprotein A-I (ApoA-I) | 190 mg/dL |
Apolipoprotein A-II (ApoA-II) | 20.1 mg/dL |
Apolipoprotein B (ApoB) | 201 mg/dL |
Apolipoprotein C-II (ApoC-II) | 6.5 mg/dL |
Apolipoprotein C-III (ApoC-III) | 12.8 mg/dL |
Apolipoprotein E (ApoE) | 7.8 mg/dL |
Glucose | 71 mg/dL |
Hemoglobin A1c (%) | 5.4% |
Thyroid-stimulating hormone (TSH) | 2.02 µIU/L |
Free triiodothyronine (FT3) | 1.74 pg/mL |
Free thyroxine (FT4) | 0.73 ng/mL |
Urinalysis | |
Protein | − |
Glucose | − |
Ketone body | − |
At Baseline | After Ezetimibe Treatment Alone | |
---|---|---|
Sitosterol | 10.5 μg/mL | 3.6 μg/mL |
Campesterol | 21.7 μg/mL | 5.2 μg/mL |
Nucleotide | Amino Acid | Genome Aggregation | dbSNP | HGVD |
---|---|---|---|---|
c.1285A>G | p.Met429Val | 0.000342 (52/152032) | rs147194762 | 0.001292 (2/1560) |
No. | Age | Gender | Genetic Mutation | LDL-C (mg/dL) | Sitosterol (μg/mL) | Xanthomas | Reference |
---|---|---|---|---|---|---|---|
1 | 8-month | F | homozygous ABCG8 mutation | 832 | 36.5 | Yes | [13] |
2 | 3-month | F | homozygous ABCG8 mutation | 554 | 40 | Yes | [13] |
3 | 1-year | F | double heterozygous ABCG8 and ABCG5 mutations | 453 | 15.9 | Yes | [14] |
4 | 47-year | M | homozygous ABCG8 mutation | 374 | 15 | Yes | [13] |
5 | 24-year | F | heterozygous ABCG8 mutation | 332 | 10.6 | Yes | The present case |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terasaki, M.; Izumi, M.; Yamagishi, S.-i. A Clinical Case of Probable Sitosterolemia. Int. J. Mol. Sci. 2024, 25, 1535. https://doi.org/10.3390/ijms25031535
Terasaki M, Izumi M, Yamagishi S-i. A Clinical Case of Probable Sitosterolemia. International Journal of Molecular Sciences. 2024; 25(3):1535. https://doi.org/10.3390/ijms25031535
Chicago/Turabian StyleTerasaki, Michishige, Mikiko Izumi, and Sho-ichi Yamagishi. 2024. "A Clinical Case of Probable Sitosterolemia" International Journal of Molecular Sciences 25, no. 3: 1535. https://doi.org/10.3390/ijms25031535
APA StyleTerasaki, M., Izumi, M., & Yamagishi, S. -i. (2024). A Clinical Case of Probable Sitosterolemia. International Journal of Molecular Sciences, 25(3), 1535. https://doi.org/10.3390/ijms25031535