Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC)
Abstract
:1. Introduction
2. Results
2.1. Deletion of Atp6v1b1 in Claudin-16 Deficient Animals
2.2. Absence of H+-ATPase B1 Subunit Resulted in Increased Urinary pH
2.3. Absence of Nephrocalcinosis in Cldn16 KO and Cldn16 Atp6v1b1 dKO Mice
3. Discussion
4. Materials and Methods
4.1. Atp6v1b1 KO Allele Generation
4.2. Animal Housing
4.3. Nephrocalcinosis Staining
4.4. Spot Urine Collection and pH Measurement
4.5. Immunofluorescence Staining
4.6. Quantitative Reverse Transcription PCR
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight Junctions: From Simple Barriers to Multifunctional Molecular Gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580. [Google Scholar] [CrossRef]
- Prot-Bertoye, C.; Houillier, P. Claudins in Renal Physiology and Pathology. Genes 2020, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.B.; Lu, Y.; Choate, K.A.; Velazquez, H.; Al-Sabban, E.; Praga, M.; Casari, G.; Bettinelli, A.; Colussi, G.; Rodriguez-Soriano, J.; et al. Paracellin-1, a Renal Tight Junction Protein Required for Paracellular Mg2+ Resorption. Science 1999, 285, 103–106. [Google Scholar] [CrossRef]
- Konrad, M.; Schaller, A.; Seelow, D.; Pandey, A.V.; Waldegger, S.; Lesslauer, A.; Vitzthum, H.; Suzuki, Y.; Luk, J.M.; Becker, C.; et al. Mutations in the Tight-Junction Gene Claudin 19 (CLDN19) Are Associated with Renal Magnesium Wasting, Renal Failure, and Severe Ocular Involvement. Am. J. Hum. Genet. 2006, 79, 949–957. [Google Scholar] [CrossRef]
- Claverie-Martin, F. Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis: Clinical and Molecular Characteristics. Clin. Kidney J. 2015, 8, 656–664. [Google Scholar] [CrossRef]
- Brunette, M.; Vigneault, N.; Carriere, S. Micropuncture Study of Magnesium Transport along the Nephron in the Young Rat. Am. J. Physiol.-Leg. Content 1974, 227, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.L.; Dirks, J.H.; Quamme, G.A. Tubular Reabsorptive Capacity for Magnesium in the Dog Kidney. Am. J. Physiol.-Ren. Physiol. 1983, 244, F78–F83. [Google Scholar] [CrossRef] [PubMed]
- Moor, M.B.; Bonny, O. Ways of Calcium Reabsorption in the Kidney. Am. J. Physiol.-Ren. Physiol. 2016, 310, F1337–F1350. [Google Scholar] [CrossRef]
- Dai, L.-J.; Ritchie, G.; Kerstan, D.; Kang, H.S.; Cole, D.E.C.; Quamme, G.A. Magnesium Transport in the Renal Distal Convoluted Tubule. Physiol. Rev. 2001, 81, 51–84. [Google Scholar] [CrossRef]
- Blaine, J.; Chonchol, M.; Levi, M. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef]
- Singh, P.; Harris, P.C.; Sas, D.J.; Lieske, J.C. The Genetics of Kidney Stone Disease and Nephrocalcinosis. Nat. Rev. Nephrol. 2022, 18, 224–240. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.E.; Pearce, S.H.S.; Fisher, S.E.; Steinmeyer, K.; Schwappach, B.; Scheinman, S.J.; Harding, B.; Bolino, A.; Devoto, M.; Goodyer, P.; et al. A Common Molecular Basis for Three Inherited Kidney Stone Diseases. Nature 1996, 379, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Schlingmann, K.P.; Ruminska, J.; Kaufmann, M.; Dursun, I.; Patti, M.; Kranz, B.; Pronicka, E.; Ciara, E.; Akcay, T.; Bulus, D.; et al. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J. Am. Soc. Nephrol. 2016, 27, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; Utsch, B.; Balluch, B.; Fründ, S.; Kuwertz-Bröking, E.; Bökenkamp, A. Hypercalciuria in Patients with CLCN5 Mutations. Pediatr. Nephrol. 2006, 21, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Shavit, L.; Jaeger, P.; Unwin, R.J. What Is Nephrocalcinosis? Kidney Int. 2015, 88, 35–43. [Google Scholar] [CrossRef]
- Will, C.; Breiderhoff, T.; Thumfart, J.; Stuiver, M.; Kopplin, K.; Sommer, K.; Günzel, D.; Querfeld, U.; Meij, I.C.; Shan, Q.; et al. Targeted Deletion of Murine Cldn16 Identifies Extra- and Intrarenal Compensatory Mechanisms of Ca2+ and Mg2+ Wasting. Am. J. Physiol.-Ren. Physiol. 2010, 298, F1152–F1161. [Google Scholar] [CrossRef]
- Renkema, K.Y.; Velic, A.; Dijkman, H.B.; Verkaart, S.; van der Kemp, A.W.; Nowik, M.; Timmermans, K.; Doucet, A.; Wagner, C.A.; Bindels, R.J.; et al. The Calcium-Sensing Receptor Promotes Urinary Acidification to Prevent Nephrolithiasis. J. Am. Soc. Nephrol. 2009, 20, 1705–1713. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; van Leeuwen, J.P.T.M.; van der Eerden, B.C.J.; Kersten, F.F.J.; van derKemp, A.W.C.M.; Mérillat, A.-M.; Waarsing, J.H.; Rossier, B.C.; Vallon, V.; Hummler, E.; et al. Renal Ca2+ Wasting, Hyperabsorption, and Reduced Bone Thickness in Mice Lacking TRPV5. J. Clin. Investig. 2003, 112, 1906–1914. [Google Scholar] [CrossRef]
