Development of PET Radioisotope Copper-64-Labeled Theranostic Immunoliposomes for EGFR Overexpressing Cancer-Targeted Therapy and Imaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of 64Cu-Immunoliposomes Encapsulating Doxorubicin
2.2. In Vitro Analysis of 64Cu-Dox-Immunoliposomes
2.3. In Vivo Therapeutic Efficacy
2.4. PET/CT Imaging of 64Cu-Immunoliposomes
2.5. Biodistribution of 64Cu-Immunoliposomes
2.6. Tumor Tissue Analysis
3. Materials and Methods
3.1. Reagents
3.2. Cell Lines and Culture
3.2.1. Cell Lines and Cell Culture
3.2.2. Flow Cytometric Analysis
3.3. Synthesis of DSPE-PEG2000-NOTA
3.3.1. Synthesis Process
3.3.2. MALDI-TOF/TOF MS Analysis
3.4. Preparation of Antibody-Conjugated Micelles
3.5. Preparation of Copper-64-Labeled Micelles
3.6. Preparation of 64Cu-Dox-Immunoliposomes
3.6.1. Liposome Preparation
3.6.2. Encapsulation of Doxorubicin into Liposomes
3.6.3. Post Insertion of Antibody-Micelles and 64Cu-Micelles to Dox-Liposomes
3.6.4. Characterization of 64Cu-Dox-Immunoliposomes
3.7. In Vitro Serum Stability
3.8. In Vitro Cell Binding Assay
3.9. In Vitro Cellular Uptake
3.10. In Vitro Cytotoxicity
3.11. Preparation of Tumor Xenograft Mouse Model
3.12. Antitumor Efficacy
3.13. Micro-PET Imaging
3.14. Tissue Distribution Analysis
3.14.1. Bio-Distribution Study of 64Cu-PCTA-Cetuximab
3.14.2. Bio-Distribution Study of 64Cu-Immunoliposomes
3.15. Confocal Microscopic Analysis of Liposome-Administered Tumor Tissue
3.16. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.L. Lung Cancer: Epidemiology and Screening. Surg. Clin. N. Am. 2022, 102, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Gelatti, A.C.Z.; Drilon, A.; Santini, F.C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer 2019, 137, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Brueckl, W.M.; Reck, M.; Rittmeyer, A.; Kollmeier, J.; Wesseler, C.; Wiest, G.H.; Christopoulos, P.; Stenzinger, A.; Tufman, A.; Hoffknecht, P.; et al. Efficacy of docetaxel plus ramucirumab as palliative second-line therapy following first-line chemotherapy plus immune-checkpoint-inhibitor combination treatment in patients with non-small cell lung cancer (NSCLC) UICC stage IV. Transl. Lung Cancer Res. 2021, 10, 3093–3105. [Google Scholar] [CrossRef]
- Yang, S.R.; Schultheis, A.M.; Yu, H.; Mandelker, D.; Ladanyi, M.; Buttner, R. Precision medicine in non-small cell lung cancer: Current applications and future directions. Semin. Cancer Biol. 2022, 84, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef]
- Kommineni, N.; Chaudhari, R.; Conde, J.; Tamburaci, S.; Cecen, B.; Chandra, P.; Prasad, R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater. Sci. Eng. 2023, 9, 4527–4557. [Google Scholar] [CrossRef]
- Indoria, S.; Singh, V.; Hsieh, M.F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int. J. Pharm. 2020, 582, 119314. [Google Scholar] [CrossRef]
- Shetty, A.; Chandra, S. Inorganic hybrid nanoparticles in cancer theranostics: Understanding their combinations for better clinical translation. Mater. Today Chem. 2020, 18, 100381. [Google Scholar] [CrossRef]
- Barenholz, Y. Doxil(R)—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Freimark, B.D.; Blezinger, H.P.; Florack, V.J.; Nordstrom, J.L.; Long, S.D.; Deshpande, D.S.; Nochumson, S.; Petrak, K.L. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: Cationic lipid complexes. J. Immunol. 1998, 160, 4580–4586. [Google Scholar] [CrossRef]
- Horowitz, A.T.; Barenholz, Y.; Gabizon, A.A. In vitro cytotoxicity of liposome-encapsulated doxorubicin: Dependence on liposome composition and drug release. Biochim. Biophys. Acta (BBA) Biomembr. 1992, 1109, 203–209. [Google Scholar] [CrossRef]
