De Novo Noninversion Variants Implicated in Sporadic Hemophilia A: A Variant Origin and Timing Study
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Patients with HA
2.2. Linkage Analysis and Genetic Testing for Identification of the Possible Origin of Sporadic HA Noninversion Variant and Amplification Refractory Mutation System–Quantitative Polymerase Chain Reaction for Confirmation of Sporadic NIV Origin
2.2.1. Studies in Families 1 to 19 Who Have Sporadic HA NIVs without Mosaic Variants
2.2.2. Studies in Families 20–22 Who Had Mosaic Variants
2.3. Possible Timing of Sporadic NIV Occurrence during Embryonic Development
2.3.1. Categorization of the Timing in Families 1–19
2.3.2. Categorization of Timing in Families 20–22
3. Discussion
4. Materials and Methods
4.1. Patient and Family Groups and Study Design
4.2. Collection of Blood and Tissue Cells from Patients and Family Members
4.3. DNA Extraction from Blood and Tissue Cells
4.4. Diagnosis of Hemophilia A
4.5. Linkage Analysis and Genetic Testing for the Identification of the Possible Origin of Sporadic NIVs
4.6. Amplification Refractory Mutation System–Quantitative Polymerase Chain Reaction
4.7. Categorization of the Possible Timing of Sporadic NIVs during Embryogenesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.W.; Carcao, M.; Mahlangu, J.; Ragni, M.V.; Windyga, J.; et al. WFH guidelines for the management of hemophilia, 3rd ed. Haemophilia 2020, 26, 1–158. [Google Scholar] [CrossRef]
- van Dieijen, G.; Tans, G.; Rosing, J.; Hemker, H.C. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J. Biol. Chem. 1981, 256, 3433–3442. [Google Scholar] [CrossRef]
- Mutucumarana, V.P.; Duffy, E.J.; Lollar, P.; Johnson, A.E. The active site of factor IXa is located far above the membrane surface and its conformation is altered upon association with factor VIIIa. A fluorescence study. J. Biol. Chem. 1992, 267, 17012–17021. [Google Scholar] [CrossRef] [PubMed]
- Gitschier, J.; Wood, W.I.; Goralka, T.M.; Wion, K.L.; Chen, E.Y.; Eaton, D.H.; Vehar, G.A.; Capon, D.J.; Lawn, R.M. Characterization of the human factor VIII gene. Nature 1984, 312, 326–330. [Google Scholar] [CrossRef]
- Lakich, D.; Kazazian, H.H., Jr.; Antonarakis, S.E.; Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat. Genet. 1993, 5, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Naylor, J.; Brinke, A.; Hassock, S.; Green, P.M.; Giannelli, F. Characteristic mRNA abnormality found in half the patients with severe haemophilia A is due to large DNA inversions. Hum. Mol. Genet. 1993, 2, 1773–1778. [Google Scholar] [CrossRef]
- Tuddenham, E.G.; Schwaab, R.; Seehafer, J.; Millar, D.S.; Gitschier, J.; Higuchi, M.; Bidichandani, S.; Connor, J.M.; Hoyer, L.W.; Yoshioka, A.; et al. Haemophilia A: Database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene. 2nd ed. Nucleic Acids Res. 1994, 22, 4851–4868. [Google Scholar] [CrossRef]
- Kasper, C.K.; Lin, J.C. Prevalence of sporadic and familial haemophilia. Haemophilia 2007, 13, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M. Hemophilia treatment innovation: 50 years of progress and more to come. J. Thromb. Haemost. 2023, 21, 403–412. [Google Scholar] [CrossRef]
