Transcriptome Analysis in Mexican Adults with Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Results
2.1. Features of Patients
2.2. Assessment of Replicability
2.3. Differential Expressed Genes in Acute Lymphoblastic Leukemia
2.4. Altered Pathways and Biological Processes in Acute Lymphoblastic Leukemia
2.5. Validation of DEGs Associated with ALL by Quantitative RT-PCR
2.6. Clinical Association and Survival Analysis
2.7. Gene Expression Correlation Analysis
2.8. Potentially Targetable Genes
3. Discussion
3.1. Potential Biomarkers for Diagnosis and Prognosis
3.2. Promising Therapeutic Target Genes
4. Materials and Methods
4.1. Biological Samples and Clinical Data Collection
4.2. RNA Extraction
4.3. Gene Expression Microarrays Preparation
4.4. Gene Expression Profiling Analyses
4.5. Pathway Enrichment Analyses of Differentially Expressed Genes and Protein–Protein Interaction Network
4.6. Quantitative Real-Time PCR for Microarray Data Validation
4.7. Gene Expression Correlation Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faderl, S.; O’Brien, S.; Pui, C.H.; Stock, W.; Wetzler, M.; Hoelzer, D.; Kantarjian, H.M. Adult acute lymphoblastic leukemia: Concepts and strategies. Cancer 2010, 116, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Juliusson, G.; Hough, R. Leukemia. Prog. Tumor Res. 2016, 43, 87–100. [Google Scholar] [PubMed]
- Devine, S.M.; Larson, R.A. Acute leukemia in adults: Recent developments in diagnosis and treatment. CA Cancer J. Clin. 1994, 44, 326–352. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, N.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. Next-Generation Sequencing in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2019, 20, 2929. [Google Scholar]
- Aldoss, I.; Stein, A.S. Advances in adult acute lymphoblastic leukemia therapy. Leuk. Lymphoma 2018, 59, 1033–1050. [Google Scholar] [PubMed]
- Leonard, J.; Stock, W. Progress in adult ALL: Incorporation of new agents to frontline treatment. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 28–36. [Google Scholar]
- Hanbali, A.; Kotb, A.; El Fakih, R.; Alfraih, F.; Shihata, N.; Rasheed, W.; Ahmed, S.O.; Shaheen, M.; Alhayli, S.; Alahmari, A.; et al. Improved survival of adolescents and young adults patients with T-cell acute lymphoblastic leukemia. Int. J. Hematol. Oncol. 2023, 12, IJH42. [Google Scholar] [CrossRef] [PubMed]
- Muffly, L.; Yin, J.; Jacobson, S.; Wall, A.; Quiroz, E.; Advani, A.S.; Luger, S.M.; Tallman, M.S.; Litzow, M.R.; Foster, M.C.; et al. Disparities in trial enrollment and outcomes of Hispanic adolescent and young adult acute lymphoblastic leukemia. Blood Adv. 2022, 6, 4085–4092. [Google Scholar]
- Cruz-Rodriguez, N.; Combita, A.L.; Enciso, L.J.; Quijano, S.M.; Pinzon, P.L.; Lozano, O.C.; Castillo, J.S.; Li, L.; Bareño, J.; Cardozo, C.; et al. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-acute lymphoblastic leukemia. J. Exp. Clin. Cancer Res. 2016, 35, 64. [Google Scholar] [CrossRef]
- Gómez-Almaguer, D.; Marcos-Ramírez, E.R.; Montaño-Figueroa, E.H.; Ruiz-Argüelles, G.J.; Best-Aguilera, C.R.; López-Sánchez, M.d.C.; Barrera-Chairez, E.; López-Arrollo, J.L.; Ramos-Peñafiel, C.O.; León-Peña, A.; et al. Acute Leukemia Characteristics are Different around the World: The Mexican Perspective. Clin. Lymphoma Myeloma Leuk. 2017, 17, 46–51. [Google Scholar]
