Analysis of Mutational Status of IGHV, and Cytokine Polymorphisms as Prognostic Factors in Chronic Lymphocytic Leukemia: The Romanian Experience
Abstract
:1. Introduction
1.1. IGHV Gene Hypermutation in CLL
1.2. Cytokines in CLL
2. Results
2.1. Description of CLL and Control Study Groups
2.2. Investigated SNPs and Risk of CLL
2.3. Associations between Studied Genetic Aberrations and Clinical Factors
2.4. The Impact of Genetic Aberrations and Clinical Factors on Overall Survival
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Analysis of the Mutational Status of the IGHV Gene
4.3. Testing for CNVs and Somatic Mutations
4.4. SNP Investigation
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rai, K.R.; Jain, P. Chronic Lymphocytic Leukemia (CLL)-Then and Now: Chronic Lymphocytic Leukemia. Am. J. Hematol. 2016, 91, 330–340. [Google Scholar] [CrossRef]
- Crombie, J.; Davids, M.S. IGHV Mutational Status Testing in Chronic Lymphocytic Leukemia. Am. J. Hematol. 2017, 92, 1393–1397. [Google Scholar] [CrossRef]
- Balla, B.; Tripon, F.; Banescu, C. From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. Int. J. Mol. Sci. 2021, 22, 10065. [Google Scholar] [CrossRef]
- Gupta, S.K.; Viswanatha, D.S.; Patel, K.P. Evaluation of Somatic Hypermutation Status in Chronic Lymphocytic Leukemia (CLL) in the Era of Next Generation Sequencing. Front. Cell Dev. Biol. 2020, 8, 357. [Google Scholar] [CrossRef]
- Hiroki, C.H.; Amarante, M.K.; Petenuci, D.L.; Sakaguchi, A.Y.; Trigo, F.C.; Watanabe, M.A.E.; De Oliveira, C.E.C. IL-10 Gene Polymorphism and Influence of Chemotherapy on Cytokine Plasma Levels in Childhood Acute Lymphoblastic Leukemia Patients. Blood Cells. Mol. Dis. 2015, 55, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Tonegawa, S. Somatic Generation of Antibody Diversity. Nature 1983, 302, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, M.S.; Milstein, C. Somatic Hypermutation. Curr. Opin. Immunol. 1995, 7, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Pilzecker, B.; Jacobs, H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front. Immunol. 2019, 10, 438. [Google Scholar] [CrossRef]
- Ghia, P.; Stamatopoulos, K.; Belessi, C.; Moreno, C.; Stilgenbauer, S.; Stevenson, F.; Davi, F.; Rosenquist, R.; European Research Initiative on CLL (ERIC). ERIC Recommendations on IGHV Gene Mutational Status Analysis in Chronic Lymphocytic Leukemia. Leukemia 2007, 21, 1–3. [Google Scholar] [CrossRef]
- Page, D.J.; Miossec, M.J.; Williams, S.G.; Monaghan, R.M.; Fotiou, E.; Cordell, H.J.; Sutcliffe, L.; Topf, A.; Bourgey, M.; Bourque, G.; et al. Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot. Circ. Res. 2019, 124, 553–563. [Google Scholar] [CrossRef]
- Agathangelidis, A.; Chatzidimitriou, A.; Chatzikonstantinou, T.; Tresoldi, C.; Davis, Z.; Giudicelli, V.; Kossida, S.; Belessi, C.; Rosenquist, R.; Ghia, P.; et al. Immunoglobulin Gene Sequence Analysis in Chronic Lymphocytic Leukemia: The 2022 Update of the Recommendations by ERIC, the European Research Initiative on CLL. Leukemia 2022, 36, 1961–1968. [Google Scholar] [CrossRef]
