Chronic Treatment with Nigella sativa Oil Exerts Antimanic Properties and Reduces Brain Inflammation in Rats
Abstract
:1. Introduction
2. Results
2.1. Chronic NS Treatment Exerts Positive Behavioral Outcomes in Rat Models of Depression and Mania
2.1.1. Sucrose Consumption
2.1.2. Social Interaction
2.1.3. Hyperactive/Mania-Like Behavior
2.2. Chronic NS Treatment Modulates the Levels of Inflammatory Mediators in Rat Brain
2.2.1. TNF-α and IL-6
2.2.2. PGE2 and LTB4
2.2.3. Nuclear P-p65
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chronic Treatment with NS
4.3. Behavioral Tests
4.3.1. Sucrose Consumption Test (SCT)
4.3.2. Open Field Test (OFT)
4.3.3. Three-Chamber Test (TCT)
4.3.4. Amphetamine-Induced Hyperactivity Test (AIHT)
4.4. Tissue Collection and Processing of the Samples
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koshak, A.; Koshak, E.; Heinrich, M. Medicinal Benefits of Nigella sativa in Bronchial Asthma: A Literature Review. Saudi Pharm. J. 2017, 25, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, Y.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. A Comprehensive Review of the Physicochemical, Quality and Nutritional Properties of Nigella sativa Oil. Food Rev. Int. 2019, 35, 342–362. [Google Scholar] [CrossRef]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A Review on Therapeutic Potential of Nigella sativa: A Miracle Herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.H.; Blunden, G. Pharmacological and Toxicological Properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Zaoui, A.; Cherrah, Y.; Alaoui, K.; Mahassine, N.; Amarouch, H.; Hassar, M. Effects of Nigella Sati6a Fixed Oil on Blood Homeostasis in Rat. J. Ethnopharmacol. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Pelegrin, S.; Galtier, F.; Chalançon, A.; Gagnol, J.P.; Barbanel, A.M.; Pélissier, Y.; Larroque, M.; Lepape, S.; Faucanié, M.; Gabillaud, I.; et al. Effects of Nigella sativa Seeds (Black Cumin) on Insulin Secretion and Lipid Profile: A Pilot Study in Healthy Volunteers. Br. J. Clin. Pharmacol. 2019, 85, 1607–1611. [Google Scholar] [CrossRef]
- Shaukat, A.; Zaidi, A.; Anwar, H.; Kizilbash, N. Mechanism of the Antidiabetic Action of Nigella sativa and Thymoquinone: A Review. Front. Nutr. 2023, 10, 1126272. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Parvardeh, S.; Nassiri-Asl, M.; Mansouri, M.T. Intracerebroventricular Administration of Thymoquinone, the Major Constituent of Nigella sativa Seeds, Suppresses Epileptic Seizures in Rats. Med. Sci. Monit. 2005, 11, BR106-10. [Google Scholar]
- Norouzi, F.; Abareshi, A.; Anaeigoudari, A.; Shafei, M.N.; Gholamnezhad, Z.; Saeedjalali, M.; Mohebbati, R.; Hosseini, M. The Effects of Nigella sativa on Sickness Behavior Induced by Lipopolysaccharide in Male Wistar Rats. Avicenna J. Phytomed. 2016, 6, 104–116. [Google Scholar]
- Javidi, S.; Razavi, B.M.; Hosseinzadeh, H. A Review of Neuropharmacology Effects of Nigella sativa and Its Main Component, Thymoquinone. Phytother. Res. 2016, 30, 1219–1229. [Google Scholar] [CrossRef]
- Perveen, T.; Haider, S.; Kanwal, S.; Haleem, D.J. Repeated Administration of Nigella sativa Decreases 5-HT Turnover and Produces Anxiolytic Effects in Rats. Pak. J. Pharm. Sci. 2009, 22, 139–144. [Google Scholar]
- Hosseinzadeh, H.; Jaafari, M.R.; AR Khoei, A.R.; Rahmani, M. Anti-Ischemic Effect of Nigella sativa L. Seed in Male Rats. Iran. J. Pharm. Res. 2006, 1, 53–58. [Google Scholar]
- Al-Ghamdi, M.S. The Anti-Inflammatory, Analgesic and Antipyretic Activity of Nigella sativa. J. Ethnophamacol. 2001, 76, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Ghannadi, A.; Hajhashemi, V.; Jafarabadi, H. An Investigation of the Analgesic and Anti-Inflammatory Effects of Nigella sativa Seed Polyphenols. J. Med. Food 2005, 8, 488–493. [Google Scholar] [CrossRef]
- Folarin, R.; Bakare, F.; Onamusi, B. Like Psychosis, like Dementia: Nigella sativa Oil Enhanced Olfactory and Amygdalic Phenotypes in Socially Isolated BALB/c Mice Model of Schizophrenia. Alzheimer’s Dement. 2021, 17, 55943. [Google Scholar] [CrossRef]
- Matsumoto, G.; Maciel, P.; Gilch, S.; Shimizu, S.; Fujikake, N.; Shin, M. Association Between Autophagy and Neurodegenerative Diseases. Front. Neurosci. 2018, 1, 255. [Google Scholar] [CrossRef]
- Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-Inflammatory Effects of the Nigella sativa Seed Extract, Thymoquinone, in Pancreatic Cancer Cells. HPB 2009, 11, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.; Azam, A.; Ganguly, A.; Anwar, S.; Parvez, M.S.A.; Punyamurtula, U.; Hasan, M.K. Anti-Inflammatory and Analgesic Activities of Black Cumin (BC, Nigella sativa L.) Extracts in In Vivo Model Systems. Bull. Natl. Res. Cent. 2022, 46, 26. [Google Scholar] [CrossRef]
- Vesa, S.C.; Chedea, V.S.; Bocsan, I.C.; Ancut, S.; Buzoianu, A.D. Nigella sativa’s Anti-Inflammatory and Antioxidative Effects in Experimental Inflammatio. Antioxidants 2020, 9, 921. [Google Scholar]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef]
- Burits, M.; Bucar, F. Antioxidant Activity of Nigella sativa Essential Oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M.; Mohammad Taghizadeh Kashani, L.; Mahboubi, M. Nigella sativa Fixed Oil as Alternative Treatment in Management of Pain in Arthritis Rheumatoid. Phytomedicine 2018, 46, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.L.; Hossain, M.S. Protective Effect of Black Seed Oil from Nigella sativa against Murine Cytomegalovirus Infection. Int. J. Immunopharmacol. 2000, 22, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Fatima Shad, K.; Soubra, W.; Cordato, D.J. The Role of Thymoquinone, a Major Constituent of Nigella sativa, in the Treatment of Inflammatory and Infectious Diseases. Clin. Exp. Pharmacol. Physiol. 2021, 48, 1445–1453. [Google Scholar] [CrossRef]
- Hosseini, A.; Rahimi, V.B.; Rakhshandeh, H.; Askari, V.R. Nigella sativa Oil Reduces LPS-Induced Microglial Inflammation: An Evaluation on M 1/M 2 Balance. Evid.-Based Complement. Altern. Med. 2022, 2022, 5639226. [Google Scholar] [CrossRef]
- Reza, M.; Gholamnezhad, Z.; Rezaee, R. Biomedicine & Pharmacotherapy A Qualitative and Quantitative Comparison of Crocus Sativus and Nigella sativa Immunomodulatory Effects. Biomed. Pharmacother. 2021, 140, 111774. [Google Scholar] [CrossRef]
- Montazeri, R.S.; Fatahi, S.; Sohouli, M.H.; Abu-Zaid, A.; Santos, H.O.; Găman, M.A.; Shidfar, F. The Effect of Nigella sativa on Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Food Biochem. 2021, 45, e13625. [Google Scholar] [CrossRef]
- Rashidmayvan, M.; Mohammadshahi, M.; Seyedian, S.S.; Haghighizadeh, M.H. The Effect of Nigella sativa Oil on Serum Levels of Inflammatory Markers, Liver Enzymes, Lipid Profile, Insulin and Fasting Blood Sugar in Patients with Non-Alcoholic Fatty Liver. J. Diabetes Metab. Disord. 2019, 18, 453–459. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and Clinical Effects of Nigella sativa and Its Constituent, Thymoquinone: A Review. J. Ethnopharmacol. 2016, 190, 372–386. [Google Scholar] [CrossRef]
- Gabarin, A. Anticancer Activity of Nigella sativa (Black Seed) and Its Relationship with the Thermal Processing and Quinone Composition of the Seed. Drug Des. Devel Ther. 2015, 9, 3119–3124. [Google Scholar]
- Wei, J.; Wang, B.; Chen, Y.; Wang, Q.; Ahmed, A.F.; Ahmed, A.F. The Immunomodulatory Effects of Active Ingredients from Nigella sativa in RAW264. 7 Cells Through NF-κ B/MAPK Signaling Pathways. Frontiers 2022, 9, 899797. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-ΚB Signaling Pathways. Nat. Immunol. 2011, 12, 695–708. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Ghosh, S. The NF-B Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Rayet, B.; Gélinas, C. Aberrant Rel/Nfkb Genes and Activity in Human Cancer. Oncogene 1999, 18, 6938–6947. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Kumar, R. Crosstalk between NFkB and Glucocorticoid Signaling: A Potential Target of Breast Cancer Therapy. Cancer Lett. 2012, 322, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-ΚB System: A Treasure Trove for Drug Development. Nat. Rev. Drug Discov. 2004, 3, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Yde, P.; Mengel, B.; Jensen, M.H.; Krishna, S.; Trusina, A. Modeling the NF-B Mediated Inflammatory Response Predicts Cytokine Waves in Tissue. BMC Syst. Biol. 2011, 5, 115. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhou, Y.; Shen, P. Cellular & Molecular Immunology NF-ΚB and Its Regulation on the Immune System. Immunology 2004, 1, 343–350. [Google Scholar]
- Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-KappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ma, Q.; Tang, H.; Zou, X.; Guo, X.; Hu, Y.; Zhou, K.; Liu, R. LTB4 Promotes Acute Lung Injury via Upregulating the PLC ε-1/TLR4/NF-κ B Pathway in One-Lung Ventilation. Dis. Markers 2022, 2022, 1839341. [Google Scholar] [CrossRef]
- Tridon, V.; May, M.J.; Ghosh, S.; Dantzer, R.; Ame, T. NFkB Activates In Vivo the Synthesis of Inducible Cox-2 in the Brain. J. Cereb. Blood Flow Metab. 2005, 25, 1047–1059. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, M.; Rao, R.; Inoue, H.; Hao, C. C/EBPβ and and Its Binding Element Are Required for NFκB-Induced COX2 Expression following Hypertonic Stress. J. Biol. Chem. 2005, 280, 16354–16359. [Google Scholar] [CrossRef]
- Mashima, R.; Okuyama, T. Redox Biology the Role of Lipoxygenases in Pathophysiology; New Insights and Future Perspectives. Redox Biol. 2015, 6, 297–310. [Google Scholar] [CrossRef]
- Rostevanov, I.S.; Betesh-abay, B.; Nassar, A.; Rubin, E.; Uzzan, S.; Kaplanski, J.; Biton, L.; Azab, A.N. Montelukast Induces Bene Fi Cial Behavioral Outcomes and Reduces in Fl Ammation in Male and Female Rats. Frontiers 2022, 13, 981440. [Google Scholar] [CrossRef]
- Minigh, J. Leukotriene B4. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; Volume 30, pp. 1–4. [Google Scholar] [CrossRef]
- Ricciotti, E.; Fitzgerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Fan, C.; Wang, P.; Li, Y.; Yang, M.; Yu, S.Y. Hippocampal CA1 ΒcaMKII Mediates Neuroinflammatory Responses via COX-2/PGE2 Signaling Pathways in Depression. J. Neuroinflammation 2018, 15, 388. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liang, X.; Wang, Q.; Wilson, E.N.; Lam, R.; Wang, J.; Kong, W.; Tsai, C.; Pan, T.; Larkin, P.B.; et al. PGE2 Signaling via the Neuronal EP2 Receptor Increases Injury in a Model of Cerebral Ischemia. Proc. Natl. Acad. Sci. USA 2019, 116, 10019–10024. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, D.; Caso, J.R.; Javier Meana, J.; Callado, L.F.; Madrigal, J.L.M.; García-Bueno, B.; Leza, J.C. Intracellular Inflammatory and Antioxidant Pathways in Postmortem Frontal Cortex of Subjects with Major Depression: Effect of Antidepressants. J. Neuroinflammation 2018, 15, 251. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Xin, X.; Yang, W.; Li, M.; Li, L.; Liu, X. Etanercept Reduces Anxiety and Depression in Psoriasis Patients, and Sustained Depression Correlates with Reduced Therapeutic Response to Etanercept. Ann. Dermatol. Venereol. 2019, 146, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. A Review on Possible Therapeutic Effect of Nigella sativa and Thymoquinone in Neurodegenerative Diseases. CNS Neurol. Disord. Drug Targets 2018, 17, 412–420. [Google Scholar] [CrossRef]
- Aboubakr, M.; Elshafae, S.M.; Abdelhiee, E.Y.; Fadl, S.E.; Soliman, A.; Abdelkader, A.; Abdel-Daim, M.M.; Bayoumi, K.A.; Baty, R.S.; Elgendy, E.; et al. Antioxidant and Anti-Inflammatory Potential of Thymoquinone and Lycopene Mitigate the Chlorpyrifos-Induced Toxic Neuropathy. Pharmaceuticals 2021, 14, 940. [Google Scholar] [CrossRef]
- Parlar, A.; Arslan, S.O. Thymoquinone Exhibits Anti-Inflammatory, Antioxidant, and Immunomodulatory Effects on Allergic Airway Inflammation. Arch. Clin. Exp. Med. 2019, 4, 60–65. [Google Scholar] [CrossRef]
- Khader, M.; Eckl, P.M. Thymoquinone: An Emerging Natural Drug with a Wide Range of Medical Applications. Iran J. Basic Med. Sci. 2014, 17, 950–957. [Google Scholar]
- Karelson, E.; Laasik, J.; Sillard, R. Regulation of Adenylate Cyclase by Galanin, Neuropeptide Y, Secretin and Vasoactive Intestinal Polypeptide in Rat Frontal Cortex, Hippocampus and Hypothalamus. Neuropeptides 1995, 28, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bargi, R.; Asgharzadeh, F.; Beheshti, F.; Hosseini, M.; Sadeghnia, H.R.; Khazaei, M. The Effects of Thymoquinone on Hippocampal Cytokine Level, Brain Oxidative Stress Status and Memory Deficits Induced by Lipopolysaccharide in Rats. Cytokine 2017, 96, 173–184. [Google Scholar] [CrossRef]
- Tafheem, Y.; Pattan, N. An Overview on Composition and Therapeutic Potentials of the Black Seed (Nigella sativa). Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 1966–1975. [Google Scholar] [CrossRef]
