Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity
Abstract
:1. Introduction
2. Results
2.1. Validation of Elastase Inhibition Assay
2.2. Elastase Inhibition Assay
2.3. Skin Visco-Elasticity
2.4. Skin Hydration and Film-Repairing Activity
2.5. Wrinkles and Fine Lines
2.6. Skin Tolerability
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Oleolite Preparation and Extraction of Triterpenic Fraction
4.3. Elastase Inhibition Assay
4.4. AAO-Based Topical Formulation Preparation
Quality Control and Potting of the Cosmetic Formulations
4.5. Clinical Study
4.5.1. Study Design and Participants
4.5.2. Randomization and Masking
4.5.3. Anti-Aging Efficacy Assessment
4.5.4. Short- and Long-Term Hydration and TEWL
4.5.5. Skin Tolerability Test
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cevenini, E.; Invidia, L.; Lescai, F.; Salvioli, S.; Tieri, P.; Castellani, G.; Franceschi, C. Human Models of Aging and Longevity. Expert. Opin. Biol. Ther. 2008, 8, 1393–1405. [Google Scholar] [CrossRef]
- Papaccio, F.; D’arino, A.; Caputo, S.; Bellei, B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies. Nutrients 2018, 10, 403. [Google Scholar] [CrossRef]
- Avola, R.; Graziano, A.C.E.; Pannuzzo, G.; Bonina, F.; Cardile, V. Hydroxytyrosol from Olive Fruits Prevents Blue-Light-Induced Damage in Human Keratinocytes and Fibroblasts. J. Cell Physiol. 2019, 234, 9065–9076. [Google Scholar] [CrossRef]
- Liu, J.K. Natural Products in Cosmetics. Nat. Prod. Bioprospect. 2022, 12, 40. [Google Scholar] [CrossRef]
- Feldo, M.; Wójciak, M.; Ziemlewska, A.; Dresler, S.; Sowa, I. Modulatory Effect of Diosmin and Diosmetin on Metalloproteinase Activity and Inflammatory Mediators in Human Skin Fibroblasts Treated with Lipopolysaccharide. Molecules 2022, 27, 4264. [Google Scholar] [CrossRef]
- Baylac, S.; Racine, P. Inhibition of Human Leukocyte Elastase by Natural Fragrant Extracts of Aromatic Plants. Int. J. Aromather. 2004, 14, 179–182. [Google Scholar] [CrossRef]
- Laneri, S.; Di Lorenzo, R.; Sacchi, A.; Dini, I. Dosage of Bioactive Molecules in the Nutricosmeceutical Helix Aspersa Muller Mucus and Formulation of New Cosmetic Cream with Moisturizing Effect. Nat. Prod. Commun. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Maisto, M.; Piccolo, V.; Novellino, E.; Schiano, E.; Iannuzzo, F.; Ciampaglia, R.; Summa, V.; Tenore, G.C. Optimization of Ursolic Acid Extraction in Oil from Annurca Apple to Obtain Oleolytes with Potential Cosmeceutical Application. Antioxidants 2023, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, R.; Bernardi, A.; Grumetto, L.; Sacchi, A.; Avagliano, C.; Coppola, S.; Severina, A.F. de G. di S.; Bruno, C.; Paparo, L.; Laneri, S.; et al. Phenylalanine Butyramide Is a New Cosmetic Ingredient with Soothing and Anti-Reddening Potential. Molecules 2021, 26, 6611. [Google Scholar] [CrossRef] [PubMed]
- Perugini, P.; Vettor, M.; Rona, C.; Troisi, L.; Villanova, L.; Genta, I.; Conti, B.; Pavanetto, F. Efficacy of Oleuropein against UVB Irradiation: Preliminary Evaluation. Int. J. Cosmet. Sci. 2008, 30, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Kang, S.H.; Song, Y.J.; Jeon, Y.D.; Jin, J.S. Inhibitory Effect of Quercetin on Propionibacterium Acnes-Induced Skin Inflammation. Int. Immunopharmacol. 2021, 96, 107557. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.S.; Nasr, M.; Abdel-Aziz, R.T.A.; Moftah, N.H.; El Shaer, A.; Polycarpou, E.; Mamdouh, W.; Sammour, O. Cosm-Nutraceutical Nanovesicles for Acne Treatment: Physicochemical Characterization and Exploratory Clinical Experimentation. Int. J. Pharm. 2020, 577, 119092. [Google Scholar] [CrossRef]