- Kaufman, M.; Yan, X.-J.; Li, W.; Ghia, E.M.; Langerak, A.W.; Rassenti, L.Z.; Belessi, C.; Kay, N.E.; Davi, F.; Byrd, J.C.; et al. Impact of the Types and Relative Quantities of IGHV Gene Mutations in Predicting Prognosis of Patients with Chronic Lymphocytic Leukemia. Front. Oncol. 2022, 12, 897280. [Google Scholar] [CrossRef] [PubMed]
- Bănescu, C.; Tripon, F.; Trifa, A.P.; Crauciuc, A.G.; Moldovan, V.G.; Bogliş, A.; Benedek, I.; Dima, D.; Cândea, M.; Duicu, C.; et al. Cytokine Rs361525, Rs1800750, Rs1800629, Rs1800896, Rs1800872, Rs1800795, Rs1800470, and Rs2430561 SNPs in Relation with Prognostic Factors in Acute Myeloid Leukemia. Cancer Med. 2019, 8, 5492–5506. [Google Scholar] [CrossRef]
- Basabaeen, A.; Abdelgader, E.; Ahmed, E.; Abdelateif, N.; Osman Abdelrahim, S.; Sharif, O.; Altayeb, O.; Fadul, E.; Osman Ibrahim, I. Interleukin-10-1082A>G (Rs1800896) Single Nucleotide Polymorphism Is Not a Risk Factor of Chronic Lymphocytic Leukemia in Sudanese Population. Asian Pac. J. Cancer Prev. 2022, 23, 3229–3235. [Google Scholar] [CrossRef] [PubMed]
- Far, M.E.; Fouda, M.; Yahya, R.; El Baz, H. Serum IL-10 and IL-6 Levels at Diagnosis as Independent Predictors of Outcome in Non-Hodgkin’s Lymphoma. J. Physiol. Biochem. 2004, 60, 253–258. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef]
- Rai, H.; Joner, M.; Wilson, H.; McGovern, L.; Richards, G.; Colleran, R.; Byrne, R.A. Interleukin-10 -1082 G/A Polymorphism and Its Association with Early or Severe Presentation of Coronary Artery Disease: A Systematic Review and Meta-Analysis. Cytokine 2023, 162, 156103. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Angeles-Martínez, J.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; López-Bautista, F.; Flores-Dominguez, C.; Fragoso, J.M.; Posadas-Romero, C.; Vargas-Alarcón, G. The IL-10-1082 (Rs1800896) G Allele Is Associated with a Decreased Risk of Developing Premature Coronary Artery Disease and Some IL-10 Polymorphisms Were Associated with Clinical and Metabolic Parameters. The GEA Study. Cytokine 2018, 106, 12–18. [Google Scholar] [CrossRef]
- Aref, S.; Mohamed, A.; El Shehawy, H.; Azmy, E. Impact of IL-10 Gene Promoter -1082 (G/A) Polymorphism in B Cell Chronic Lymphocytic Leukemia. Comp. Clin. Pathol. 2020, 29, 777–785. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-10 Production by Effector T Cells: Th1 Cells Show Self Control. J. Exp. Med. 2007, 204, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Shi, Y.; Fan, B.; Fan, Z.; Ding, L.; Li, F.; Tu, W.; Jin, X.; Wang, J. The Interleukin-10 Promoter Polymorphism Rs1800872 (-592C>A), Contributes to Cancer Susceptibility: Meta-Analysis of 16 785 Cases and 19 713 Controls. PLoS ONE 2013, 8, e57246. [Google Scholar] [CrossRef] [PubMed]
- Fortis, C.; Foppoli, M.; Gianotti, L.; Galli, L.; Citterio, G.; Consogno, G.; Gentilini, O.; Braga, M. Increased Interleukin-10 Serum Levels in Patients with Solid Tumours. Cancer Lett. 1996, 104, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, S.; Marincola, F.; Riccardo Rossi, C.; Nitti, D.; Lise, M. The Multifaceted Relationship between IL-10 and Adaptive Immunity: Putting Together the Pieces of a Puzzle. Cytokine Growth Factor. Rev. 2004, 15, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, S. The Dual Role of IL-10. Trends Immunol. 2003, 24, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Gamaleldin, M.; Moussa, M.; Eldin Imbaby, S. Role of Interleukin-10 (1082G/A) and Splicing Factor 3B Subunit 1 (2098A/G) Gene Polymorphisms in Chronic Lymphocytic Leukemia. J. Appl. Hematol. 2022, 13, 76. [Google Scholar] [CrossRef]