- Oldenburg, J.; Schwaab, R.; Grimm, T.; Zerres, K.; Hakenberg, P.; Brackmann, H.H.; Olek, K. Direct and indirect estimation of the sex ratio of mutation frequencies in hemophilia A. Am. J. Hum. Genet. 1993, 53, 1229–1238. [Google Scholar]
- Rossiter, J.P.; Young, M.; Kimberland, M.L.; Hutter, P.; Ketterling, R.P.; Gitschier, J.; Horst, J.; Morris, M.A.; Schaid, D.J.; de Moerloose, P. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum. Mol. Genet. 1994, 3, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, S.E.; Rossiter, J.P.; Young, M.; Horst, J.; de Moerloose, P.; Sommer, S.S.; Ketterling, R.P.; Kazazian, H.H.; Négrier, C.; Vinciguerra, C.; et al. Factor VIII gene inversions in severe hemophilia A: Results of an international consortium study. Blood 1995, 86, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Freed, D.; Stevens, E.L.; Pevsner, J. Somatic mosaicism in the human genome. Genes 2014, 5, 1064–1094. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shen, M.C.; Chang, S.P.; Ma, G.C.; Huang, Y.C.; Lin, C.Y. Origin and timing of de novo variants implicated in type 2 von Willebrand disease. J. Cell Mol. Med. 2022, 26, 5403–5413. [Google Scholar] [CrossRef]
- Becker, J.; Schwaab, R.; Möller-Taube, A.; Schwaab, U.; Schmidt, W.; Brackmann, H.H.; Grimm, T.; Olek, K.; Oldenburg, J. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: Family studies indicate a mutation type-dependent sex ratio of mutation frequencies. Am. J. Hum. Genet. 1996, 58, 657–670. [Google Scholar]
- Ljung, R.C.; Sjörin, E. Origin of mutation in sporadic cases of haemophilia A. Br. J. Haematol. 1999, 106, 870–874. [Google Scholar] [CrossRef]
- Lu, Y.; Xin, Y.; Dai, J.; Wu, X.; You, G.; Ding, Q.; Wu, W.; Wang, X. Spectrum and origin of mutations in sporadic cases of haemophilia A in China. Haemophilia 2018, 24, 291–298. [Google Scholar] [CrossRef]
- Lannoy, N.; Hermans, C. Genetic mosaicism in haemophilia: A practical review to help evaluate the risk of transmitting the disease. Haemophilia 2020, 26, 375–383. [Google Scholar] [CrossRef]
- Kuo, S.J.; Ma, G.C.; Chang, S.P.; Wu, H.H.; Chen, C.P.; Chang, T.M.; Lin, W.H.; Wu, S.H.; Lee, M.H.; Hwu, W.L.; et al. Preimplantation and prenatal genetic diagnosis of aromatic L-amino acid decarboxylase deficiency with an amplification refractory mutation system-quantitative polymerase chain reaction. Taiwan J. Obstet. Gynecol. 2011, 50, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.F.; Chang, S.P.; Wu, S.H.; Lin, W.H.; Lee, Y.C.; Ni, Y.H.; Chen, C.A.; Ma, G.C.; Ginsberg, N.A.; You, E.M.; et al. Validating a rapid, real-time, PCR-based direct mutation detection assay for preimplantation genetic diagnosis. Gene 2014, 548, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Lin, P.H.; Chiang, Y.T.; Huang, W.J.; Lin, C.F.; Ma, G.C.; Chang, S.P.; Fan, J.Y.; Lin, S.Y.; Wu, C.C.; et al. Preimplantation genetic diagnosis in hereditary hearing impairment. Diagnostics 2021, 11, 2395. [Google Scholar] [CrossRef]
- Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014, 20, 548–554. [Google Scholar] [CrossRef]
- Burgstaller, J.P.; Schinogl, P.; Dinnyes, A.; Müller, M.; Steinborn, R. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol. 2007, 7, 141. [Google Scholar] [CrossRef]