- Kadil, Y.; Tabyoui, I.; Badre, L.; Tahiri, N.J.; Filali, H. Exploration of the Antidepressant-Like Effect of Repeated Administration of Nigella Fixed Oil in Rats. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Kadil, Y.; Tabyaoui, I.; Badre, L.; Jouti, N.T.; Filali, H. Evaluation of the Antidepressant-Like Effect of Chronic Administration of Nigella Fixed Oil Versus Fluoxetine in Rats. CNS Neurol. Disord. Drug Targets 2021, 21, 533–539. [Google Scholar] [CrossRef]
- Cheema, M.A.R.; Nawaz, S.; Gul, S.; Salman, T.; Naqvi, S.; Dar, A.; Haleem, D.J. Neurochemical and Behavioral Effects of Nigella sativa and Olea Europaea Oil in Rats. Nutr. Neurosci. 2018, 21, 185–194. [Google Scholar] [CrossRef]
- Norris, G.T.; Kipnis, J. Immune Cells and CNS Physiology: Microglia and Beyond. J. Exp. Med. 2019, 216, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol. Rev. 2018, 98, 504. [Google Scholar] [CrossRef]
- Yuan, N.; Chen, Y.; Xia, Y.; Dai, J.; Liu, C. Inflammation-Related Biomarkers in Major Psychiatric Disorders: A Cross-Disorder Assessment of Reproducibility and Specificity in 43 Meta-Analyses. Transl. Psychiatry 2019, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Afridi, R.; Seol, S.; Kang, H.J.; Suk, K. Brain-Immune Interactions in Neuropsychiatric Disorders: Lessons from Transcriptome Studies for Molecular Targeting. Biochem. Pharmacol. 2021, 188, 114532. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Ringel, K.; Kubera, M.; Berk, M.; Rybakowski, J. Increased Autoimmune Activity against 5-HT: A Key Component of Depression That Is Associated with Inflammation and Activation of Cell-Mediated Immunity, and with Severity and Staging of Depression. J. Affect. Disord. 2012, 136, 386–392. [Google Scholar] [CrossRef]
- Roohi, E.; Jaafari, N.; Hashemian, F. On Inflammatory Hypothesis of Depression: What Is the Role of IL-6 in the Middle of the Chaos? J. Neuroinflammation 2021, 18, 45. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A Meta-Analysis of Blood Cytokine Network Alterations in Psychiatric Patients: Comparisons between Schizophrenia, Bipolar Disorder and Depression. Nat. Publ. Group 2016, 21, 1696–1709. [Google Scholar] [CrossRef]
- Wang, A.K.; Miller, B.J. Meta-Analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons between Schizophrenia, Bipolar Disorder, and Depression. Schizophr. Bull. 2018, 44, 75–83. [Google Scholar] [CrossRef]
- Kappelmann, N.; Lewis, G.; Dantzer, R.; Jones, P.B.; Khandaker, G.M. Antidepressant Activity of Anti-Cytokine Treatment: A Systematic Review and Meta-Analysis of Clinical Trials of Chronic Inflammatory Conditions. Mol. Psychiatry 2018, 23, 335–343. [Google Scholar] [CrossRef]
- Scaini, G.; Mason, B.L.; Diaz, A.P.; Jha, M.K.; Soares, J.C.; Trivedi, M.H.; Quevedo, J. Dysregulation of Mitochondrial Dynamics, Mitophagy and Apoptosis in Major Depressive Disorder: Does Inflammation Play a Role? Mol. Psychiatry 2022, 27, 1095–1102. [Google Scholar] [CrossRef]
- Shelton, R.C.; Claiborne, J.; Sidoryk-Wegrzynowicz, M.; Reddy, R.; Aschner, M.; Lewis, D.A.; Mirnics, K. Altered Expression of Genes Involved in Inflammation and Apoptosis in Frontal Cortex in Major Depression. Mol. Psychiatry 2011, 16, 751–762. [Google Scholar] [CrossRef]
- Köhler-Forsberg, O.; Lydholm, C.N.; Hjorthøj, C.; Nordentoft, M.; Mors, O.; Benros, M.E. Efficacy of Anti-Inflammatory Treatment on Major Depressive Disorder or Depressive Symptoms: Meta-Analysis of Clinical Trials. Acta Psychiatr. Scand. 2019, 139, 404–419. [Google Scholar] [CrossRef]
- Brás, J.P.; Bravo, J.; Freitas, J.; Barbosa, M.A.; Santos, S.G.; Summavielle, T.; Almeida, M.I. TNF-Alpha-Induced Microglia Activation Requires MiR-342: Impact on NF-KB Signaling and Neurotoxicity. Cell Death Dis. 2020, 11, 415. [Google Scholar] [CrossRef]
- Nazari, M.; Khodadadi, H.; Fathalizadeh, J.; Hassanshahi, G.; Bidaki, R.; Ayoobi, F.; Hajebrahimi, B.; Bagheri, F.; Arababadi, M. Defective NF-KB Transcription Factor as the Mediator of Inflammatory Responses: A Study on Depressed Iranian Medical Students. Clin. Lab. 2013, 59, 827–830. [Google Scholar] [CrossRef]
