Molecular Characterization and Pathogenicity of an Infectious cDNA Clone of Youcai Mosaic Virus on Solanum nigrum
Abstract
:1. Introduction
2. Results
2.1. S. nigrum Samples Exhibited Virus-Infection-Like Symptoms in Campus
2.2. Identification and Detection of YoMV in S. nigrum
2.3. Construction of the YoMV Full-Length cDNA Infectious Clones
2.4. Sequence Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Cultivation
4.2. RNA Extraction and RT-PCR Detection
4.3. High-Throughput siRNA Sequencing
4.4. Enzyme-Linked Immunosorbent Assay (ELISA) Detection
4.5. Construction of the cDNA Infectious Clone of YoMV-YZ
4.6. Agrobacterium-Infiltration-Based Inoculation of the YoMV-YZ
4.7. Western Blot
4.8. Sequence Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. (Eds.) Flora of China; Science Press: Beijing, China; Missouri Botanical Garden: St. Louis, MO, USA, 2003; Volume 67, pp. 76–79. [Google Scholar]
- Irving, M. The Forager Handbook: A Guide to the Edible Plants of Britain; Ebury Press: London, UK, 2009; pp. 28–32. [Google Scholar]
- Edmonds, J.M.; Chweya, J.A. Black Nightshades. Solanum nigrum L. and Related Species; Bioversity International: Rome, Italy, 1997. [Google Scholar]
- Henriques, M.I.C. Solanum nigrum L. and wild alfalfa plants as natural hosts for alfalfa mosaic virus, in Portugal. Phytopathol. Mediterr. 1987, 26, 43–45. [Google Scholar]
- Ellis, P. Weed hosts of beet western yellows virus and potato leafroll virus in British Columbia. Plant Dis. 1992, 76, 1137–1139. [Google Scholar] [CrossRef]
- Joshi, R.D.; Dubey, L. Some weed reservoirs of cucumber mosaic virus in gorakhpur and adjacent areas. Indian Phytopathol. 1975, 28, 568. [Google Scholar]
- Al-Saleh, M.A.; Al-Shahwan, I.M.; Amer, M.A.; Shakeel, M.T.; Kamran, A.; Xanthis, C.K.; Orfanidou, C.G.; Katis, N.I. First report of cucurbit aphid-borne yellows virus in cucurbit crops in Saudi Arabia. Plant Dis. 2015, 99, 894. [Google Scholar] [CrossRef]
- Kazinczi, G.; Lukacs, D.; Takacs, A.; Horvath, J.; Gaborjanyi, R.; Nadasy, M.; Nadasy, E. Biological decline of Solanum nigrum due to virus infections. Biology 2006, 20, 325–330. [Google Scholar]
- Jordá, C.; Pérez, A.L.; Martínez Culebras, P.V.; Lacasa, A. First report of pepino mosaic virus on natural hosts. Plant Dis. 2001, 85, 1292. [Google Scholar] [CrossRef]
- Alegbejo, M.D. Identification of a weed host of pepper veinal mottle virus in northern Nigeria. J. Agric. Res. 1987, 5, 65–70. [Google Scholar]
- Virscek, M.M.; Mavric, I.; UrbancicZemljic, M.; Skerlavaj, V. Detection of plum pox potyvirus in weeds. Acta Hortic. 2004, 657, 251–254. [Google Scholar] [CrossRef]
- Mackie, A.E.; Rodoni, B.C.; Barbetti, M.J.; McKirdy, S.J.; Jones, R.A.C. Potato spindle tuber viroid: Alternative host reservoirs and strain found in a remote subtropical irrigation area. Eur. J. Plant Pathol. 2016, 145, 433–446. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Salari, K. Detection and molecular characterisation of potato virus S of weed reservoirs in Iran. Arch. Phytopathol. Plant Prot. 2017, 50, 828–838. [Google Scholar] [CrossRef]
- Fan, H.; Kai, G.; Zhou, Y.; Zhu, M.; Zhao, Y. First report of natural infection of potato virus Y on Solanum nigrum L. in China. J. Plant Pathol. 2021, 103, 691. [Google Scholar] [CrossRef]
- Kazinczi, G.; Horváth, J.; Takács, A.P.; Pribék, D. Biological decline of Solanum nigrum L. due to Tobacco mosaic tobamovirus (TMV) infection. II. germination, seed transmission, seed viability and seed production. Acta Phytopathol. Et Entomol. Hung. 2002, 37, 329–333. [Google Scholar] [CrossRef]
- Grieco, P.D. Presenza del virus della bronzatura del pomodoro (TSWV) su piante infestanti nell’area del Metapontino in Basilicata. Inf. Fitopatol. 2000, 6, 43–46. [Google Scholar]
- Papayiannis, L.C.; Katis, N.I.; Idris, A.M.; Brown, J.K. Identification of weed hosts of tomato yellow leaf curl virus in Cyprus. Plant Dis. 2011, 95, 120–125. [Google Scholar] [CrossRef]
- Lartey, R.T.; Voss, T.C.; Melcher, U. Tobamovirus evolution: Gene overlaps, recombination, and taxonomic implications. Mol. Biol. Evol. 1996, 13, 1327–1338. [Google Scholar] [CrossRef]