- Mékinian, A.; Quinquenel, A.; Belkacem, K.A.; Kanoun, F.; Dondi, E.; Franck, E.; Boubaya, M.; Mhibik, M.; Baran-Marszak, F.; Letestu, R.; et al. Immuno-Regulatory Malignant B Cells Contribute to Chronic Lymphocytic Leukemia Progression. Cancer Gene Ther. 2023, 30, 1018–1028. [Google Scholar] [CrossRef]
- Drennan, S.; D’Avola, A.; Gao, Y.; Weigel, C.; Chrysostomou, E.; Steele, A.J.; Zenz, T.; Plass, C.; Johnson, P.W.; Williams, A.P.; et al. IL-10 Production by CLL Cells Is Enhanced in the Anergic IGHV Mutated Subset and Associates with Reduced DNA Methylation of the IL10 Locus. Leukemia 2017, 31, 1686–1694. [Google Scholar] [CrossRef]
- Koch, W.; Kastrati, A.; Böttiger, C.; Mehilli, J.; von Beckerath, N.; Schömig, A. Interleukin-10 and Tumor Necrosis Factor Gene Polymorphisms and Risk of Coronary Artery Disease and Myocardial Infarction. Atherosclerosis 2001, 159, 137–144. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, D.; Chen, B.; Li, Q.; Zhou, L.; Liu, F.; Chou, K.-Y.; Tao, L.; Lu, L.-M. Association of Interleukin-10 Promoter Polymorphisms and Corresponding Plasma Levels with Susceptibility to Laryngeal Squamous Cell Carcinoma. Oncol. Lett. 2014, 7, 1721–1727. [Google Scholar] [CrossRef]
- Yang, S.-L.; Huang, S.-J. Interleukin-10 Polymorphisms (Rs1800871, Rs1800872 and Rs1800896) and Periodontitis Risk: A Meta-Analysis. Arch. Oral. Biol. 2019, 97, 59–66. [Google Scholar] [CrossRef]
- Zdanov, A. Structural Analysis of Cytokines Comprising the IL-10 Family. Cytokine Growth Factor. Rev. 2010, 21, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Atzeni, F.; Sarzi-Puttini, P. Tumor Necrosis Factor. In Brenner’s Encyclopedia of Genetics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 229–231. ISBN 978-0-08-096156-9. [Google Scholar]
- Alhakeem, S.S.; McKenna, M.K.; Oben, K.Z.; Noothi, S.K.; Rivas, J.R.; Hildebrandt, G.C.; Fleischman, R.A.; Rangnekar, V.M.; Muthusamy, N.; Bondada, S. Chronic Lymphocytic Leukemia–Derived IL-10 Suppresses Antitumor Immunity. J. Immunol. 2018, 200, 4180–4189. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, C.; Manfroi, B.; Fillatreau, S. IL-10-Producing Regulatory B Cells and Plasmocytes: Molecular Mechanisms and Disease Relevance. Semin. Immunol. 2019, 44, 101323. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Han, F.; Lv, Y.; Liu, H.; Wan, Z.; Zhang, W.; Shi, M.; Pei, L.; Liu, L. TNF-α and LT-α Polymorphisms and the Risk of Leukemia: A Meta-Analysis. Tumori J. 2017, 103, 53–59. [Google Scholar] [CrossRef]
- SNPedia. Rs1800750. 2019. Available online: https://www.snpedia.com/index.php/Rs1800750 (accessed on 1 September 2023).
- SNPedia. Rs361525. 2020. Available online: https://www.snpedia.com/index.php/Rs361525 (accessed on 1 September 2023).