- Jaime-Pérez, J.C.; Jiménez-Castillo, R.A.; Herrera-Garza, J.L.; Gutiérrez-Aguirre, H.; Marfil-Rivera, L.J.; Gómez-Almaguer, D. Survival Rates of Adults with Acute Lymphoblastic Leukemia in a Low-Income Population: A Decade of Experience at a Single Institution in Mexico. Clin. Lymphoma Myeloma Leuk. 2017, 17, 60–68. [Google Scholar] [PubMed]
- Crespo-Solis, E.; Espinosa-Bautista, K.; Alvarado-Ibarra, M.; Rozen-Fuller, E.; Pérez-Rocha, F.; Nava-Gómez, C.; Ortiz-Zepeda, M.; Álvarez-Vera, J.L.; Ramos-Peñafiel, C.O.; Meillón-García, L.A.; et al. Survival analysis of adult patients with ALL in Mexico City: First report from the Acute Leukemia Workgroup (ALWG) (GTLA). Cancer Med. 2018, 7, 2423–2433. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, E.; Aldoss, I.; Pullarkat, V.; Rego, E.; Marcucci, G.; Douer, D. The emerging story of acute lymphoblastic leukemia among the Latin American population-biological and clinical implications. Blood Rev. 2019, 33, 98–105. [Google Scholar] [CrossRef]
- Hudecek, M.; Schmitt, T.M.; Baskar, S.; Lupo-Stanghellini, M.T.; Nishida, T.; Yamamoto, T.N.; Bleakley, M.; Turtle, C.J.; Chang, W.C.; Greisman, H.A.; et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 2010, 116, 4532–4541. [Google Scholar]
- Hu, Y.; Zhou, Y.; Zhang, M.; Ge, W.; Li, Y.; Yang, L.; Wei, G.; Han, L.; Wang, H.; Yu, S.; et al. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2021, 27, 2764–2772. [Google Scholar] [CrossRef]
- Spiegel, J.Y.; Patel, S.; Muffly, L.; Hossain, N.M.; Oak, J.; Baird, J.H.; Frank, M.J.; Shiraz, P.; Sahaf, B.; Craig, J.; et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: A phase 1 trial. Nat. Med. 2021, 27, 1419–1431. [Google Scholar] [PubMed]
- Jabbour, E.; O’Brien, S.; Konopleva, M.; Kantarjian, H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer 2015, 121, 2517–2528. [Google Scholar] [CrossRef]
- Papakonstantinou, N.; Ntoufa, S.; Tsagiopoulou, M.; Moysiadis, T.; Bhoi, S.; Malousi, A.; Psomopoulos, F.; Mansouri, L.; Laidou, S.; Papazoglou, D.; et al. Integrated epigenomic and transcriptomic analysis reveals TP63 as a novel player in clinically aggressive chronic lymphocytic leukemia. Int. J. Cancer 2019, 144, 2695–2706. [Google Scholar] [CrossRef]
- Arasu, A.; Balakrishnan, P.; Velusamy, T. RNA sequencing analyses reveal differentially expressed genes and pathways as Notch2 targets in B-cell lymphoma. Oncotarget 2020, 11, 4527–4540. [Google Scholar]
- Stratmann, S.; Yones, S.A.; Garbulowski, M.; Sun, J.; Skaftason, A.; Mayrhofer, M.; Norgren, N.; Herlin, M.K.; Sundström, C.; Eriksson, A.; et al. Transcriptomic analysis reveals proinflammatory signatures associated with acute myeloid leukemia progression. Blood Adv. 2022, 6, 152–164. [Google Scholar] [CrossRef]
- Núñez-Enríquez, J.C.; Bárcenas-López, D.A.; Hidalgo-Miranda, A.; Jiménez-Hernández, E.; Bekker-Méndez, V.C.; Flores-Lujano, J.; Solis-Labastida, K.A.; Martínez-Morales, G.B.; Sánchez-Muñoz, F.; Espinoza-Hernández, L.E.; et al. Gene Expression Profiling of Acute Lymphoblastic Leukemia in Children with Very Early Relapse. Arch. Med. Res. 2016, 47, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Rytting, M.E.; Jabbour, E.J.; Jorgensen, J.L.; Ravandi, F.; Franklin, A.R.; Kadia, T.M.; Pemmaraju, N.; Daver, N.G.; Ferrajoli, A.; Garcia-Manero, G.; et al. Final results of a single institution experience with a pediatric-based regimen, the augmented Berlin-Frankfurt-Münster, in adolescents and young adults with acute lymphoblastic leukemia, and comparison to the hyper-CVAD regimen. Am. J. Hematol. 2016, 91, 819–823. [Google Scholar]