- Breiderhoff, T.; Himmerkus, N.; Stuiver, M.; Mutig, K.; Will, C.; Meij, I.C.; Bachmann, S.; Bleich, M.; Willnow, T.E.; Müller, D. Deletion of Claudin-10 (Cldn10) in the Thick Ascending Limb Impairs Paracellular Sodium Permeability and Leads to Hypermagnesemia and Nephrocalcinosis. Proc. Natl. Acad. Sci. USA 2012, 109, 14241–14246. [Google Scholar] [CrossRef]
- Moe, O.W. Kidney Stones: Pathophysiology and Medical Management. Lancet 2006, 367, 333–344. [Google Scholar] [CrossRef]
- Grases, F.; Rodriguez, A.; Costa-Bauza, A. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine. J. Urol. 2015, 194, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, Z.; Wei, J.; Zeng, C.; Wang, Y.; Yang, T. Association Between Serum Magnesium and the Prevalence of Kidney Stones: A Cross-Sectional Study. Biol. Trace Elem. Res. 2020, 195, 20–26. [Google Scholar] [CrossRef]
- Huang, A.; Binmahfouz, L.; Hancock, D.P.; Anderson, P.H.; Ward, D.T.; Conigrave, A.D. Calcium-Sensing Receptors Control CYP27B1-Luciferase Expression: Transcriptional and Posttranscriptional Mechanisms. J. Endocr. Soc. 2021, 5, bvab057. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, D.; Brown, E.M. Physiology and Pathophysiology of the Calcium-Sensing Receptor in the Kidney. Am. J. Physiol. Renal. Physiol. 2010, 298, F485–F499. [Google Scholar] [CrossRef]
- Riccardi, D.; Lee, W.S.; Lee, K.; Segre, G.V.; Brown, E.M.; Hebert, S.C. Localization of the Extracellular Ca(2+)-Sensing Receptor and PTH/PTHrP Receptor in Rat Kidney. Am. J. Physiol.-Ren. Physiol. 1996, 271, F951–F956. [Google Scholar] [CrossRef]
- Riccardi, D.; Traebert, M.; Ward, D.T.; Kaissling, B.; Biber, J.; Hebert, S.C.; Murer, H. Dietary Phosphate and Parathyroid Hormone Alter the Expression of the Calcium-Sensing Receptor (CaR) and the Na+-Dependent Pi Transporter (NaPi-2) in the Rat Proximal Tubule. Pflügers. Arch.-Eur. J. Physiol. 2000, 441, 379–387. [Google Scholar] [CrossRef]
- Wang, Y.; Borchert, M.L.; DeLuca, H.F. Identification of the Vitamin D Receptor in Various Cells of the Mouse Kidney. Kidney Int. 2012, 81, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, D.; Hall, A.E.; Chattopadhyay, N.; Xu, J.Z.; Brown, E.M.; Hebert, S.C. Localization of the Extracellular Ca2+/Polyvalent Cation-Sensing Protein in Rat Kidney. Am. J. Physiol.-Ren. Physiol. 1998, 274, F611–F622. [Google Scholar] [CrossRef]
- Curry, J.N.; Saurette, M.; Askari, M.; Pei, L.; Filla, M.B.; Beggs, M.R.; Rowe, P.S.N.; Fields, T.; Sommer, A.J.; Tanikawa, C.; et al. Claudin-2 Deficiency Associates with Hypercalciuria in Mice and Human Kidney Stone Disease. J. Clin. Investig. 2020, 130, 1948–1960. [Google Scholar] [CrossRef]
- Batlle, D.; Haque, S.K. Genetic Causes and Mechanisms of Distal Renal Tubular Acidosis. Nephrol. Dial. Transplant. 2012, 27, 3691–3704. [Google Scholar] [CrossRef]
- Finberg, K.E.; Wagner, C.A.; Bailey, M.A.; Păunescu, T.G.; Breton, S.; Brown, D.; Giebisch, G.; Geibel, J.P.; Lifton, R.P. The B1-Subunit of the H+ ATPase Is Required for Maximal Urinary Acidification. Proc. Natl. Acad. Sci. USA 2005, 102, 13616–13621. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, S.; Bettoni, C.; Baron, S.; Wagner, C.A. Haploinsufficiency of the Mouse Atp6v1b1 Gene Leads to a Mild Acid-Base Disturbance with Implications for Kidney Stone Disease. Cell. Physiol. Biochem. 2018, 47, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lee, B.; Lee, A.Y.-F.; Modzelewski, A.J.; He, L. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J. Biol. Chem. 2016, 291, 14457–14467. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Nadeau, K.; Abbasi, M.; Lachance, C.; Nguyen, M.; Fenrich, J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019, 37, 761–774. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shebel, A.; Michel, G.; Breiderhoff, T.; Müller, D. Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC). Int. J. Mol. Sci. 2024, 25, 1779. https://doi.org/10.3390/ijms25031779
Al-Shebel A, Michel G, Breiderhoff T, Müller D. Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC). International Journal of Molecular Sciences. 2024; 25(3):1779. https://doi.org/10.3390/ijms25031779
Chicago/Turabian StyleAl-Shebel, Amr, Geert Michel, Tilman Breiderhoff, and Dominik Müller. 2024. "Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC)" International Journal of Molecular Sciences 25, no. 3: 1779. https://doi.org/10.3390/ijms25031779
APA StyleAl-Shebel, A., Michel, G., Breiderhoff, T., & Müller, D. (2024). Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC). International Journal of Molecular Sciences, 25(3), 1779. https://doi.org/10.3390/ijms25031779