- Xu, T.; Kong, Z.; Zhao, H. Relationship Between Tumor Necrosis Factor-α Rs361525 Polymorphism and Gastric Cancer Risk: A Meta-Analysis. Front. Physiol. 2018, 9, 469. [Google Scholar] [CrossRef]
- Pashapour, S.; Saki, S.; Sadat Afraz, E.; Hamidi, Y.; Najd Hassan Bonab, L. Associations Between the TNF-Alpha-238 Gene (Rs361625) Polymorphisms and Lung Cancer: A Meta-Analysis. Jentashapir J. Cell. Mol. Biol. 2023, 14, 135172. [Google Scholar] [CrossRef]
- Zheng, M.; Li, J.; Fang, W.; Luo, L.; Ding, R.; Zeng, H.; Luo, H.; Lin, X.; Duan, C. The TNF-α Rs361525 and IFN-γ Rs2430561 Polymorphisms Are Associated with Liver Cirrhosis Risk: A Comprehensive Meta-Analysis. Front. Immunol. 2023, 14, 1129767. [Google Scholar] [CrossRef]
- Sadafi, S.; Ebrahimi, A.; Sadeghi, M.; Emami Aleagha, O. Association between Tumor Necrosis Factor-Alpha Polymorphisms (Rs361525, Rs1800629, Rs1799724, 1800630, and Rs1799964) and Risk of Psoriasis in Studies following Hardy-Weinberg Equilibrium: A Systematic Review and Meta-Analysis. Heliyon 2023, 9, e17552. [Google Scholar] [CrossRef]
- Kosałka-Węgiel, J.; Lichołai, S.; Dziedzina, S.; Milewski, M.; Kuszmiersz, P.; Rams, A.; Gąsior, J.; Matyja-Bednarczyk, A.; Kwiatkowska, H.; Korkosz, M.; et al. Genetic Association between TNFA Polymorphisms (Rs1799964 and Rs361525) and Susceptibility to Cancer in Systemic Sclerosis. Life 2022, 12, 698. [Google Scholar] [CrossRef] [PubMed]
- Domagala, M.; Ysebaert, L.; Ligat, L.; Lopez, F.; Fournié, J.-J.; Laurent, C.; Poupot, M. IL-10 Rescues CLL Survival through Repolarization of Inflammatory Nurse-like Cells. Cancers 2021, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- McCabe, C.E.; Jessen, E.; O’Brien, D.R.; Wiedmeier-Nutor, J.E.; Slager, S.L.; Braggio, E. Abstract 3352: Identifying Copy Number Variations in Chronic Lymphocytic Leukemia Using Targeted next Generation Sequencing. Cancer Res. 2022, 82, 3352. [Google Scholar] [CrossRef]
- Schweighofer, C.D.; Coombes, K.R.; Majewski, T.; Barron, L.L.; Lerner, S.; Sargent, R.L.; O’Brien, S.; Ferrajoli, A.; Wierda, W.G.; Czerniak, B.A.; et al. Genomic Variation by Whole-Genome SNP Mapping Arrays Predicts Time-to-Event Outcome in Patients with Chronic Lymphocytic Leukemia. J. Mol. Diagn. 2013, 15, 196–209. [Google Scholar] [CrossRef]
- Song, Y.; Fang, Q.; Mi, Y. Prognostic Significance of Copy Number Variation in B-Cell Acute Lymphoblastic Leukemia. Front. Oncol. 2022, 12, 981036. [Google Scholar] [CrossRef]
- Mollstedt, J.; Mansouri, L.; Rosenquist, R. Precision Diagnostics in Chronic Lymphocytic Leukemia: Past, Present and Future. Front. Oncol. 2023, 13, 1146486. [Google Scholar] [CrossRef]
- Balla, B.; Tripon, F.; Candea, M.; Banescu, C. Copy Number Variations and Gene Mutations Identified by Multiplex Ligation-Dependent Probe Amplification in Romanian Chronic Lymphocytic Leukemia Patients. J. Pers. Med. 2023, 13, 1239. [Google Scholar] [CrossRef]