- Bonab, S.F.; Mirakhori, M. Differential expression of apoptosis related genes in the peripheral blood mononuclear cells of acute lymphoblastic/lymphocytic leukemia (ALL) patients. Biomed. Res. Clin. Rev. 2020, 1. [Google Scholar] [CrossRef]
- Gallegos-Arreola, M.P.; González-García, J.R.; Figuera, L.E.; Puebla-Pérez, A.M.; Delgado-Lamas, J.L.; Zúñiga-González, G.M. Distribution of CYP1A1*2A polymorphism in adult patients with acute lymphoblastic leukemia in a Mexican population. Blood Cells Mol. Dis. 2008, 41, 91–94. [Google Scholar] [PubMed]
- Ramos, C.; Rozen, E.; León, M.; Martínez, T.A.; Olarte, I.; Catellanos, H.; Martínez, C.; Montaño, E.; Kassack, I.J.; Zamora, J.; et al. Results of treatment of acute lymphoblastic leukemia in two cohorts of Mexican patients. Rev. Med. Chil. 2011, 139, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Patiño, J.; Lee-Tsai, Y.L.; Urbalejo-Ceniceros, V.I.; Luna-Pérez, M.E.M.; Espinosa-Bautista, K.A.; Amador-Medina, L.F.; Cabrera-García, Á.; Balderas-Delgado, C.; I Inclán-Alarcón, S.; Neme-Yunes, Y.; et al. A modified CALGB 10403 in adolescents and young adults with acute lymphoblastic leukemia in Central America. Blood Adv. 2023, 7, 5202–5209. [Google Scholar]
- Jain, N.; Roberts, K.G.; Jabbour, E.; Patel, K.; Eterovic, A.K.; Chen, K.; Zweidler-McKay, P.; Lu, X.; Fawcett, G.; Wang, S.A.; et al. Ph-like acute lymphoblastic leukemia: A high-risk subtype in adults. Blood 2017, 129, 572–581. [Google Scholar]
- Herold, T.; Gökbuget, N. Philadelphia-Like Acute Lymphoblastic Leukemia in Adults. Curr. Oncol. Rep. 2017, 19, 31. [Google Scholar] [CrossRef]
- Pilcher, W.; Thomas, B.E.; Bhasin, S.S.; Jayasinghe, R.G.; Yao, L.; Gonzalez-Kozlova, E.; Dasari, S.; Kim-Schulze, S.; Rahman, A.; Patton, J.; et al. Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma. NPJ Genom. Med. 2023, 8, 3. [Google Scholar]
- Zhang, J.; McCastlain, K.; Yoshihara, H.; Xu, B.; Chang, Y.; Churchman, M.L.; Wu, G.; Li, Y.; Wei, L.; Iacobucci, I.; et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 2016, 48, 1481–1489. [Google Scholar] [CrossRef]
- Graiqevci-Uka, G.; Graiqevci-Uka, V.; Behluli, E.; Spahiu, L.; Liehr, T. Targeted Treatment and Immunotherapy in High-risk and Relapsed/Refractory Pediatric Acute Lymphoblastic Leukemia. Curr. Pediatr. Rev. 2023, 19, 150–156. [Google Scholar]
- Kim, D.-Y.; Park, H.-S.; Choi, E.-J.; Lee, J.-H.; Lee, J.-H.; Jeon, M.; Kang, Y.-A.; Lee, Y.-S.; Seol, M.; Cho, Y.-U.; et al. Immunophenotypic markers in adult acute lymphoblastic leukemia: The prognostic significance of CD20 and TdT expression. Blood Res. 2015, 50, 227–234. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, E.; Ottone, T.; Mercante, L.; Falconi, G.; Cugini, E.; Consalvo, M.I.; Travaglini, S.; Paterno, G.; Piciocchi, A.; Rossi, E.L.L.; et al. Terminal deoxynucleotidyl transferase (TdT) expression is associated with FLT3-ITD mutations in Acute Myeloid Leukemia. Leuk. Res. 2020, 99, 106462. [Google Scholar] [CrossRef] [PubMed]