- Adams, M.J.; Antoniw, J.F.; Kreuze, J. Virgaviridae: A new family of rod-shaped plant viruses. Arch. Virol. 2009, 154, 1967–1972. [Google Scholar] [CrossRef]
- Lewandowski, D.J.; Dawson, W.O. Functions of the 126- and 183-kDa proteins of tobacco mosaic virus. Virology 2000, 271, 90–98. [Google Scholar] [CrossRef]
- Kubota, K.; Tsuda, S.; Tamai, A.; Meshi, T. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J. Virol. 2003, 77, 11016–11026. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, Y.; Inaba, N.; Kutsuna, N.; Takeda, A.; Tagami, Y.; Watanabe, Y. Binding of tobamovirus replication protein with small RNA duplexes. J. Gen. Virol. 2007, 88 Pt 8, 2347–2352. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.T.; Shen, S.L.; Wang, J.L.; Zhang, C.W.; Zhu, Y.G. Mosaic disease of chinese rape and other crucifers in eastern China. Acta Phytopathol Sin 1958, 2, 94–111. [Google Scholar]
- Aguilar, I.; Sánchez, F.; Martín, A.M.; Martínez-Herrera, D.; Ponz, F. Nucleotide sequence of chinese rape mosaic virus (oilseed rape mosaic virus), a crucifer tobamovirus infectious on Arabidopsis thaliana. Plant Mol. Biol. 1996, 30, 191–197. [Google Scholar] [CrossRef]
- Ryu, S.-Y.; Hong, J.-S.; Rhee, S.-J.; Lee, G.P. Brief report: Genome sequence and construction of an infectious cDNA clone of Ribgrass mosaic virus from Chinese cabbage in Korea. Virus Genes 2012, 44, 345–348. [Google Scholar] [CrossRef]
- Fuji, S.-I.; Mochizuki, N.; Fujinaga, M.; Ikeda, M.; Shinoda, K.; Uematsu, S.; Furuya, H.; Naito, H.; Fukumoto, F. Incidence of viruses in Alstroemeria plants cultivated in Japan and characterization of Broad bean wilt virus-2, Cucumber mosaic virus and Youcai mosaic virus. J. Gen. Plant Pathol. 2007, 73, 216–221. [Google Scholar] [CrossRef]
- Dong, J.L.; Li, Y.; Ding, W.L.; Wang, R. First report of broad bean wilt virus 2 and youcai mosaic virus infecting woolly foxglove (Digitalis lanata). J. Plant Pathol. 2017, 99, 816. [Google Scholar]
- Zhang, S.B.; Liu, J.; Zhao, Z.B.; Zheng, L.M.; Zhang, D.Y.; Liu, Y.; Du, J.; Peng, J.; Yan, F.; Li, F.; et al. First report of pepper (Capsicum annuum) as a natural host plant for youcai mosaic virus. Plant Dis. 2016, 100, 541–542. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, M.A.; Lee, S.H.; Kim, J.S.; Kim, H.G. First report of youcai mosaic virus in daisy fleabane (Erigeron annuus). Plant Dis. 2016, 100, 1250. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, F.; Cai, L.; Gao, S.; Wen, Y.; Liu, Y.; Lu, C.; Yang, J.; Li, X.; Qi, W.; et al. First report of youcai mosaic virus infecting yam in china. Plant Dis. 2022, 22, 1026. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Guo, X.; Gu, T.; Hua, Y.; Zhuang, X.; Zhang, K. Generation of a triple-shuttling vector and the application in plant plus-strand RNA virus infectious cDNA clone construction. Int. J. Mol. Sci. 2023, 24, 5477. [Google Scholar] [CrossRef] [PubMed]
- Noumedem, J.A.; Mihasan, M.; Lacmata, S.T.; Stefan, M.; Kuiate, J.R.; Kuete, V. Antibacterial activities of the methanol extracts of ten cameroonian vegetables against Gram-negative multidrug-resistant bacteria. BMC Complement. Altern. Med. 2013, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Sharma, A.; Gupta, S.; Sarethy, I.P.; Gabrani, R. Solanum nigrum: Current perspectives on therapeutic properties. Altern. Med. Rev. A J. Clin. Ther. 2011, 16, 78–85. [Google Scholar]
- An, L.; Tang, J.T.; Liu, X.M.; Gao, N.N. Review about mechanisms of anti-cancer of Solanum nigrum. China J. Chin. Mater. Medica 2006, 31, 1225–1226, 1260. [Google Scholar]
- Ju, H.-K.; Kim, I.-H.; Hu, W.-X.; Kim, B.; Choi, G.-W.; Kim, J.; Lim, Y.P.; Domier, L.L.; Hammond, J.; Lim, H.-S. A single nucleotide change in the overlapping MP and CP reading frames results in differences in symptoms caused by two isolates of Youcai mosaic virus. Arch. Virol. 2019, 164, 1553–1565. [Google Scholar] [CrossRef]
- Zhu, H.; Hong, J.; Ye, R.; Chen, J.; Yu, S.; Adams, M.J. Sequence analysis shows that ribgrass mosaic virus Shanghai isolate (RMV-Sh) is closely related to Youcai mosaic virus. Arch. Virol. 2001, 146, 1231–1238. [Google Scholar] [CrossRef]