- Nordgård, O.; Oltedal, S.; Janssen, E.A.; Gilje, B.; Kørner, H.; Tjensvoll, K.; Smaaland, R. Comparison of a PNA clamp PCR and an ARMS/Scorpion PCR assay for the detection of K-ras mutations. Diagn. Mol. Pathol. 2012, 21, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.; Eder, J.; Pratscher, B.; Brandt, S.; Schneller, D.; Müllegger, R.; Vogl, C.; Trautinger, F.; Brem, G.; Burgstaller, J.P. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients. PLoS ONE 2015, 10, e0142273. [Google Scholar] [CrossRef] [PubMed]
- Mårtensson, A.; Ivarsson, S.; Letelier, A.; Manderstedt, E.; Halldén, C.; Ljung, R. Origin of mutation in sporadic cases of severe haemophilia A in Sweden. Clin. Genet. 2016, 90, 63–68. [Google Scholar] [CrossRef]
- Leuer, M.; Oldenburg, J.; Lavergne, J.M.; Ludwig, M.; Fregin, A.; Eigel, A.; Ljung, R.; Goodeve, A.; Peake, I.; Olek, K. Somatic mosaicism in hemophilia A: A fairly common event. Am. J. Hum. Genet. 2001, 69, 75–87. [Google Scholar] [CrossRef]
- Yan, Y.H.; Chen, S.X.; Cheng, L.Y.; Rodriguez, A.Y.; Tang, R.; Cabrera, K.; Zhang, D.Y. Confirming putative variants at ≤5% allele frequency using allele enrichment and Sanger sequencing. Sci. Rep. 2021, 11, 11640. [Google Scholar] [CrossRef]
- Tsiatis, A.C.; Norris-Kirby, A.; Rich, R.G.; Hafez, M.J.; Gocke, C.D.; Eshleman, J.R.; Murphy, K.M. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: Diagnostic and clinical implications. J. Mol. Diagn. 2010, 12, 425–432. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wang, S.M.; Liu, X.; Gu, Y.N.; Feng, Z. Prenatal diagnosis of Duchenne muscular dystrophy revealed a novel mosaic mutation in dystrophin gene: A case report. BMC Med. Genet. 2020, 21, 222. [Google Scholar] [CrossRef]
- Peterson, K.; Coffman, S.; Zehri, A.; Anzalone, A.; Xiang, Z.; Wolfe, S. Somatic mosaicism in the pathogenesis of de novo cerebral arteriovenous malformations: A paradigm shift implicating the RAS-MAPK signaling cascade. Cerebrovasc. Dis. 2021, 50, 231–238. [Google Scholar] [CrossRef]
- Ketterling, R.P.; Vielhaber, E.; Li, X.; Drost, J.; Schaid, D.J.; Kasper, C.K.; Phillips, J.A.; Koerper, M.A.; Kim, H.; Sexauer, C.; et al. Germline origins in the human F9 gene: Frequent G:C→A:T mosaicism and increased mutations with advanced maternal age. Hum. Genet. 1999, 105, 629–640. [Google Scholar] [CrossRef]
- Cochard, L.R. Early Embryonic Development and the Placenta. Netter’s Atlas of Human Embryology, updated ed.; Elsevier Health Sciences: London, UK, 2012; pp. 27–50. [Google Scholar]
- Carlson, B.M. Human Embryology and Developmental Biology; Elsevier Health Sciences: Lious, MO, USA, 2019; pp. 87–109. [Google Scholar]
- Shen, M.C.; Chang, S.P.; Lee, D.J.; Lin, W.H.; Chen, M.; Ma, G.C. Skewed X-chromosome inactivation and parental gonadal mosaicism are implicated in X-linked recessive female hemophilia patients. Diagnostics 2022, 12, 2267. [Google Scholar] [CrossRef]
- Ma, G.C.; Chang, S.P.; Chen, M.; Kuo, S.J.; Chang, C.S.; Shen, M.C. The spectrum of the factor 8 (F8) defects in Taiwanese patients with haemophilia A. Haemophilia 2008, 14, 787–795. [Google Scholar] [CrossRef]
- Machado, F.B.; Medina-Acosta, E. High-resolution combined linkage physical map of short tandem repeat loci on human chromosome band Xq28 for indirect haemophilia A carrier detection. Haemophilia 2009, 15, 297–308. [Google Scholar] [CrossRef]