- Gao, S.; Tang, K.; Chen, J.; Wang, J. The Single Nucleotide Polymorphisms of Interleukin-10 Are Associated with the Risk of Leukaemia: Evidence from 18 Case-Control Studies. Medicine 2020, 99, e23006. [Google Scholar] [CrossRef]
- Ovsepyan, V.A.; Gabdulkhakova, A.K.; Shubenkiva, A.A.; Zotina, E.N. Role of Interleukin-10 Gene Promoter Region Polymorphism in the Development of Chronic Lymphoid Leukemia. Bull. Exp. Biol. Med. 2015, 160, 275–277. [Google Scholar] [CrossRef]
- Zmorzyński, S.; Popek-Marciniec, S.; Szudy-Szczyrek, A.; Wojcierowska-Litwin, M.; Korszeń-Pilecka, I.; Chocholska, S.; Styk, W.; Hus, M.; Filip, A.A. The Association of GSTT1, GSTM1, and TNF-α Polymorphisms with the Risk and Outcome in Multiple Myeloma. Front. Oncol. 2019, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Q.-L.; Sun, W.; Yang, C.-J.; Tang, L.; Zhang, X.; Zhong, X.-M. Genetic Polymorphisms in Inflammatory Response Genes and Their Associations with Breast Cancer Risk. Croat. Med. J. 2014, 55, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhou, G.; Han, S.; Yuan, W.; Chen, S.; Fu, Z.; Li, D.; Zhang, H.; Li, D.; Pang, D. Association of TNF-α, TNFRSF1A and TNFRSF1B Gene Polymorphisms with the Risk of Sporadic Breast Cancer in Northeast Chinese Han Women. PLoS ONE 2014, 9, e101138. [Google Scholar] [CrossRef] [PubMed]
- Qidwai, T.; Khan, F. Tumour Necrosis Factor Gene Polymorphism and Disease Prevalence: TNF Gene Polymorphism and Disease Prevalence. Scand. J. Immunol. 2011, 74, 522–547. [Google Scholar] [CrossRef]
- Liu, N.; Liu, G.-J.; Liu, J. Genetic Association between TNF-α Promoter Polymorphism and Susceptibility to Squamous Cell Carcinoma, Basal Cell Carcinoma, and Melanoma: A Meta-Analysis. Oncotarget 2017, 8, 53873–53885. [Google Scholar] [CrossRef] [PubMed]
- Macedo, L.C.; De Cesare Quintero, F.; Pagliari-E-Silva, S.; Pagnano, K.B.B.; Rodrigues, C.; De Alencar, J.B.; Sell, A.M.; Visentainer, J.E.L. Association of TNF Polymorphisms with JAK2 (V617F) Myeloproliferative Neoplasms in Brazilian Patients. Blood Cells. Mol. Dis. 2016, 57, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Torres-Espíndola, L.M.; Velázquez-Cruz, R.; Falfán-Valencia, R.; Chavez-Pacheco, J.L.; Salcedo-Vargas, M.; De Jesús Nambo-Lucio, M.; Salinas-Lara, C.; Alemón-Medina, R.; Granados-Montiel, J.; Reyes-Servín, M.A.; et al. Genetic Polymorphism of Tumor Necrosis Factor Promoter Region and Susceptibility to Develop Hodgkin Lymphoma in a Mexican Population. Leuk. Lymphoma 2014, 55, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Invivoscribe Technologies, Inc. Instructions for Use IGH Somatic Hypermutation Assay v2.0. 2018. Available online: https://invivoscribe.com/uploads/products/informationalDownloads/280287.pdf (accessed on 8 November 2023).