- Kedmi, R.; Ben-Arie, N.; Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 2010, 31, 6867–6875. [Google Scholar] [CrossRef]
- Panzner, E.A.; Jansons, V.K. Control of in vitro cytotoxicity of positively charged liposomes. J. Cancer Res. Clin. Oncol. 1979, 95, 29–37. [Google Scholar] [CrossRef]
- Parnham, M.J.; Wetzig, H. Toxicity screening of liposomes. Chem. Phys. Lipids 1993, 64, 263–274. [Google Scholar] [CrossRef]
- Knudsen, K.B.; Northeved, H.; Kumar, P.E.; Permin, A.; Gjetting, T.; Andresen, T.L.; Larsen, S.; Wegener, K.M.; Lykkesfeldt, J.; Jantzen, K.; et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine 2015, 11, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Filion, M.C.; Phillips, N.C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta (BBA) Biomembr. 1997, 1329, 345–356. [Google Scholar] [CrossRef]
- Szebeni, J.; Moghimi, S.M. Liposome triggering of innate immune responses: A perspective on benefits and adverse reactions. J. Liposome Res. 2009, 19, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Haber, E.; Afergan, E.; Epstein, H.; Gutman, D.; Koroukhov, N.; Ben-David, M.; Schachter, M.; Golomb, G. Route of administration-dependent anti-inflammatory effect of liposomal alendronate. J. Control. Release 2010, 148, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, M.; Mizrahy, S.; Peer, D. Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine 2011, 6, 1771–1785. [Google Scholar] [CrossRef] [PubMed]
- Dokka, S.; Toledo, D.; Shi, X.; Castranova, V.; Rojanasakul, Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res. 2000, 17, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Mozafari, M.R.; Reed, C.J.; Rostron, C. Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Pharmazie 2007, 62, 205–209. [Google Scholar]
- Landesman-Milo, D.; Peer, D. Altering the immune response with lipid-based nanoparticles. J. Control. Release 2012, 161, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Roursgaard, M.; Knudsen, K.B.; Northeved, H.; Persson, M.; Christensen, T.; Kumar, P.E.K.; Permin, A.; Andresen, T.L.; Gjetting, T.; Lykkesfeldt, J.; et al. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines. Toxicol. In Vitro 2016, 36, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Simberg, D.; Weisman, S.; Talmon, Y.; Faerman, A.; Shoshani, T.; Barenholz, Y. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J. Biol. Chem. 2003, 278, 39858–39865. [Google Scholar] [CrossRef] [PubMed]
- Zelphati, O.; Uyechi, L.S.; Barron, L.G.; Szoka, F.C., Jr. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1998, 1390, 119–133. [Google Scholar] [CrossRef]
- Varsano, S.; Frolkis, I.; Ophir, D. Expression and distribution of cell-membrane complement regulatory glycoproteins along the human respiratory tract. Am. J. Respir. Crit. Care Med. 1995, 152, 1087–1093. [Google Scholar] [CrossRef]
- Cullis, P.R.; Chonn, A.; Semple, S.C. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv. Drug Deliv. Rev. 1998, 32, 3–17. [Google Scholar] [CrossRef]
- Wilson, D.S.; Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999, 68, 611–647. [Google Scholar] [CrossRef]
- Gu, F.X.; Karnik, R.; Wang, A.Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R.S.; Farokhzad, O.C. Targeted nanoparticles for cancer therapy. Nanotoday 2007, 2, 14–21. [Google Scholar] [CrossRef]
- Dhar, S.; Gu, F.X.; Langer, R.; Farokhzad, O.C.; Lippard, S.J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. USA 2008, 105, 17356–17361. [Google Scholar] [CrossRef]