- Laurie, A.D.; Hill, A.M.; Harraway, J.R.; Fellowes, A.P.; Phillipson, G.T.; Benny, P.S.; Smith, M.P.; George, P.M. Preimplantation genetic diagnosis for hemophilia A using indirect linkage analysis and direct genotyping approaches. J. Thromb. Haemost. 2010, 8, 783–789. [Google Scholar] [CrossRef]
- Acuna-Hidalgo, R.; Veltman, J.A.; Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016, 17, 241. [Google Scholar] [CrossRef]
- Cioppi, F.; Casamonti, E.; Krausz, C. Age-dependent de novo mutations during spermatogenesis and their consequences. Adv. Exp. Med. Biol. 2019, 1166, 29–46. [Google Scholar] [CrossRef]
Family No. and Age of Proband (Year) | Family File No. | FVIII Level (IU/dL) | Exon | Nucleotide Change | Amino Acid Substitution | Family Members Designated as the Possible Origin of Sporadic NIVs | Percentage of Mutant Cells by ARMS-qPCR in Tissue Cells Obtained from Family Members Designated as the Possible Origin of Sporadic NIVs | Family Members Designated as the Confirmed Origin of Sporadic NIVs | Percentage of Mutant Cells by ARMS-qPCR in Tissue Cells Obtained from Family Members Designated as Confirmed Origin of Sporadic NIVs | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blood Cells | Buccal Cells | Tonsil Epithelial Cells | Blood Cells | Buccal Cells | Tonsil Epithelial Cells | ||||||||
1 (16) | 74 | <1 | 19 | c.6046C>G | p.R2016G | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
2 (57) | 31 | <1 | 7 | c.822G>T | p.W274C | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
3 (9) | 189 | <1 | 11 | c.1648C>T | p.R550C | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
4 (15) | 176 | 3.7 | 14 | c.5122C>T | p.R1708C | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
5 (6) | 208 | <1 | 20 | c.6131T>C | p.L2044P | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
6 (11) | 209 | 1.0 | 14 | c.4379delA | p.N1460Ifs*5 | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
7 (48) | NTUH | <1 | 9 | c.1412T>A | p.L471* | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
8 (26) | 147 | <1 | 4 | c.403G>A | p.D135N | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
9 (4) | 180 | <1 | 14 | c.2945dupA | p.N982Kfs*9 | M | 0 | 0 | 0 | M | 0 | 0 | 0 |
10 (23) | referred-1 | <1 | 14 | c.2945dupA | p.N982Kfs*9 | MGM | 0 | 0 | 0 | MGM | 0 | 0 | 0 |
11 (22) | 155 | <1 | 15 | c.5343T>A | p.Y1781* | MGM | 0 | 0 | 0 | MGM | 0 | 0 | 0 |
12 (19) | 78 | <1 | 14 | c.3637delA | p.I1213Ffs*5 | MGM | 0 | 0 | 0 | MGM | 0 | 0 | 0 |
13 (7) | 131 | 1.2 | IVS10 | c.1538-1G>A | - | MGM | 0 | 0 | 0 | MGM | 0 | 0 | 0 |
14 (2) | 207 | <1 | 12 | c.1848dupT | p.P617Sfs*7 | MGF | 0 | 0 | 0 | MGF | 0 | 0 | 0 |
15 (0.1) | 0 | <1 | IVS14 | c.5219+1G>A | - | MGF | 0 | 0 | 0 | MGF | 0 | 0 | 0 |
16 (5) | referred-2 | <1 | 12 | c.1813T>C | p.Y605H | MGF+ | 0 | 0 | 0 | MGF+ | 0 | 0 | 0 |
17 (5.4) | 187 | <1 | 14 | c.2322delA | p.Q774Hfs*12 | MGF | 0 | 0 | 0 | MGF | 0 | 0 | 0 |
18 (2) | NTUH-2 | <1 | 14 | c.3637dupA | p.I1213Nfs*28 | MGF | 0 | 0 | 0 | MGF | 0 | 0 | 0 |
19 (7) | 211 | <1 | 23 | c.6548_6554delTGGAGTT | p.M2183Rfs*9 | MGF | 0 | 0 | 0 | MGF | 0 | 0 | 0 |
