Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis
Abstract
:1. Introduction
2. Results
2.1. Information of Participants for the Analysis of Differentially Methylated Regions (DMRs)
2.2. Testing the Independence of Variables
2.3. DMR Analysis According to Bisphenol Exposure
2.4. Bisphenol and AD
3. Discussion
4. Materials and Methods
4.1. Human-Derived Samples
4.2. Testing the Independence of Variables
4.3. Classification of Exposure Groups for BPA, BPF, and BPS
4.4. MeDIP-Seq (DNA Preparation, Library Construction, and Sequencing)
4.5. Differentially Methylated Regions (DMR) Analysis
4.6. Functional Analysis
4.7. Ethical Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, A.; Barrett, E.S.; Sathyanarayana, S.; Swan, S.H.; Nguyen, R.H.; Bush, N.R.; Carroll, K.; Day, D.B.; Kannan, K.; Trasande, L. Prenatal bisphenol A and S exposure and atopic disease phenotypes at age 6. Environ. Res. 2023, 226, 115630. [Google Scholar] [CrossRef]
- Vermeulen, R.; Schymanski, E.L.; Barabási, A.-L.; Miller, G.W. The exposome and health: Where chemistry meets biology. Science 2020, 367, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef]
- Vrijheid, M. The exposome: A new paradigm to study the impact of environment on health. Thorax 2014, 69, 876–878. [Google Scholar] [CrossRef]
- Haddad, N.; Andrianou, X.D.; Makris, K.C. A scoping review on the characteristics of human exposome studies. Curr. Pollut. Rep. 2019, 5, 378–393. [Google Scholar] [CrossRef]
- Miller, G.W.; Jones, D.P. The nature of nurture: Refining the definition of the exposome. Toxicol. Sci. 2014, 137, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, N.; Irvine, A.D.; Flohr, C. The role of the environment and exposome in atopic dermatitis. Curr. Treat. Options Allergy 2021, 8, 222–241. [Google Scholar] [CrossRef]
- Koh, E.J.; Kim, S.H.; Hwang, S.Y. Sample management: A primary critical starting point for successful omics studies. Mol. Cell. Toxicol. 2022, 18, 141–148. [Google Scholar] [CrossRef]
- Stefanovic, N.; Flohr, C.; Irvine, A.D. The exposome in atopic dermatitis. Allergy 2020, 75, 63–74. [Google Scholar] [CrossRef]
- Kim, E.-H.; Jeon, B.-H.; Kim, J.; Kim, Y.-M.; Han, Y.; Ahn, K.; Cheong, H.-K. Exposure to phthalates and bisphenol A are associated with atopic dermatitis symptoms in children: A time-series analysis. Environ. Health 2017, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Malajian, D.; Guttman-Yassky, E. New pathogenic and therapeutic paradigms in atopic dermatitis. Cytokine 2015, 73, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Solomon, I.; Ilie, M.A.; Draghici, C.; Voiculescu, V.M.; Căruntu, C.; Boda, D.; Zurac, S. The impact of lifestyle factors on evolution of atopic dermatitis: An alternative approach. Exp. Ther. Med. 2019, 17, 1078–1084. [Google Scholar] [CrossRef]
- Ghazal, S.; Ridha, Z.; D’Aguanno, K.; Nassim, D.; Quaiattini, A.; Netchiporouk, E.; Poulin, Y.; Kalia, S.; Marcoux, D.; Piguet, V. Treatment guidelines for atopic dermatitis since the approval of dupilumab: A systematic review and quality appraisal using AGREE-II. Front. Med. 2022, 9, 821871. [Google Scholar] [CrossRef]
- Nomura, T.; Kabashima, K. Advances in atopic dermatitis in 2019–2020: Endotypes from skin barrier, ethnicity, properties of antigen, cytokine profiles, microbiome, and engagement of immune cells. J. Allergy Clin. Immunol. 2021, 148, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Hayano, S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2022, 71, 14–24. [Google Scholar] [CrossRef]
- Liu, L.; Song, G.; Song, Z. Intrinsic Atopic Dermatitis and Extrinsic Atopic Dermatitis: Similarities and Differences. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2621–2628. [Google Scholar] [CrossRef]
- Villicaña, S.; Bell, J.T. Genetic impacts on DNA methylation: Research findings and future perspectives. Genome Biol. 2021, 22, 127. [Google Scholar] [CrossRef]