- Adams, G.P.; Weiner, L.M. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 2005, 23, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 2004, 56, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Weber, J. Review: Anti-CTLA-4 antibody ipilimumab: Case studies of clinical response and immune-related adverse events. Oncologist 2007, 12, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Weiner, L.M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327. [Google Scholar] [CrossRef]
- Johnston, A.P.; Kamphuis, M.M.; Such, G.K.; Scott, A.M.; Nice, E.C.; Heath, J.K.; Caruso, F. Targeting cancer cells: Controlling the binding and internalization of antibody-functionalized capsules. ACS Nano 2012, 6, 6667–6674. [Google Scholar] [CrossRef] [PubMed]
- Brissette, R.; Prendergast, J.K.; Goldstein, N.I. Identification of cancer targets and therapeutics using phage display. Curr. Opin. Drug Discov. Dev. 2006, 9, 363–369. [Google Scholar]
- Krag, D.N.; Shukla, G.S.; Shen, G.P.; Pero, S.; Ashikaga, T.; Fuller, S.; Weaver, D.L.; Burdette-Radoux, S.; Thomas, C. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res. 2006, 66, 7724–7733. [Google Scholar] [CrossRef] [PubMed]
- Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Zeng, Z.; Pu, K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem. Soc. Rev. 2022, 51, 566–593. [Google Scholar] [CrossRef]
- Li, H.; Kim, D.; Yao, Q.; Ge, H.; Chung, J.; Fan, J.; Wang, J.; Peng, X.; Yoon, J. Activity-Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image-Guided Surgery. Angew. Chem. Int. Ed. 2021, 60, 17268–17289. [Google Scholar] [CrossRef]
- Chomet, M.; van Dongen, G.; Vugts, D.J. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug. Chem. 2021, 32, 1315–1330. [Google Scholar] [CrossRef]
- Song, I.H.; Lee, T.S.; Park, Y.S.; Lee, J.S.; Lee, B.C.; Moon, B.S.; An, G.I.; Lee, H.W.; Kim, K.I.; Lee, Y.J.; et al. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model. J. Nucl. Med. 2016, 57, 1105–1111. [Google Scholar] [CrossRef]
- Song, I.H.; Jeong, M.S.; Hong, H.J.; Shin, J.I.; Park, Y.S.; Woo, S.K.; Moon, B.S.; Kim, K.I.; Lee, Y.J.; Kang, J.H.; et al. Development of a Theranostic Convergence Bioradiopharmaceutical for Immuno-PET Based Radioimmunotherapy of L1CAM in Cholangiocarcinoma Model. Clin. Cancer Res. 2019, 25, 6148–6159. [Google Scholar] [CrossRef]
- Cooper, M.S.; Ma, M.T.; Sunassee, K.; Shaw, K.P.; Williams, J.D.; Paul, R.L.; Donnelly, P.S.; Blower, P.J. Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: Labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug. Chem. 2012, 23, 1029–1039. [Google Scholar] [CrossRef]
- Allen, T.M.; Sapra, P.; Moase, E. Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell. Mol. Biol. Lett. 2002, 7, 889–894. [Google Scholar] [PubMed]
- Ferreira, T.M.; Coreta-Gomes, F.; Ollila, O.H.; Moreno, M.J.; Vaz, W.L.; Topgaard, D. Cholesterol and POPC segmental order parameters in lipid membranes: Solid state 1H-13C NMR and MD simulation studies. Phys. Chem. Chem. Phys. 2013, 15, 1976–1989. [Google Scholar] [CrossRef] [PubMed]
- Eliasen, R.; Andresen, T.L.; Larsen, J.B. PEG-Lipid Post Insertion into Drug Delivery Liposomes Quantified at the Single Liposome Level. Adv. Mater. Interfaces 2019, 6, 1801807. [Google Scholar] [CrossRef]
- Dadpour, S.; Mehrabian, A.; Arabsalmani, M.; Mirhadi, E.; Askarizadeh, A.; Mashreghi, M.; Jaafari, M.R. The role of size in PEGylated liposomal doxorubicin biodistribution and anti-tumour activity. IET Nanobiotechnol. 2022, 16, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Senior, J.; Crawley, J.C.; Gregoriadis, G. Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochim. Biophys. Acta (BBA) Gen. Subj. 1985, 839, 1–8. [Google Scholar] [CrossRef]