- Hunt, S.E.; McLaren, W.; Gil, L.; Thormann, A.; Schuilenburg, H.; Sheppard, D.; Parton, A.; Armean, I.M.; Trevanion, S.J.; Flicek, P.; et al. Ensembl Variation Resources. Database 2018, 2018, 293. [Google Scholar] [CrossRef]
IGHV | p Value | |||
---|---|---|---|---|
Mutated (%) | Unmutated (%) | |||
CLL with no CNVs and mutations | 24 (19.2) | 21 (16.8) | ||
CLL with CNVs * | 40 (32.0) | 11 (8.8) | 0.009 | |
CLL with del13q ** | 14 (11.2) | 5 (4.0) | 0.67 | |
CLL with del11q ** | 3 (2.4) | 0 (0.0) | - | |
CLL with trisomy 12 ** | 5 (4.0) | 0 (0.0) | - | |
CLL with del17p ** | 2 (1.6) | 0 (0.0) | - | |
CLL with somatic mutations *** | 10 (8.0) | 6 (4.8) | 0.53 | |
CLL with NOTCH1 | 7 (5.6) | 1 (0.8) | 0.07 | |
CLL with SF3B1 | 3 (2.4) | 5 (4.0) | 0.41 | |
CLL with somatic mutations ** and CNVs * | 10(8.0) | 1 (0.8) | 0.02 |
Genotypes | CLL Group (% a) | Control Group (% b) | p Value | |
---|---|---|---|---|
Additive model | ||||
IL-10 rs1800896 | TT | 35.2 | 33.5 | |
TC | 50.4 | 47.7 | 0.97 | |
CC | 14.4 | 18.8 | 0.43 | |
Dominant model | ||||
TC + CC | 85.6 | 66.5 | 0.45 | |
Additive model | ||||
IL-10 rs1800872 | GG | 51.2 | 54.8 | |
GT | 40.8 | 39.7 | 0.73 | |
TT | 8 | 5.4 | 0.36 | |
Dominant model | ||||
GT + TT | 48.8 | 45.1 | 0.67 | |
TNF-α rs361525 | GG | 96.8 | 95.6 | 0.70 |
GA | 3.2 | 4.4 | ||
TNF-α rs1800750 | GG | 99.2 | 100 | 0.32 |
GA | 0.8 | 0 |
(a) | ||||
---|---|---|---|---|
Haplotype No. | Estimated Haplotypes for IL-10 SNPs | Relative Frequencies in Controls | Relative Frequencies in CLL Patients | p Value |
1 | TTGG | 0.13 | 0.10 | |
2 | TTGT | 0.16 | 0.17 | 0.53 |
3 | TTTT | 0.05 | 0.08 | 0.17 |
4 | TCGG | 0.24 | 0.27 | 0.43 |
5 | TCGT | 0.23 | 0.24 | 0.55 |
6 | TCTT | 0.01 | 0.00 | 1.00 |
7 | CCGG | 0.18 | 0.14 | 1.00 |
8 | CCGT | 0.01 | 0.00 | 1.00 |
(b) | ||||
Haplotype No. | Estimated Haplotypes for TNF-α SNPs | Relative Frequencies in Controls | Relative Frequencies in CLL Patients | p Value |
1 | GGGG | 0.96 | 0.97 | |
2 | GAGG | 0.04 | 0.02 | 0.42 |
3 | GAGA | 0.00 | 0.01 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balla, B.; Tripon, F.; Lazar, E.; Bănescu, C. Analysis of Mutational Status of IGHV, and Cytokine Polymorphisms as Prognostic Factors in Chronic Lymphocytic Leukemia: The Romanian Experience. Int. J. Mol. Sci. 2024, 25, 1799. https://doi.org/10.3390/ijms25031799
Balla B, Tripon F, Lazar E, Bănescu C. Analysis of Mutational Status of IGHV, and Cytokine Polymorphisms as Prognostic Factors in Chronic Lymphocytic Leukemia: The Romanian Experience. International Journal of Molecular Sciences. 2024; 25(3):1799. https://doi.org/10.3390/ijms25031799
Chicago/Turabian StyleBalla, Beata, Florin Tripon, Erzsebet Lazar, and Claudia Bănescu. 2024. "Analysis of Mutational Status of IGHV, and Cytokine Polymorphisms as Prognostic Factors in Chronic Lymphocytic Leukemia: The Romanian Experience" International Journal of Molecular Sciences 25, no. 3: 1799. https://doi.org/10.3390/ijms25031799
APA StyleBalla, B., Tripon, F., Lazar, E., & Bănescu, C. (2024). Analysis of Mutational Status of IGHV, and Cytokine Polymorphisms as Prognostic Factors in Chronic Lymphocytic Leukemia: The Romanian Experience. International Journal of Molecular Sciences, 25(3), 1799. https://doi.org/10.3390/ijms25031799