- Olugbemide, A.S.; Ben-Azu, B.; Bakre, A.G.; Ajayi, A.M.; Femi-Akinlosotu, O.; Umukoro, S. Naringenin Improves Depressive- and Anxiety-like Behaviors in Mice Exposed to Repeated Hypoxic Stress through Modulation of Oxido-Inflammatory Mediators and NF-KB/BDNF Expressions. Brain Res. Bull. 2021, 169, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Uzzan, S.; Azab, A.N. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021, 26, 2368. [Google Scholar] [CrossRef] [PubMed]
- Müller, N.; Schwarz, M.; Dehning, S.; Douhe, A.; Cerovecki, A.; Goldstein-Müller, B.; Spellmann, I.; Hetzel, G.; Kleindienst, N.; Möller, H.; et al. The Cyclooxygenase-2 Inhibitor Celecoxib Has Therapeutic Effects in Major Depression: Results of a Double-Blind, Randomized, Placebo Controlled, Add-on Pilot Study to Reboxetine. Mol. Psychiatry 2006, 11, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Müller, N.; Riedel, M.; Scheppach, C.; Brandstätter, B.; Sokullu, S.; Krampe, K.; Ulmschneider, M.; Engel, R.; Möller, H.; Schwarz, M. Beneficial Antipsychotic Effects of Celecoxib Add-on Therapy Compared to Risperidone Alone in Schizophrenia. Am. J. Psychiatry 2002, 159, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Hosseini, F.; Modabbernia, A.; Ashrafi, M.; Akhondzadeh, S. Effect of Celecoxib Add-on Treatment on Symptoms and Serum IL-6 Concentrations in Patients with Major Depressive Disorder: Randomized Double-Blind Placebo-Controlled Study. J. Affect. Disord. 2012, 141, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Arabzadeh, S.; Ameli, N.; Zeinoddini, A.; Rezaei, F.; Farokhnia, M.; Mohammadinejad, P.; Ghaleiha, A.; Akhondzadeh, S. Celecoxib Adjunctive Therapy for Acute Bipolar Mania: A Randomized, Double-Blind, Placebo-Controlled Trial. Bipolar Disord. 2015, 17, 606–614. [Google Scholar] [CrossRef]
- Arana, G.; Forbes, R. Dexamethasone for the Treatment of Depression: A Preliminary Report. J. Clin. Psychiatry 1991, 52, 304–306. [Google Scholar]
- DeBattista, C.; Posener, J.; Kalehzan, B.; Schatzberg, A. Acute Antidepressant Effects of Intravenous Hydrocortisone and CRH in Depressed Patients: A Double-Blind, Placebo-Controlled Study. Am. J. Psychiatry 2000, 157, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Lee, T.Y.; Kwak, Y.B.; Yoon, Y.B.; Kim, M.; Kwon, J.S. Adjunctive Use of Anti-Inflammatory Drugs for Schizophrenia: A Meta-Analytic Investigation of Randomized Controlled Trials. Aust. N. Z. J. Psychiatry 2019, 53, 742–759. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Zhang, Y.; Li, J.; Li, Z.; Zhang, Y.; Ye, X.; Tang, Q.; Sun, W.; Köhler-Forsberg, O.; Hoang, T.; et al. Comparative Efficacy and Acceptability of Anti-Inflammatory Agents on Major Depressive Disorder: A Network Meta-Analysis. Front. Pharmacol. 2021, 12, 691200. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.J.; Cole, S.W.; Bower, J.E.; Irwin, M.R.; Taylor, S.E.; Arevalo, J.; Fuligni, A.J. Depressive Symptoms and Immune Transcriptional Profiles in Late Adolescents. Brain Behav. Immun. 2019, 80, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.E.; Walker, A.K.; Weickert, C.S. Neuroinflammation in Schizophrenia: The Role of Nuclear Factor Kappa B. Transl. Psychiatry 2021, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Roman, K.M.; Jenkins, A.K.; Lewis, D.A.; Volk, D.W. Involvement of the Nuclear Factor-ΚB Transcriptional Complex in Prefrontal Cortex Immune Activation in Bipolar Disorder. Transl. Psychiatry 2021, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Guleria, R.S. Involvement of Nuclear Factor-ΚB in Inflammation and Neuronal Plasticity Associated with Post-Traumatic Stress Disorder. Cells 2022, 11, 2034. [Google Scholar] [CrossRef]
- Chiang, T.I.; Hung, Y.Y.; Wu, M.K.; Huang, Y.L.; Kang, H.Y. TNIP2 Mediates GRβ-Promoted Inflammation and Is Associated with Severity of Major Depressive Disorder. Brain Behav. Immun. 2021, 95, 454–461. [Google Scholar] [CrossRef]
- Murphy, C.E.; Walker, A.K.; O’Donnell, M.; Galletly, C.; Lloyd, A.R.; Liu, D.; Weickert, C.S.; Weickert, T.W. Peripheral NF-ΚB Dysregulation in People with Schizophrenia Drives Inflammation: Putative Anti-Inflammatory Functions of NF-ΚB Kinases. Transl. Psychiatry 2022, 12, 21. [Google Scholar] [CrossRef]
- Shvartsur, R.; Agam, G.; Shnaider, A.; Uzzan, S.; Nassar, A.; Jabarin, A.; Abu-Freha, N.; Meir, K.; Azab, A.N. Safety and Efficacy of Combined Low-Dose Lithium and Low-Dose Aspirin: A Pharmacological and Behavioral Proof-of-Concept Study in Rats. Pharmaceutics 2021, 13, 1827. [Google Scholar] [CrossRef]