- Morganti, P.; Gao, X.; Vukovic, N.; Gagliardini, A.; Lohani, A.; Morganti, G. Food Loss and Food Waste for Green Cosmetics and Medical Devices for a Cleaner Planet. Cosmetics 2022, 9, 19. [Google Scholar] [CrossRef]
- Ko, K.; Dadmohammadi, Y.; Abbaspourrad, A. Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. Foods 2021, 10, 657. [Google Scholar] [CrossRef] [PubMed]
- Morganti, P.; Chen, H.D.; Gao, X.; Morganti, G.; Febo, D. Chitin & Lignin: Turning Food Waste into Cosmeceuticals. J. Clin. Cosmet. Dermatol. 2019, 3, 1–10. [Google Scholar]
- Abbas, S.; Shanbhag, T.; Kothare, A. Applications of Bromelain from Pineapple Waste towards Acne. Saudi J. Biol. Sci. 2021, 28, 1001–1009. [Google Scholar] [CrossRef]
- Costa, A.; Marques, M.; Congiu, F.; Paiva, A.; Simões, P.; Ferreira, A.; Bronze, M.R.; Marto, J.; Ribeiro, H.M.; Simões, S. Evaluating the Presence of Lycopene-Enriched Extracts from Tomato on Topical Emulsions: Physico-Chemical Characterization and Sensory Analysis. Appl. Sci. 2021, 11, 5120. [Google Scholar] [CrossRef]
- Do Nascimento, P.G.G.; Lemos, T.L.G.; Bizerra, A.M.C.; Arriaga, A.M.C.; Ferreira, D.A.; Santiago, G.M.P.; Braz-Filho, R.; Costa, J.G.M. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives. Molecules 2014, 19, 1317–1327. [Google Scholar] [CrossRef]
- Soleymani, S.; Farzaei, M.H.; Zargaran, A.; Niknam, S.; Rahimi, R. Promising Plant-Derived Secondary Metabolites for Treatment of Acne Vulgaris: A Mechanistic Review. Arch. Dermatol. Res. 2020, 312, 5–23. [Google Scholar] [CrossRef]
- Yo, K.; Oba, A.; Tada, A. Novel Approach for Improving Skin Roughness Mediated by Ker-Atin Intermediate Filaments. J. Dermatol. Sci. 2013, 69, e47–e93. [Google Scholar] [CrossRef]
- Lim, S.W.; Hong, S.P.; Jeong, S.W.; Kim, B.; Bak, H.; Ryoo, H.C.; Lee, S.H.; Ahn, S.K. Simultaneous Effect of Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier Function and Epidermal Keratinocyte Differentiation via Peroxisome Proliferator-Activated Receptor-α. J. Dermatol. 2007, 34, 625–634. [Google Scholar] [CrossRef]
- Neimkhum, W.; Anuchapreeda, S.; Lin, W.C.; Lue, S.C.; Lee, K.H.; Chaiyana, W. Effects of Carissa Carandas Linn. Fruit, Pulp, Leaf, and Seed on Oxidation, Inflammation, Tyrosinase, Matrix Metalloproteinase, Elastase, and Hyaluronidase Inhibition. Antioxidants 2021, 10, 1345. [Google Scholar] [CrossRef]
- López-Hortas, L.; Pérez-Larrán, P.; González-Muñoz, M.J.; Falqué, E.; Domínguez, H. Recent Developments on the Extraction and Application of Ursolic Acid. A Review. Food Res. Int. 2018, 103, 130–149. [Google Scholar] [CrossRef] [PubMed]
- Nkuimi Wandjou, J.G.; Lancioni, L.; Barbalace, M.C.; Hrelia, S.; Papa, F.; Sagratini, G.; Vittori, S.; Dall’Acqua, S.; Caprioli, G.; Beghelli, D.; et al. Comprehensive Characterization of Phytochemicals and Biological Activities of the Italian Ancient Apple ‘Mela Rosa Dei Monti Sibillini’. Food Res. Int. 2020, 137, 109422. [Google Scholar] [CrossRef] [PubMed]