- Röllig, C.; Kramer, M.; Schliemann, C.; Mikesch, J.H.; Steffen, B.; Krämer, A.; Noppeney, R.; Schäfer-Eckart, K.; Krause, S.W.; Hänel, M.; et al. Does time from diagnosis to treatment affect the prognosis of patients with newly diagnosed acute myeloid leukemia? Blood 2020, 136, 823–830. [Google Scholar] [PubMed]
- Zhou, X.; Nie, D.; Zhang, Y.; Liu, Z.; Zhao, Y.; Zhang, J.; Wang, F.; Fang, J.; Cao, P.; Chen, X.; et al. DNTT activation, TdT-aided gene length mutation, and better prognosis in ATG-based regimen allo-HSCT in AML. Mol. Carcinog. 2023, 62, 665–675. [Google Scholar] [PubMed]
- Ramezani-Rad, P.; Geng, H.; Hurtz, C.; Chan, L.N.; Chen, Z.; Jumaa, H.; Melnick, A.; Paietta, E.; Carroll, W.L.; Willman, C.L.; et al. SOX4 enables oncogenic survival signals in acute lymphoblastic leukemia. Blood 2013, 121, 148–155. [Google Scholar] [CrossRef]
- Fernando, T.R.; Rodriguez-Malave, N.I.; Waters, E.V.; Yan, W.; Casero, D.; Basso, G.; Pigazzi, M.; Rao, D.S. LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia. Mol. Cancer Res. 2015, 13, 839–851. [Google Scholar] [CrossRef]
- Fehr, A.; Arvidsson, G.; Nordlund, J.; Lönnerholm, G.; Stenman, G.; Andersson, M.K. Increased MYB alternative promoter usage is associated with relapse in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2023, 62, 597–606. [Google Scholar] [CrossRef]
- Bardelli, V.; Arniani, S.; Pierini, V.; Pierini, T.; Di Giacomo, D.; Gorello, P.; Moretti, M.; Pellanera, F.; Elia, L.; Vitale, A.; et al. MYB rearrangements and over-expression in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021, 60, 482–488. [Google Scholar] [CrossRef]
- Caballero-Palacios, M.C.; Villegas-Ruiz, V.; Ramírez-Chiquito, J.C.; Medina-Vera, I.; Zapata-Tarres, M.; Mojica-Espinosa, R.; Cárdenas-Cardos, R.; Paredes-Aguilera, R.; Rivera-Luna, R.; Juárez-Méndez, S. v-myb avian myeloblastosis viral oncogene homolog expression is a potential molecular diagnostic marker for B-cell acute lymphoblastic leukemia. Asia Pac. J. Clin. Oncol. 2021, 17, 60–67. [Google Scholar] [CrossRef]
- De Dominici, M.; Porazzi, P.; Soliera, A.R.; Mariani, S.A.; Addya, S.; Fortina, P.; Peterson, L.F.; Spinelli, O.; Rambaldi, A.; Martinelli, G.; et al. Targeting CDK6 and BCL2 Exploits the “MYB Addiction” of Ph. Cancer Res. 2018, 78, 1097–1109. [Google Scholar] [PubMed]
- Chen, D.; Ye, Z.; Lew, Z.; Luo, S.; Yu, Z.; Lin, Y. Expression of NMU, PPBP and GNG4 in colon cancer and their influences on prognosis. Transl. Cancer Res. 2022, 11, 3572–3583. [Google Scholar] [CrossRef] [PubMed]
- Salimi, A.; Aghvami, M.; Movahed, M.A.; Zarei, M.H.; Eshghi, P.; Zarghi, A.; Pourahmad, J. Evaluation of Cytotoxic Potentials of Novel Cyclooxygenase-2 Inhibitor against ALL Lymphocytes and Normal Lymphocytes and Its Anticancer Effect through Mitochondrial Pathway. Cancer Investig. 2020, 38, 463–475. [Google Scholar]
- Peng, L.; Zhou, Y.; Wang, Y.; Mou, H.; Zhao, Q. Prognostic significance of COX-2 immunohistochemical expression in colorectal cancer: A meta-analysis of the literature. PLoS ONE 2013, 8, e58891. [Google Scholar] [CrossRef] [PubMed]
- Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell Physiol. 2019, 234, 5683–5699. [Google Scholar] [CrossRef] [PubMed]
- Truffinet, V.; Donnard, M.; Vincent, C.; Faucher, J.L.; Bordessoule, D.; Turlure, P.; Trimoreau, F.; Denizot, Y. Cyclooxygenase-1, but not -2, in blast cells of patients with acute leukemia. Int. J. Cancer 2007, 121, 924–927. [Google Scholar] [CrossRef] [PubMed]
- Aghvami, M.; Salimi, A.; Eshghi, P.; Zarei, M.H.; Farzaneh, S.; Sattari, F.; Zarghi, A.; Pourahmad, J. Targeting the mitochondrial apoptosis pathway by a newly synthesized COX-2 inhibitor in pediatric ALL lymphocytes. Future Med. Chem. 2018, 10, 2277–2289. [Google Scholar]
- Yu, Y.; Tian, X. Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases. Medicine 2020, 99, e20183. [Google Scholar]
- Kim, S.-S.; Shin, H.; Ahn, K.-G.; Park, Y.-M.; Kwon, M.-C.; Lim, J.-M.; Oh, E.-K.; Kim, Y.; Han, S.-M.; Noh, D.-Y. Quantifiable peptide library bridges the gap for proteomics based biomarker discovery and validation on breast cancer. Sci. Rep. 2023, 13, 8991. [Google Scholar] [CrossRef]
- Sun, G.; Li, Y.; Peng, Y.; Lu, D.; Zhang, F.; Cui, X.; Zhang, Q.; Li, Z. Identification of differentially expressed genes and biological characteristics of colorectal cancer by integrated bioinformatics analysis. J. Cell Physiol. 2019, 234, 15215–15224. [Google Scholar] [CrossRef]
- Wang, J.; Hao, J.-P.; Uddin, N.; Wu, Y.; Chen, R.; Li, D.-F.; Xiong, D.-Q.; Ding, N.; Yang, J.-H.; Ding, X.-S. Identification and validation of inferior prognostic genes associated with immune signatures and chemotherapy outcome in acute myeloid leukemia. Aging 2021, 13, 16445–16470. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Li, H.; Peng, Z.; Ke, D.; Fu, H.; Zheng, X. Identification of plasma RGS18 and PPBP mRNAs as potential biomarkers for gastric cancer using transcriptome arrays. Oncol. Lett. 2019, 17, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Liang, J.; Cai, X.-D.; Yang, Y.; Liu, G.; Zhou, F.; He, D. Identification of six hub genes and analysis of their correlation with drug sensitivity in acute myeloid leukemia through bioinformatics. Transl. Cancer Res. 2021, 10, 126–140. [Google Scholar] [PubMed]
- Ameri, M.; Alipour, M.; Madihi, M.; Nezafat, N. Identification of intrinsically disordered regions in hub genes of acute myeloid leukemia: A bioinformatics approach. Biotechnol. Appl. Biochem. 2022, 69, 2304–2322. [Google Scholar] [PubMed]
- Wu, A.; Wu, B.; Guo, J.; Luo, W.; Wu, D.; Yang, H.; Zhen, Y.; Yu, X.; Wang, H.; Zhou, Y.; et al. Elevated expression of CDK4 in lung cancer. J. Transl. Med. 2011, 9, 38. [Google Scholar]
- Niswander, L.M.; Graff, Z.T.; Chien, C.D.; Chukinas, J.A.; Meadows, C.A.; Leach, L.C.; Loftus, J.P.; Kohler, M.E.; Tasian, S.K.; Fry, T.J. Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against. Haematologica 2023, 108, 457–471. [Google Scholar] [CrossRef]
- Sexauer, A.N.; Tasian, S.K. Targeting FLT3 Signaling in Childhood Acute Myeloid Leukemia. Front. Pediatr. 2017, 5, 248. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Li, S.; Liu, J.; Xing, Y.; Xing, H.; Tian, Z.; Tang, K.; Rao, Q.; Wang, M.; et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J. Hematol. Oncol. 2018, 11, 60. [Google Scholar] [CrossRef]