- Shvartsur, R.; Agam, G.; Uzzan, S.; Azab, A.N. Low-Dose Aspirin Augments the Anti-Inflammatory Effects of Low-Dose Lithium in Lipopolysaccharide-Treated Rats. Pharmaceutics 2022, 14, 901. [Google Scholar] [CrossRef]
- Perveen, T.; Haider, S.; Zuberi, N.A.; Saleem, S.; Sadaf, S.; Batool, Z. Increased 5-HT Levels Following Repeated Administration of Nigella sativa L. (Black Seed) Oil Produce Antidepressant Effects in Rats. Sci. Pharm. 2014, 82, 161–170. [Google Scholar] [CrossRef]
- Zadeh, A.R.; Eghbal, A.F.; Mirghazanfari, S.M.; Ghasemzadeh, M.R.; Nassireslami, E.; Donyavi, V. Nigella sativa Extract in the Treatment of Depression and Serum Brain-Derived Neurotrophic Factor (BDNF) Levels. J. Res. Med. Sci. 2022, 27, 28. [Google Scholar] [CrossRef]
- Bin Sayeed, M.S.; Shams, T.; Fahim Hossain, S.; Rahman, M.R.; Mostofa, A.; Fahim Kadir, M.; Mahmood, S.; Asaduzzaman, M. Nigella sativa L. Seeds Modulate Mood, Anxiety and Cognition in Healthy Adolescent Males. J. Ethnopharmacol. 2014, 152, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Bin Sayeed, M.S.; Asaduzzaman, M.; Morshed, H.; Hossain, M.M.; Kadir, M.F.; Rahman, M.R. The Effect of Nigella sativa Linn. Seed on Memory, Attention and Cognition in Healthy Human Volunteers. J. Ethnopharmacol. 2013, 148, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Roohbakhsh, A.; Moshiri, M.; Salehi Kakhki, A.; Iranshahy, M.; Amin, F.; Etemad, L. Thymoquinone Abrogates Methamphetamine-Induced Striatal Neurotoxicity and Hyperlocomotor Activity in Mice. Res. Pharm. Sci. 2021, 16, 391–399. [Google Scholar] [CrossRef]
- Taracha, E.; Kaniuga, E.; Chrapusta, S.J.; Maciejak, P.; Sliwa, L.; Hamed, A.; Krząścik, P. Diverging Frequency-Modulated 50-KHz Vocalization, Locomotor Activity and Conditioned Place Preference Effects in Rats given Repeated Amphetamine Treatment. Neuropharmacology 2014, 83, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.M. DARK Side of Amphetamine and Analogues: Pharmacology, Syndromic Manifestation, and Management of Amphetamine Addiction. ACS Chem. Neurosci. 2018, 9, 2299–2303. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Sharfaraz, A.; Dutta, A.; Ahsan, A.; Masud, M.A.; Ahmed, I.A.; Goh, B.H.; Urbi, Z.; Sarker, M.M.R.; Ming, L.C. A Review of Ethnobotany, Phytochemistry, Antimicrobial Pharmacology and Toxicology of Nigella sativa L. Biomed. Pharmacother. 2021, 143, 112182. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, T.; Gómez-Serranillos, M.P.; Palomino, O.M.; Arce, C.; Carretero, M.E. Nigella sativa L. Seed Extract Modulates the Neurotransmitter Amino Acids Release in Cultured Neurons In Vitro. J. Biomed. Biotechnol. 2010, 2010, 398312. [Google Scholar] [CrossRef] [PubMed]
- Modabbernia, A.; Taslimi, S.; Brietzke, E.; Ashrafi, M. Cytokine Alterations in Bipolar Disorder: A Meta-Analysis of 30 Studies. Biol. Psychiatry 2013, 74, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.E.; Teixeira, A.L. Inflammation in Psychiatric Disorders: What Comes First? Ann. N. Y. Acad. Sci. 2019, 1437, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral Cytokine and Chemokine Alterations in Depression: A Meta-Analysis of 82 Studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Rhie, S.J.; Jung, E.; Shim, I. The Role of Neuroinflammation on Pathogenesis of Affective Disorders. J. Exerc. Rehabil. 2020, 16, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Rahmawati, N.A.; Karimah, A.; Amin, M.M. Inflammation in Depression. JPS 2021, 10, 50–56. [Google Scholar] [CrossRef]
- Bauer, M.E.; Teixeira, L. Neuroinflammation in Mood Disorders: Role of Regulatory Immune Cells. Neuroimmunomodulation 2021, 28, 99–107. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Haroon, E.; Miller, A.H.; Strauss, G.P.; Peter, F.; Miller, B.J. TNF-α and IL-6 Are Associated with the Deficit Syndrome and Negative Symptoms in Patients with Chronic Schizophrenia. Schizophr. Res. 2018, 199, 281–284. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Jiang, Y.; Cao, Z.; Wu, M.; Zhang, Y.; Wang, J. IL-6 and IL-8 Are Likely Associated with Psychological Status in Treatment Naïve General Population. J. Affect. Disord. 2022, 298, 337–344. [Google Scholar] [CrossRef]