- Lo Scalzo, R.; Testoni, A.; Genna, A. “Annurca” Apple Fruit, a Southern Italy Apple Cultivar: Textural Properties and Aroma Composition. Food Chem. 2001, 73, 333–343. [Google Scholar] [CrossRef]
- Tenore, G.C.; Carotenuto, A.; Caruso, D.; Buonomo, G.; D’Avino, M.; Brancaccio, D.; Ciampaglia, R.; Maisto, M.; Schisano, C.; Novellino, E. A Nutraceutical Formulation Based on Annurca Apple Polyphenolic Extract Is Effective on Intestinal Cholesterol Absorption: A Randomised, Placebo-Controlled, Crossover Study. PharmaNutrition 2018, 6, 85–94. [Google Scholar] [CrossRef]
- Maisto, M.; Schiano, E.; Novellino, E.; Piccolo, V.; Iannuzzo, F.; Salviati, E.; Summa, V.; Annunziata, G.; Tenore, G.C. Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product. Foods 2022, 11, 1453. [Google Scholar] [CrossRef]
- Maisto, M.; Piccolo, V.; Novellino, E.; Schiano, E.; Iannuzzo, F.; Ciampaglia, R.; Summa, V.; Tenore, G.C. Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology. Antioxidants 2022, 11, 1933. [Google Scholar] [CrossRef]
- Piccolo, M.; Ferraro, M.G.; Maione, F.; Maisto, M.; Stornaiuolo, M.; Tenore, G.C.; Santamaria, R.; Irace, C.; Novellino, E. Induction of Hair Keratins Expression by an Annurca Apple-Based Nutraceutical Formulation in Human Follicular Cells. Nutrients 2019, 11, 3041. [Google Scholar] [CrossRef]
- Nema, N.K.; Maity, N.; Sarkar, B.K.; Mukherjee, P.K. Matrix Metalloproteinase, Hyaluronidase and Elastase Inhibitory Potential of Standardized Extract of Centella Asiatica. Pharm. Biol. 2013, 51, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Ambarwati, N.S.S.; Elya, B.; Desmiaty, Y. Anti-Elastase Activity of Methanolic and Ethyl Acetate Extract from Garcinia Latissima Miq. J. Phys. Conf. Ser. 2019, 1402, 11–16. [Google Scholar] [CrossRef]
- Beatty, M.W.; Wee, A.G.; Marx, D.B.; Ridgway, L.; Simetich, B.; De Sousa, T.C.; Vakilzadian, K.; Schulte, J. Viscoelastic Properties of Human Facial Skin and Comparisons with Facial Prosthetic Elastomers. Materials 2023, 16, 2023. [Google Scholar] [CrossRef] [PubMed]
- Everett, J.S.; Sommers, M.S. Skin Viscoelasticity: Physiologic Mechanisms, Measurement Issues, and Application to Nursing Science. Biol. Res. Nurs. 2013, 15, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Kwon, S.H.; Huh, C.H.; Park, K.C.; Youn, S.W. The Influences of Skin Visco-Elasticity, Hydration Level and Aging on the Formation of Wrinkles: A Comprehensive and Objective Approach. Ski. Res. Technol. 2013, 19, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, N.; Moriwaki, S.; Suzuki, Y.; Takema, Y.; Imokawa, G. The Role of Elastases Secreted by Fibroblasts in Wrinkle Formation: Implication Through Selective Inhibition of Elastase Activity¶. Photochem. Photobiol. 2001, 74, 283. [Google Scholar] [CrossRef]
- Matsumoto, T.; Ikuta, N.; Mori, M.; Nagayama, K. Mechanics of Wrinkle Formation: Micromechanical Analysis of Skin Deformation during Wrinkle Formation in Ultraviolet-Irradiated Mice. Ski. Res. Technol. 2010, 16, 179–189. [Google Scholar] [CrossRef]
- Gilchrest, B.A. A Review of Skin Ageing and Its Medical Therapy. Br. J. Dermatol. 1996, 135, 867–875. [Google Scholar] [CrossRef]
- Komane, B.; Vermaak, I.; Kamatou, G.; Summers, B.; Viljoen, A. The Topical Efficacy and Safety of Citrullus Lanatus Seed Oil: A Short-Term Clinical Assessment. S. Afr. J. Bot. 2017, 112, 466–473. [Google Scholar] [CrossRef]