- Ruiz-Hernandez, A.; Kuo, C.-C.; Rentero-Garrido, P.; Tang, W.-Y.; Redon, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental chemicals and DNA methylation in adults: A systematic review of the epidemiologic evidence. Clin. Epigenet. 2015, 7, 55. [Google Scholar] [CrossRef]
- Šestáková, Š.; Šálek, C.; Remešová, H. DNA methylation validation methods: A coherent review with practical comparison. Biol. Proced. Online 2019, 21, 19. [Google Scholar] [CrossRef]
- Rauluseviciute, I.; Drabløs, F.; Rye, M.B. DNA methylation data by sequencing: Experimental approaches and recommendations for tools and pipelines for data analysis. Clin. Epigenet. 2019, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Margolis, D.J. Filaggrin gene mutations with special reference to atopic dermatitis. Curr. Treat. Options Allergy 2020, 7, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Moosbrugger-Martinz, V.; Leprince, C.; Méchin, M.-C.; Simon, M.; Blunder, S.; Gruber, R.; Dubrac, S. Revisiting the roles of filaggrin in atopic dermatitis. Int. J. Mol. Sci. 2022, 23, 5318. [Google Scholar] [CrossRef] [PubMed]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1987, 100, 441–471. [Google Scholar] [CrossRef]
- Chiricozzi, A.; Maurelli, M.; Peris, K.; Girolomoni, G. Targeting IL-4 for the treatment of atopic dermatitis. ImmunoTargets Ther. 2020, 9, 151–156. [Google Scholar] [CrossRef]
- Furue, M. Regulation of skin barrier function via competition between AHR axis versus IL-13/IL-4–JAK–STAT6/STAT3 axis: Pathogenic and therapeutic implications in atopic dermatitis. J. Clin. Med. 2020, 9, 3741. [Google Scholar] [CrossRef]
- Huang, I.; Chung, W.-H.; Wu, P.-C.; Chen, C.-B. JAK–STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. Front. Immunol. 2022, 13, 1068260. [Google Scholar] [CrossRef]
- Teng, Y.; Fan, Y.; Ma, J.; Lu, W.; Liu, N.; Chen, Y.; Pan, W.; Tao, X. The PI3K/Akt pathway: Emerging roles in skin homeostasis and a group of non-malignant skin disorders. Cells 2021, 10, 1219. [Google Scholar] [CrossRef]
- Esaki, H.; Ewald, D.A.; Ungar, B.; Rozenblit, M.; Zheng, X.; Xu, H.; Estrada, Y.D.; Peng, X.; Mitsui, H.; Litman, T. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J. Allergy Clin. Immunol. 2015, 135, 153–163. [Google Scholar] [CrossRef]
- Bao, L.; Zhang, H.; Chan, L.S. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. Jak-Stat 2013, 2, e24137. [Google Scholar] [CrossRef]
- Alves de Medeiros, A.K.; Speeckaert, R.; Desmet, E.; Van Gele, M.; De Schepper, S.; Lambert, J. JAK3 as an emerging target for topical treatment of inflammatory skin diseases. PLoS ONE 2016, 11, e0164080. [Google Scholar] [CrossRef]
- Chamcheu, J.C.; Chaves-Rodriquez, M.-I.; Adhami, V.M.; Siddiqui, I.A.; Wood, G.S.; Longley, B.J.; Mukhtar, H. Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in human psoriasis and imiquimod-induced murine psoriasiform dermatitis model. Acta Derm.-Venereol. 2016, 96, 854. [Google Scholar] [CrossRef]
- Ogawa, K.; Hashida, R.; Miyagawa, M.; Kagaya, S.; Sugita, Y.; Matsumoto, K.; Katsunuma, T.; Akasawa, A.; Tsujimoto, G.; Saito, H. Analysis of gene expression in peripheral blood eosinophils from patients with atopic dermatitis and in vitro cytokine-stimulated blood eosinophils. Clin. Exp. Immunol. 2003, 131, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y. Interleukin-33 in atopic dermatitis. J. Dermatol. Sci. 2019, 96, 2–7. [Google Scholar] [CrossRef]
- Spergel, J.M.; Paller, A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 2003, 112, S118–S127. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Rogers, J.A.; Metz, L.; Yong, V.W. Endocrine disrupting chemicals and immune responses: A focus on bisphenol-A and its potential mechanisms. Mol. Immunol. 2013, 53, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Harb, H.; Chatila, T.A. Mechanisms of dupilumab. Clin. Exp. Allergy 2020, 50, 5–14. [Google Scholar] [CrossRef]