- Meyer, J.M.; McEvoy, J.P.; Davis, V.G.; Goff, D.C.; Nasrallah, H.A.; Davis, S.M.; Hsiao, J.K.; Swartz, M.S.; Stroup, T.S.; Lieberman, J.A. Inflammatory Markers in Schizophrenia: Comparing Antipsychotic Effects in Phase 1 of the Clinical Antipsychotic Trials of Intervention Effectiveness Study. Biol. Psychiatry 2009, 66, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Purves-Tyson, T.D.; Weber-Stadlbauer, U.; Richetto, J.; Rothmond, D.A.; Labouesse, M.A.; Polesel, M.; Robinson, K.; Shannon Weickert, C.; Meyer, U. Increased Levels of Midbrain Immune-Related Transcripts in Schizophrenia and in Murine Offspring after Maternal Immune Activation. Mol. Psychiatry 2019, 26, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.; Sharon-Granit, Y.; Azab, A.N. Psychotropic Drugs Attenuate Lipopolysaccharide-Induced Hypothermia by Altering Hypothalamic Levels of Inflammatory Mediators in Rats. Neurosci. Lett. 2016, 626, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.; Azab, A.N. Effects of Lithium on Inflammation. ACS Chem. Neurosci. 2014, 5, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Troib, A.; Azab, A.N. Effects of Psychotropic Drugs on Nuclear Factor Kappa B. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1198–1208. [Google Scholar] [PubMed]
- Tourjman, V.; Marie-Ève, K.; Kouassi, E.; Potvin, S. In Vivo Immunomodulatory Effects of Antipsychotics on Inflammatory Mediators: A Review. Adv. Biosci. Biotechnol. 2012, 3, 551–565. [Google Scholar] [CrossRef]
- Mohit, M.; Farrokhzad, A.; Faraji, S.N.; Heidarzadeh-Esfahani, N.; Kafeshani, M. Effect of Nigella sativa L. Supplementation on Inflammatory and Oxidative Stress Indicators: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Complement. Ther. Med. 2020, 54, 102535. [Google Scholar] [CrossRef]
- Kavyani, Z.; Musazadeh, V.; Golpour-hamedani, S.; Moridpour, A.H.; Vajdi, M.; Askari, G. The Effect of Nigella sativa (Black Seed) on Biomarkers of Inflammation and Oxidative Stress: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Inflammopharmacology 2023, 31, 1149–1165. [Google Scholar] [CrossRef]
- El-Naggar, T.; Carretero, M.E.; Arce, C.; Gómez-Serranillos, M.P. Methanol Extract of Nigella sativa Seed Induces Changes in the Levels of Neurotransmitter Amino Acids in Male Rat Brain Regions. Pharm. Biol. 2017, 55, 1415–1422. [Google Scholar] [CrossRef]
- Perrone, M.G.; Centonze, A.; Miciaccia, M.; Ferorelli, S.; Scilimati, A. Cyclooxygenase Inhibition Safety and Efficacy in Inflammation-Based Psychiatric Disorders. Molecules 2020, 25, 5388. [Google Scholar] [CrossRef]
- Dominiak, M.; Adam, G.; Sikorska, M.; Mierzejewski, P.; Wojnar, M. Acetylsalicylic Acid and Mood Disorders: A Systematic Review. Pharmaceuticals 2023, 16, 67. [Google Scholar] [CrossRef] [PubMed]
- Müller, N. COX-2 Inhibitors, Aspirin, and Other Potential Anti-Inflammatory Treatments for Psychiatric Disorders Inflammation and Depression Risk. Front. Psychiatry 2019, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Mohebbati, R.; Abbasnezhad, A. Effects of Nigella sativa on Endothelial Dysfunction in Diabetes Mellitus: A Review. J. Ethnopharmacol. 2020, 252, 112585. [Google Scholar] [CrossRef] [PubMed]
- El-Dakhakhny, M.; Madi, N.J.; Lembert, N.; Ammon, H.P.T. Nigella sativa Oil, Nigellone and Derived Thymoquinone Inhibit Synthesis of 5-Lipoxygenase Products in Polymorphonuclear Leukocytes from Rats. J. Ethnopharmacol. 2002, 81, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.; Tornhamre, S. Inhibition of 5-Lipoxygenase and Leukotriene C4 Synthase in Human Blood Cells by Thymoquinone. J. Enzyme Inhib. Med. Chem. 2004, 19, 431–436. [Google Scholar] [CrossRef] [PubMed]
- El Gazzar, M.; El Mezayen, R.; Nicolls, M.R.; Marecki, J.C.; Dreskin, S.C. Downregulation of Leukotriene Biosynthesis by Thymoquinone Attenuates Airway Inflammation in a Mouse Model of Allergic Asthma. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Kordestani, Z.; Shahrokhi-Farjah, M.; Rouholamini, S.E.Y.; Saberi, A. Reduced IKK/NF- KB Expression by Nigella sativa Extract in Breast Cancer. Middle East J. Cancer 2020, 11, 150–158. [Google Scholar] [CrossRef]