Family No. and Age of Proband (Year) | Family File No. | FVIII Level (IU/dL) | Exon | Nucleotide Change | Amino acid Substitution | Family Members Designated as the Possible Origin of Sporadic NIVs | Percentage of Mutant Cells by ARMS-qPCR among Tissue Cells Obtained from Family Members Designated as the Possible Origin of Sporadic Mosaic NIVs | Family Members Designated as the Confirmed Origin of Sporadic NIVs | Percentage of Mutant Cells by ARMS-qPCR among Tissue Cells Obtained from Family Members Designated as Confirmed Origin of Sporadic Mosaic NIVs | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blood Cells | Buccal Cells | Tonsil Epithelial Cells | Blood Cells | Buccal Cells | Tonsil Epithelial Cells | ||||||||
20 (10) | 153 | <1 | 10 | c.1525A > T | p.R509* | M | 18.1 | 23.8 | 24.1 | MGM | 0 | 0 | 0 |
21 (38) | 130 | 25.1 | 11 | c.1636C > T | p.R546W | M | 7.3 | 5.1 | 2.8 | MGF | 0 | 0 | 0 |
22 (47) | 105 | <1 | 2 | c.185 C > G | p.S62* | M | 9.4 | 3.7 | 5.4 | EGT M | NA | NA | NA |
Family No. | Family Members Designated as the Confirmed Origin of Sporadic NIV | Family Members in Whom Sporadic NIVs Occurred | Timing of the Sporadic NIV Occurrence during Embryonic Development |
---|---|---|---|
1 | M | Proband | Genetic variant most likely occurs in the zygote within the first few cell divisions, thereby causing a hemizygous variant in the proband. † |
2 | M | ||
3 | M | ||
4 | M | ||
5 | M | ||
6 | M | ||
7 | M | ||
8 | M | ||
9 | M | ||
10 | MGM | Mother | Genetic variant most likely occurs in the zygote within the first few cell divisions, thereby causing a heterozygous variant in the mother who transmits the genetic variant to the proband. ‡ |
11 | MGM | ||
12 | MGM | ||
13 | MGM | ||
14 | MGF | Mother | Maternal grandfather most likely has a genetic variant in a single sperm cell, thereby causing a heterozygous variant in the mother who transmits the genetic variant to the proband. § |
15 | MGF | ||
16 | MGF | ||
17 | MGF | ||
18 | MGF | ||
19 | MGF | ||
20 | MGM | Mother+ | Genetic mosaic variant most likely occur during the early stages of embryogenesis, thereby causing a somatic and germline mosaic genetic variant in the mother who transmits the genetic variant to the proband. ¶ |
21 | MGF | ||
22 | EGT M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Shen, M.-C.; Chang, S.-P.; Ma, G.-C.; Lee, D.-J.; Yan, A. De Novo Noninversion Variants Implicated in Sporadic Hemophilia A: A Variant Origin and Timing Study. Int. J. Mol. Sci. 2024, 25, 1763. https://doi.org/10.3390/ijms25031763
Chen M, Shen M-C, Chang S-P, Ma G-C, Lee D-J, Yan A. De Novo Noninversion Variants Implicated in Sporadic Hemophilia A: A Variant Origin and Timing Study. International Journal of Molecular Sciences. 2024; 25(3):1763. https://doi.org/10.3390/ijms25031763
Chicago/Turabian StyleChen, Ming, Ming-Ching Shen, Shun-Ping Chang, Gwo-Chin Ma, Dong-Jay Lee, and Adeline Yan. 2024. "De Novo Noninversion Variants Implicated in Sporadic Hemophilia A: A Variant Origin and Timing Study" International Journal of Molecular Sciences 25, no. 3: 1763. https://doi.org/10.3390/ijms25031763
APA StyleChen, M., Shen, M. -C., Chang, S. -P., Ma, G. -C., Lee, D. -J., & Yan, A. (2024). De Novo Noninversion Variants Implicated in Sporadic Hemophilia A: A Variant Origin and Timing Study. International Journal of Molecular Sciences, 25(3), 1763. https://doi.org/10.3390/ijms25031763