- Lo Nigro, L.L.; Andriano, N.; Buldini, B.; Silvestri, D.; Villa, T.; Locatelli, F.; Parasole, R.; Barisone, E.; Testi, A.M.; Biondi, A.; et al. FLT3-ITD in Children with Early T-cell Precursor (ETP) Acute Lymphoblastic Leukemia: Incidence and Potential Target for Monitoring Minimal Residual Disease (MRD). Cancers 2022, 14, 2475. [Google Scholar] [CrossRef]
- Thoms, J.A.I.; Birger, Y.; Foster, S.; Knezevic, K.; Kirschenbaum, Y.; Chandrakanthan, V.; Jonquieres, G.; Spensberger, D.; Wong, J.W.; Oram, S.H.; et al. ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 2011, 117, 7079–7089. [Google Scholar] [CrossRef]
- Bock, J.; Mochmann, L.H.; Schlee, C.; Farhadi-Sartangi, N.; Göllner, S.; Müller-Tidow, C.; Baldus, C.D. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in deregulated kinase signaling. PLoS ONE 2013, 8, e52872. [Google Scholar] [CrossRef]
- Pinz, K.; Liu, H.; Golightly, M.; Jares, A.; Lan, F.; Zieve, G.W.; Hagag, N.; Schuster, M.; E Firor, A.; Jiang, X.; et al. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia 2016, 30, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Shen, J.; Pinz, K.; Wada, M.; Park, J.; Kim, S.; Togano, T.; Tse, W. Targeting T Cell Malignancies Using CD4CAR T-Cells and Implementing a Natural Safety Switch. Stem Cell Rev. Rep. 2019, 15, 443–447. [Google Scholar]
- Feng, J.; Xu, H.; Cinquina, A.; Wu, Z.; Zhang, W.; Sun, L.; Chen, Q.; Tian, L.; Song, L.; Pinz, K.G.; et al. Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Front. Immunol. 2022, 13, 997482. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Du, K.; Liu, X.; Li, C.; Wang, D.; Zhang, Y.; Wang, C.; Li, J. Integrative Pan-Cancer Analysis Confirmed that FCGR3A is a Candidate Biomarker Associated With Tumor Immunity. Front. Pharmacol. 2022, 13, 900699. [Google Scholar] [CrossRef] [PubMed]
- Haen, S.P.; Schmiedel, B.J.; Rothfelder, K.; Schmied, B.J.; Dang, T.M.; Mirza, N.; Möhle, R.; Kanz, L.; Vogel, W.; Salih, H.R. Prognostic relevance of HER2/neu in acute lymphoblastic leukemia and induction of NK cell reactivity against primary ALL blasts by trastuzumab. Oncotarget 2016, 7, 13013–13030. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, P.; Robillard, N.; Wuilleme-Toumi, S.; Méchinaud, F.; Harousseau, J.L.; Avet-Loiseau, H. Overexpression of Her2/neu is observed in one third of adult acute lymphoblastic leukemia patients and is associated with chemoresistance in these patients. Haematologica 2004, 89, 1399–1401. [Google Scholar]
- Adams, S. Toll-like receptor agonists in cancer therapy. Immunotherapy 2009, 1, 949–964. [Google Scholar] [CrossRef]
- Boushehri, M.A.S.; Lamprecht, A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol. Pharm. 2018, 15, 4777–4800. [Google Scholar] [CrossRef]
- Purdom, E.; Simpson, K.M.; Robinson, M.D.; Conboy, J.G.; Lapuk, A.V.; Speed, T. FIRMA: A method for detection of alternative splicing from exon array data. Bioinformatics 2008, 24, 1707–1714. [Google Scholar]
- Korthauer, K.; Kimes, P.K.; Duvallet, C.; Reyes, A.; Subramanian, A.; Teng, M.; Shukla, C.; Alm, E.J.; Hicks, S.C. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Dennis, G.; Sherman, B.T.; A Hosack, D.; Yang, J.; Gao, W.; Lane, H.C.; A Lempicki, R. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, P3. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef]