- Imokawa, G.; Ishida, K. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging I: Reduced Skin Elasticity, Highly Associated with Enhanced Dermal Elastase Activity, Triggers Wrinkling and Sagging. Int. J. Mol. Sci. 2015, 16, 7753–7775. [Google Scholar] [CrossRef]
- Lee, K.K.; Cho, J.J.; Park, E.J.; Choi, J.D. Anti-Elastase and Anti-Hyaluronidase of Phenolic Substance from Areca Catechu as a New Anti-Ageing Agent. Int. J. Cosmet. Sci. 2001, 23, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Khare, R.; Upmanyu, N.; Jha, M. Exploring the Potential Effect of Methanolic Extract of Salvia Officinalis Against UV Exposed Skin Aging: In Vivo and In Vitro Model. Curr. Aging Sci. 2019, 14, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N. Clinically Useful Anticancer, Antitumor, and Antiwrinkle Agent, Ursolic Acid and Related Derivatives as Medicinally Important Natural Product. J. Enzyme Inhib. Med. Chem. 2011, 26, 616–642. [Google Scholar] [CrossRef] [PubMed]
- Naeimifar, A.; Ahmad Nasrollahi, S.; Samadi, A.; Talari, R.; Sajad Ale-nabi, S.; Massoud Hossini, A.; Firooz, A. Preparation and Evaluation of Anti-Wrinkle Cream Containing Saffron Extract and Avocado Oil. J. Cosmet. Dermatol. 2020, 19, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Farwick, M.; Köhler, T.; Schild, J.; Mentel, M.; Maczkiewitz, U.; Pagani, V.; Bonfigli, A.; Rigano, L.; Bureik, D.; Gauglitz, G.G. Pentacyclic Triterpenes from Terminalia Arjuna Show Multiple Benefits on Aged and Dry Skin. Ski. Pharmacol. Physiol. 2014, 27, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Nam, G.W.; Kim, S.H.; Lee, S.H. Phytocomponents of Triterpenoids, Oleanolic Acid and Ursolic Acid, Regulated Differently the Processing of Epidermal Keratinocytes via PPAR-α Pathway. Exp. Dermatol. 2006, 15, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Debelle, L.; Alix, A.J.P. The Structures of Elastins and Their Function. Biochimie 1999, 81, 981–994. [Google Scholar] [CrossRef] [PubMed]
- Both, D.M.; Goodtzova, K.; Yarosh, D.B.; Brown, D.A.; Sharma, C.; Deutsch, J.M. Upcycling in the Context of Biotechnology-Based Solutions for Food Quality, Loss, and Consumer Perception. Curr. Opin. Biotechnol. 2023, 81, 102920. [Google Scholar] [CrossRef]
- Maisto, M.; Annunziata, G.; Schiano, E.; Piccolo, V.; Iannuzzo, F.; Santangelo, R.; Ciampaglia, R.; Tenore, G.C.; Novellino, E.; Grieco, P. Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods 2021, 10, 1760. [Google Scholar] [CrossRef]
- EN ISO 9001:2015; Quality Management Systems. Requirements. ISO: Geneva, Switzerland, 2015.
- Saunders, J.; Wainwright, P. Risk, Helsinki 2000 and the Use of Placebo in Medical Research. Clin. Med. 2003, 3, 435–439. [Google Scholar] [CrossRef]
- Renner, G.; Audebert, F.; Burfeindt, J.; Calvet, B.; Caratas-Perifan, M.; Leal, M.E.; Gorni, R.; Long, A.; Meredith, E.; O’Sullivan, Ú.; et al. Cosmetics Europe Guidelines on the Management of Undesirable Effects and Reporting of Serious Undesirable Effects from Cosmetics in the European Union. Cosmetics 2017, 4, 1. [Google Scholar] [CrossRef]
- Lazzarini, R.; Duarte, I.; Ferreira, A.L. Patch Tests. An. Bras. Dermatol. 2013, 88, 879–888. [Google Scholar] [CrossRef] [PubMed]
Visit Day Skin Parameter | Baseline (D0) Mean ± SD | Day 14 (D14) Mean ± SD | ∆% vs. D0 | Day 28 (D28) Mean ± SD | ∆% vs. D0 | |