- Lee, H.J.; Ahn, B.N.; Yoon, E.J.; Paik, W.H.; Shim, C.K.; Lee, M.G. Pharmacokinetics and tissue distribution of adriamycin and adriamycinol after intravenous administration of adriamycin-loaded neutral proliposomes to rats. Int. J. Pharm. 1995, 121, 1–10. [Google Scholar] [CrossRef]
- Liu, F.; Liu, D. Serum independent liposome uptake by mouse liver. Biochim. Biophys. Acta (BBA) Biomembr. 1996, 1278, 5–11. [Google Scholar] [CrossRef]
- Ngo, W.; Ahmed, S.; Blackadar, C.; Bussin, B.; Ji, Q.; Mladjenovic, S.M.; Sepahi, Z.; Chan, W.C.W. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 2022, 185, 114238. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, T.; Liu, F.; Guo, X.; Xia, L.; Xie, Q.; Li, N.; Huang, H.; Yang, X.; Xin, Y.; et al. Synthesis and evaluation of 64Cu-radiolabeled NOTA-cetuximab (64Cu-NOTA-C225) for immuno-PET imaging of EGFR expression. Chin. J. Cancer Res. 2019, 31, 400–409. [Google Scholar] [CrossRef]
- Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin. Pharmacokinet. 2003, 42, 419–436. [Google Scholar] [CrossRef]
- Park, J.J.; Lee, T.S.; Son, J.J.; Chun, K.S.; Song, I.H.; Park, Y.S.; Kim, K.I.; Lee, Y.J.; Kang, J.H. Comparison of cell-labeling methods with 124I-FIAU and 64Cu-PTSM for cell tracking using chronic myelogenous leukemia cells expressing HSV1-tk and firefly luciferase. Cancer Biother. Radiopharm. 2012, 27, 719–728. [Google Scholar] [CrossRef]
Nanoparticles | Lipid Components | Ratio (Mole%) |
---|---|---|
Liposomes | POPC | 50 |
Cholesterol | 47 | |
DSPE-mPEG2000 | 2.9 | |
Rho-DOPE | 0.1 | |
PEG-micelles | DSPE-mPEG2000 | 80 |
DSPE-PEG2000-Mal | 20 |
Nanoparticles | Size (nm) * | Zeta-Potential (mV) * | Polydispersity Index | Doxorubicin Encapsulation Efficiency (%) |
---|---|---|---|---|
Liposomes (3%PEG) | 154.8 ± 2.4 ** | −3.6 ± 0.4 ** | 0.07 | - |
Immunoliposomes (5%PEG) | 154.3 ± 2.5 | −4.2 ± 1.4 | 0.14 | - |
Dox-liposomes (3%PEG) | 139.7 ± 2.9 | −3.1 ± 0.4 | 0.08 | 98.4 |
Dox-immunoliposomes (5%PEG) | 147.5 ± 4.0 | −2.4 ± 0.6 | 0.06 | 96.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.Y.; Kang, S.J.; Kim, M.W.; Jeong, I.-h.; Choi, M.J.; Jung, C.; Song, I.H.; Lee, T.S.; Park, Y.S. Development of PET Radioisotope Copper-64-Labeled Theranostic Immunoliposomes for EGFR Overexpressing Cancer-Targeted Therapy and Imaging. Int. J. Mol. Sci. 2024, 25, 1813. https://doi.org/10.3390/ijms25031813
Jeong HY, Kang SJ, Kim MW, Jeong I-h, Choi MJ, Jung C, Song IH, Lee TS, Park YS. Development of PET Radioisotope Copper-64-Labeled Theranostic Immunoliposomes for EGFR Overexpressing Cancer-Targeted Therapy and Imaging. International Journal of Molecular Sciences. 2024; 25(3):1813. https://doi.org/10.3390/ijms25031813
Chicago/Turabian StyleJeong, Hwa Yeon, Seong Jae Kang, Min Woo Kim, In-ho Jeong, Moon Jung Choi, Cheulhee Jung, In Ho Song, Tae Sup Lee, and Yong Serk Park. 2024. "Development of PET Radioisotope Copper-64-Labeled Theranostic Immunoliposomes for EGFR Overexpressing Cancer-Targeted Therapy and Imaging" International Journal of Molecular Sciences 25, no. 3: 1813. https://doi.org/10.3390/ijms25031813
APA StyleJeong, H. Y., Kang, S. J., Kim, M. W., Jeong, I. -h., Choi, M. J., Jung, C., Song, I. H., Lee, T. S., & Park, Y. S. (2024). Development of PET Radioisotope Copper-64-Labeled Theranostic Immunoliposomes for EGFR Overexpressing Cancer-Targeted Therapy and Imaging. International Journal of Molecular Sciences, 25(3), 1813. https://doi.org/10.3390/ijms25031813