- Xu, Y.; Ghanim, M.; Liu, Y. Editorial: Mixed infections of plant viruses in nature and the impact on agriculture. Front. Microbiol. 2022, 13, 922607. [Google Scholar] [CrossRef]
- Redinbaugh, M.G.; Stewart, L.R. Maize Lethal Necrosis: An emerging, synergistic viral disease. Annu. Rev. Virol. 2018, 5, 301–322. [Google Scholar] [CrossRef]
- Syller, J.; Grupa, A. Antagonistic within-host interactions between plant viruses: Molecular basis and impact on viral and host fitness. Mol. Plant Pathol. 2016, 17, 769–782. [Google Scholar] [CrossRef]
- Ontiveros, I.; López-Moya, J.J.; Díaz-Pendón, J.A. Coinfection of tomato plants with tomato yellow leaf curl virus and tomato chlorosis virus affects the interaction with host and whiteflies. Phytopathology 2022, 112, 944–952. [Google Scholar] [CrossRef]
- Choi, S.K.; Yoon, J.Y.; Ryu, K.H.; Choi, J.K.; Palukaitis, P.; Park, W.M. Systemic movement of a movement-deficient strain of Cucumber mosaic virus in zucchini squash is facilitated by a cucurbit-infecting potyvirus. J. Gen. Virol. 2002, 83 Pt 12, 3173–3178. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.-W.; Meng, J.-R.; Yao, Z.-T.; Zhang, L.; Wang, Z.-Q.; Wei, B.-H.; Chen, B.-S. Genetic diversity and genome recombination in yam mild mosaic virus isolates. Phytopathol. Res. 2020, 2, 10. [Google Scholar] [CrossRef]
- Simon-Loriere, E.; Holmes, E.C. Why do RNA viruses recombine? Nat. Rev. Microbiol. 2011, 9, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Kreuze, J.F.; Perez, A.; Untiveros, M.; Quispe, D.; Fuentes, S.; Barker, I.; Simon, R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 2009, 388, 1–7. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, S.; Padmanabhan, C.; Li, R.; Galvez, M.E.; Gutiérrez, D.L.; Fuentes, S.; Ling, K.-S.; Kreuze, J.F.; Fei, Z. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 2017, 500, 130–138. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuang, X.; Xu, H.; Guo, X.; He, Z.; Xu, K.; Liu, F. Sensitive and high-throughput polyclonal antibody-based serological methods for Rice stripe virus detection in both rice and small brown planthopper. Crop Prot. 2021, 144, 105599. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuang, X.; Xu, H.; Gan, H.; He, Z.; Chen, J. Development of polyclonal antibodies-based serological methods and a DIG-labelled DNA probe-based molecular method for detection of the vicia cryptic virus-M in field plants. J. Virol. Methods 2022, 299, 114331. [Google Scholar] [CrossRef]
- Höfgen, R.; Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988, 16, 9877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Yang, M.; Liu, S.; Li, Z.; Wang, X.; Han, C.; Yu, J.; Li, D. The barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathog. 2017, 13, e1006319. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, T.; Feng, C.; Hua, Y.; Liu, D.; Chen, H.; He, Z.; Xu, K.; Zhang, K. Molecular Characterization and Pathogenicity of an Infectious cDNA Clone of Youcai Mosaic Virus on Solanum nigrum. Int. J. Mol. Sci. 2024, 25, 1620. https://doi.org/10.3390/ijms25031620
Gu T, Feng C, Hua Y, Liu D, Chen H, He Z, Xu K, Zhang K. Molecular Characterization and Pathogenicity of an Infectious cDNA Clone of Youcai Mosaic Virus on Solanum nigrum. International Journal of Molecular Sciences. 2024; 25(3):1620. https://doi.org/10.3390/ijms25031620
Chicago/Turabian StyleGu, Tianxiao, Chenwei Feng, Yanhong Hua, Duxuan Liu, Haoyu Chen, Zhen He, Kai Xu, and Kun Zhang. 2024. "Molecular Characterization and Pathogenicity of an Infectious cDNA Clone of Youcai Mosaic Virus on Solanum nigrum" International Journal of Molecular Sciences 25, no. 3: 1620. https://doi.org/10.3390/ijms25031620
APA StyleGu, T., Feng, C., Hua, Y., Liu, D., Chen, H., He, Z., Xu, K., & Zhang, K. (2024). Molecular Characterization and Pathogenicity of an Infectious cDNA Clone of Youcai Mosaic Virus on Solanum nigrum. International Journal of Molecular Sciences, 25(3), 1620. https://doi.org/10.3390/ijms25031620