---|---|---|---|---|---|---|
2.5%w/w AAO | Skin pliability/firmness (R0) | 0.355 ± 0.024 mm | 0.322 ± 0.014 mm | −9.0% *** $$$ | 0.308 ± 0.028 mm | −13.0% *** $$$ |
Gross elasticity (R2) | 0.602 ± 0.066% | 0.676 ± 0.052% | 14.0% *** $ | 0.759 ± 0.071% | 28.0% *** $$$ | |
Placebo | Skin pliability/firmness (R0) | 0.308 ± 0.047 mm | 0.342 ± 0.037 mm | 8.0% | 0.342 ± 0.037 mm | 12.0% |
Gross elasticity (R2) | 0.507 ± 0.044% | 0.521 ± 0.041% | 3.0% | 0.526 ± 0.038% | 4.0% |
Short-Term Test | ||||||
Check-Up Skin Parameter | Baseline Mean ± SD | After 1 h (1 h) Mean ± SD | ∆% vs. Baseline | After 24 h (24 h) Mean ± SD | ∆% vs. Baseline | |
2.5%w/w AAO | Skin conductance (Corneometry) | 29.6 ± 1.8 A.U. | 34.8 ± 5.9 A.U. | 17.8% *** $ | 34.6 ± 3.8 A.U. | 17.2% *** $$ |
Trans epidermal water loss (TEWL) | 9.0 ± 0.5 g/hm2 | 7.8 ± 1.1 g/hm2 | −13.2% *** $$ | 7.8 ± 1.1 g/hm2 | −13.4% *** $$ | |
Placebo | Skin conductance (Corneometry) | 32.0 ± 9.7 A.U. | 33.3 ± 10.2 A.U. | 4.8% NS | 32.0 ± 9.6 A.U. | 1.3% NS |
Trans epidermal water loss (TEWL) | 7.7 ± 1.4 g/hm2 | 7.8 ± 1.3 g/hm2 | 3.5% NS | 7.9 ± 2.4 g/hm2 | 4.1% NS | |
Long-Term Test | ||||||
Visit Day Skin Parameter | Day 0 (D0) Mean ± SD | Day 14 (D14) Mean ± SD | ∆% vs. D0 | Day 28 (D28) Mean ± SD | ∆% vs. D0 | |
2.5%w/w AAO | Skin conductance (Corneometry) | 29.6 ± 1.8 A.U. | 35.6 ± 3.7 A.U. | 20.0% *** $$$ | 37.0 ± 3.2 A.U. | 25.0% *** $$$ |
Trans epidermal water loss (TEWL) | 9.0 ± 0.5 g/hm2 | 7.5 ± 0.8 g/hm2 | −17.0% *** $$$ | 6.9 ± 0.7 g/hm2 | −23.0% *** $$$ | |
Placebo | Skin conductance (Corneometry) | 31.0 ± 4.4 A.U. | 31.9 ± 4.4 A.U. | 3.1% NS | 32.3 ± 4.9 A.U. | 4.3% NS |
Trans epidermal water loss (TEWL) | 7.7 ± 1.4 g/hm2 | 7.9 ± 1.1 g/hm2 | 5.0% NS | 8.2 ± 1.3 g/hm2 | 8.0% NS |
Characteristics of Study Participants | 2.5%w/w AAO | Placebo |
---|---|---|
No. of subjects | ||
Female, n (%) | 20 (100) | 20 (100) |
Male, n (%) | - | - |
Mean age ± SD a, years | ||
(min–max) | 51.1 ± 10.5 (41–63) | 50.7 ± 11.3 (40–64) |
Fitzpatrick skin phototype, n (%) | ||
I | - | 1 (5) |
II | 15 (75) | 13 (65) |
III | 5 (25) | 6 (30) |
IV | - | - |
Skin type, n (%) | ||
Dry | 20 (100) | 20 (100) |
Normal | - | - |
Combined | - | - |
Oily | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, R.; Maisto, M.; Ricci, L.; Piccolo, V.; Marzocchi, A.; Greco, G.; Tenore, G.C.; Laneri, S. Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity. Int. J. Mol. Sci. 2024, 25, 1677. https://doi.org/10.3390/ijms25031677
Di Lorenzo R, Maisto M, Ricci L, Piccolo V, Marzocchi A, Greco G, Tenore GC, Laneri S. Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity. International Journal of Molecular Sciences. 2024; 25(3):1677. https://doi.org/10.3390/ijms25031677
Chicago/Turabian StyleDi Lorenzo, Ritamaria, Maria Maisto, Lucia Ricci, Vincenzo Piccolo, Adua Marzocchi, Giovanni Greco, Gian Carlo Tenore, and Sonia Laneri. 2024. "Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity" International Journal of Molecular Sciences 25, no. 3: 1677. https://doi.org/10.3390/ijms25031677
APA StyleDi Lorenzo, R., Maisto, M., Ricci, L., Piccolo, V., Marzocchi, A., Greco, G., Tenore, G. C., & Laneri, S. (2024). Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity. International Journal of Molecular Sciences, 25(3), 1677. https://doi.org/10.3390/ijms25031677