- Bárcenas-López, D.A.; Núñez-Enríquez, J.C.; Hidalgo-Miranda, A.; Beltrán-Anaya, F.O.; May-Hau, D.I.; Jiménez-Hernández, E.; Bekker-Méndez, V.C.; Flores-Lujano, J.; Medina-Sansón, A.; Tamez-Gómez, E.L.; et al. Transcriptome Analysis Identifies LINC00152 as a Biomarker of Early Relapse and Mortality in Acute Lymphoblastic Leukemia. Genes 2020, 11, 302. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
Characteristic | n = 43 | Percentage |
---|---|---|
Gender | ||
Male | 23 | 53.5% |
Female | 20 | 46.5% |
Median age at diagnosis in years: 33.8 (18–57) | ||
AYA (18–40) * | 27 | 62.8% |
>40 years | 16 | 37.2% |
Risk classification | ||
Standard | 5 | 11.6% |
High | 38 | 88.4% |
Relapse | ||
Yes | 16 | 37.2% |
No | 27 | 62.8% |
Immunophenotype | ||
B | 37 | 86% |
Pre-B | 4 | 9.3% |
T | 2 | 4.7% |
Death | ||
Yes | 16 | 37.2% |
No | 27 | 62.8% |
Gene Symbol | Fold Change | p Value | FDR 1 |
---|---|---|---|
DNTT | 107.25 | 4.44 × 10−5 | 0.0024 |
MYB | 39.05 | 3.18 × 10−7 | 5.19 × 10−5 |
SOX4 | 19.52 | 2.49 × 10−5 | 0.0015 |
EBF1 | 19.11 | 5 × 10−4 | 0.0153 |
ERG | 14.7 | 2.76 × 10−6 | 3 × 10−4 |
CD34 | 9.33 | 0.0019 | 0.0372 |
FLT3 | 11.55 | 2 × 10−4 | 0.0069 |
STMN1 | 8.41 | 6.29 × 10−5 | 0.0032 |
CDK6 | 8.07 | 9.75 × 10−6 | 8 × 10−4 |
NAV1 | 7.24 | 0.0013 | 0.0284 |
SH3BGRL2 | −20.18 | 1.4 × 10−6 | 2 × 10−4 |
CLEC7A | −20.91 | 1.67 × 10−5 | 0.0011 |
RGS2 | −21.07 | 4.46 × 10−6 | 4 × 10−4 |
PF4 | −23.09 | 1.11 × 10−5 | 8 × 10−4 |
TUBB1 | −24.7 | 8.38 × 10−7 | 1 × 10−4 |
VCAN | −25.22 | 3.23 × 10−5 | 0.0019 |
LUCAT1 | −27.02 | 6.62 × 10−9 | 2.05 × 10−6 |
ADGRE3 | −27.11 | 2.04 × 10−7 | 3.6 × 10−5 |
PPBP | −52.24 | 8.79 × 10−5 | 0.0041 |
PTGS2 | −57.83 | 8.5 × 10−8 | 1.76 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Miranda, G.M.; Olarte-Carrillo, I.; Bárcenas-López, D.A.; Martínez-Tovar, A.; Ramírez-Bello, J.; Ramos-Peñafiel, C.O.; García-Laguna, A.I.; Cerón-Maldonado, R.; May-Hau, D.; Jiménez-Morales, S. Transcriptome Analysis in Mexican Adults with Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2024, 25, 1750. https://doi.org/10.3390/ijms25031750
Cruz-Miranda GM, Olarte-Carrillo I, Bárcenas-López DA, Martínez-Tovar A, Ramírez-Bello J, Ramos-Peñafiel CO, García-Laguna AI, Cerón-Maldonado R, May-Hau D, Jiménez-Morales S. Transcriptome Analysis in Mexican Adults with Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences. 2024; 25(3):1750. https://doi.org/10.3390/ijms25031750
Chicago/Turabian StyleCruz-Miranda, Gabriela Marisol, Irma Olarte-Carrillo, Diego Alberto Bárcenas-López, Adolfo Martínez-Tovar, Julian Ramírez-Bello, Christian Omar Ramos-Peñafiel, Anel Irais García-Laguna, Rafael Cerón-Maldonado, Didier May-Hau, and Silvia Jiménez-Morales. 2024. "Transcriptome Analysis in Mexican Adults with Acute Lymphoblastic Leukemia" International Journal of Molecular Sciences 25, no. 3: 1750. https://doi.org/10.3390/ijms25031750
APA StyleCruz-Miranda, G. M., Olarte-Carrillo, I., Bárcenas-López, D. A., Martínez-Tovar, A., Ramírez-Bello, J., Ramos-Peñafiel, C. O., García-Laguna, A. I., Cerón-Maldonado, R., May-Hau, D., & Jiménez-Morales, S. (2024). Transcriptome Analysis in Mexican Adults with Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 25(3), 1750. https://doi.org/10.3390/ijms25031750