- Wymann, M.P.; Zvelebil, M.; Laffargue, M. Phosphoinositide 3-kinase signalling–which way to target? Trends Pharmacol. Sci. 2003, 24, 366–376. [Google Scholar] [CrossRef]
- Nam, S.-E.; Bae, D.-Y.; Ki, J.-S.; Ahn, C.-Y.; Rhee, J.-S. The importance of multi-omics approaches for the health assessment of freshwater ecosystems. Mol. Cell. Toxicol. 2023, 19, 3–11. [Google Scholar] [CrossRef]
- Graw, S.; Chappell, K.; Washam, C.L.; Gies, A.; Bird, J.; Robeson, M.S.; Byrum, S.D. Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics 2021, 17, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.-H.; Hong, J.-M.; Park, S.-W. Novel data archival system for multi-omics data of human exposure to harmful substances. Mol. Cell. Toxicol. 2022, 18, 277–283. [Google Scholar] [CrossRef]
Cohort Information | Atopy Group n = 19 | Non-Atopy Group n = 98 |
---|---|---|
Age | 33.7 ± 3.5 | 33.9 ± 3.3 |
Smoking | ||
No | 17 (89.5%) | 91 (92.9%) |
Yes | 2 (10.5%) | 7 (7.1%) |
BPA_exposure (μg/g cr.) | 1.0 ± 0.8 | 1.7 ± 3.8 |
BPF_exposure (μg/g cr.) | 0.4 ± 0.6 | 0.8 ± 4.0 |
BPS_exposure (μg/g cr.) | 0.3 ± 0.7 | 0.3 ± 0.7 |
Personal Characteristic | Case Group | Control Group |
---|---|---|
BPA (n) | n = 3 | n = 72 |
BPA (μg/g cr.) | 2.5 ± 0.7 | 0.6 ± 0.4 |
Age | 38.7 ± 3.2 | 33.9 ± 3.2 |
BPF (n) | n = 6 | n = 75 |
BPF (μg/g cr.) | 1.1 ± 0.8 | 0.1 ± 0.1 |
Age | 32.5 ± 3.3 | 33.9 ± 3.4 |
BPS (n) | n = 5 | n = 74 |
BPS (μg/g cr.) | 1.2 ± 1.1 | 0.1 ± 0.0 |
Age | 33.8 ± 5.1 | 33.5 ± 3.2 |
Spearman | Age | Smoke | BPA Exposure | BPF Exposure | BPS Exposure |
---|---|---|---|---|---|
Age | 1 | ||||
Smoke | 0.226 | 1 | |||
BPA_exposure | −0.016 | −0.064 | 1 | ||
BPF_exposure | 0.036 | −0.152 | 0.175 | 1 | |
BPS_exposure | 0.104 | 0.158 | −0.073 | −0.032 | 1 |
p-Value | Age | Smoke | BPA Exposure | BPF Exposure | BPS Exposure |
---|---|---|---|---|---|
Age | - | ||||
Smoke | 0.016 | - | |||
BPA_exposure | 0.869 | 0.495 | - | ||
BPF_exposure | 0.706 | 0.101 | 0.059 | - | |
BPS_exposure | 0.273 | 0.089 | 0.435 | 0.734 | - |
Material | Total DMRs | Hypermethylated | Hypomethylated |
---|---|---|---|
BPA | 80,072 | 81 | 79,991 |
BPF | 92,573 | 160 | 92,413 |
BPS | 61,367 | 3056 | 58,311 |
Material | Total Genes | Hypermethylated | Hypomethylated |
---|---|---|---|
BPA | 390 | 1 | 389 |
BPF | 356 | 2 | 354 |
BPS | 303 | 14 | 289 |
Material | PI3-AKT Signaling Pathway | JAK-STAT Signaling Pathway |
---|---|---|
BPA, BPF, BPS | MTOR, TP53, NTRK1, LAMC2, JAK1, JAK2, EGFR, NFKB1, YWHAE, KITLG, SYK, BDNF, IL4, BCL2, IL7, FN1, ANGPT2 | MTOR, IL12RB1, EGF, JAK1, STAT3, IL13RA1, SOCS5, IL12RB2, EGFR, IL21R, IL4, IL15RA, BCL2, STAT5B, IL10RB, PIAS1, STAT1, IL7 |
BPA, BPF | NTF4 | IL13RA2, IL33, TYK2, IL23R |
BPA, BPS | IL4R, IL2RA, JAK3, IL6R | IL4R, IL2RA, JAK3, IL15, IL6ST, IL6R, STAT5A |
BPF, BPS | IL2RB | IL23A, IL2RB |
BPA | FLT4 | IL21, IL24, IL31RA |
BPF | ERBB2, CSF1, RELA | |
BPS | NGFR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Yu, S.Y.; Choo, J.H.; Kim, J.; Ahn, K.; Hwang, S.Y. Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis. Int. J. Mol. Sci. 2024, 25, 1579. https://doi.org/10.3390/ijms25031579
Kim SH, Yu SY, Choo JH, Kim J, Ahn K, Hwang SY. Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis. International Journal of Molecular Sciences. 2024; 25(3):1579. https://doi.org/10.3390/ijms25031579
Chicago/Turabian StyleKim, Seung Hwan, So Yeon Yu, Jeong Hyeop Choo, Jihyun Kim, Kangmo Ahn, and Seung Yong Hwang. 2024. "Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis" International Journal of Molecular Sciences 25, no. 3: 1579. https://doi.org/10.3390/ijms25031579
APA StyleKim, S. H., Yu, S. Y., Choo, J. H., Kim, J., Ahn, K., & Hwang, S. Y. (2024). Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis. International Journal of Molecular Sciences, 25(3), 1579. https://doi.org/10.3390/ijms25031579