- Agung, I.I.W.; Kalim, H.; Siti Chandra, W.B.; Rahardjo, B. Computational Analysis For Revealing The Role of Thymoquinone (Active Compound From Ethanolic Extract of Nigella sativa) as Inhibitor of P65 NF-Kb Activation in Preclampsia Treatment. Int. J. Pharm. Clin. Res. 2016, 8, 297–300. [Google Scholar]
- Heissmeyer, V.; Krappmann, D.; Wulczyn, F.G.; Scheidereit, C. NF-ΚB P105 Is a Target of IκB Kinases and Controls Signal Induction of Bcl-3-P50 Complexes. EMBO J. 1999, 18, 4766–4778. [Google Scholar] [CrossRef]
- Antonia, R.J.; Hagan, R.S.; Baldwin, A.S. Expanding the View of IKK: New Substrates and New Biology. Trends Cell Biol. 2021, 31, 166–178. [Google Scholar] [CrossRef]
- Xu, G.; Lo, Y.C.; Li, Q.; Napolitano, G.; Wu, X.; Jiang, X.; Dreano, M.; Karin, M.; Wu, H. Crystal Structure of Inhibitor of Κb Kinase β. Nature 2011, 472, 325–330. [Google Scholar] [CrossRef]
- Pippione, A.C.; Federico, A.; Ducime, A.; Sainas, S.; Boschi, D.; Barge, A.; Lupino, E.; Piccinini, M.; Kubbutat, M.; Contreras, J.M.; et al. 4-Hydroxy-: N-[3,5-Bis(Trifluoromethyl)Phenyl]-1,2,5-Thiadiazole-3-Carboxamide: A Novel Inhibitor of the Canonical NF-ΚB Cascade. Medchemcomm 2017, 8, 1850–1855. [Google Scholar] [CrossRef]
- Lin, Y.Z.; Yao, S.Y.; Veach, R.A.; Torgerson, T.R.; Hawiger, J. Inhibition of Nuclear Translocation of Transcription Factor NF-Kappa B by a Synthetic Peptide Containing a Cell Membrane-Permeable Motif and Nuclear Localization Sequence. J. Biol. Chem. 1995, 270, 14255–14258. [Google Scholar] [CrossRef]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory Action of Glucocorticoids—New Mechanisms for Old Drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The Gut Microbiome in Neurological Disorders. Lancet Neurol. 2020, 19, 179–194. [Google Scholar] [CrossRef]
- Habib, N.; Choudhry, S. HPLC Quantification of Thymoquinone Extracted from Nigella sativa L. (Ranunculaceae) Seeds and Antibacterial Activity of Its Extracts against Bacillus Species. Evid. -Based Complement. Altern. Med. 2021, 2021, 6645680. [Google Scholar] [CrossRef]
- Al Wafai, R.J. Nigella sativa and Thymoquinone Suppress Cyclooxygenase-2 and Oxidative Stress in Pancreatic Tissue of Streptozotocin-Induced Diabetic Rats. Pancreas 2013, 42, 841–849. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Abd Manap, M.Y.; Tan, C.P.; Muhialdin, B.J.; Alhelli, A.M.; Meor Hussin, A.S. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil. Evid. -Based Complement. Altern. Med. 2016, 2016, 6273817. [Google Scholar] [CrossRef] [PubMed]
- Khaikin, E.; Chrubasik-Hausmann, S.; Kaya, S.; Zimmermann, B.F. Screening of Thymoquinone Content in Commercial Nigella sativa Products to Identify a Promising and Safe Study Medication. Nutrients 2022, 14, 3501. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013, 4, 624–630. [Google Scholar] [PubMed]
- Quinn, R. Comparing Rat’s to Human’s Age: How Old Is My Rat in People Years? Nutrition 2005, 21, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.; Pippione, A.C.; Boyko, M.; Einaudi, G.; Sainas, S.; Collino, M.; Cifani, C.; Lolli, M.L.; Abu-Freha, N.; Kaplanski, J.; et al. A New NF-ΚB Inhibitor, MEDS-23, Reduces the Severity of Adverse Post-Ischemic Stroke Outcomes in Rats. Brain Sci. 2022, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Rostevanov, I.S.; Boyko, M.; Ferorelli, S.; Scilimati, A.; Grazia, M.; Kaplanski, J.; Zlotnik, A.; Azab, A.N.; Zhang, L.; Zhang, J.; et al. Modelling the Dynamic Interaction of Systemic Inflammation and the Hypothalamic-Pituitary-Adrenal (HPA) Axis during and after Cardiac Surgery. J. Clin. Med. 2021, 22, 467–475. [Google Scholar] [CrossRef]
- Nassar, A.; Azab, A.N. Effects of Dexamethasone and Pentoxifylline on Mania-Like and Depression-Like Behaviors in Rats. Pharmaceuticals 2022, 15, 1063. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzzan, S.; Rostevanov, I.-S.; Rubin, E.; Benguigui, O.; Marazka, S.; Kaplanski, J.; Agbaria, R.; Azab, A.N. Chronic Treatment with Nigella sativa Oil Exerts Antimanic Properties and Reduces Brain Inflammation in Rats. Int. J. Mol. Sci. 2024, 25, 1823. https://doi.org/10.3390/ijms25031823
Uzzan S, Rostevanov I-S, Rubin E, Benguigui O, Marazka S, Kaplanski J, Agbaria R, Azab AN. Chronic Treatment with Nigella sativa Oil Exerts Antimanic Properties and Reduces Brain Inflammation in Rats. International Journal of Molecular Sciences. 2024; 25(3):1823. https://doi.org/10.3390/ijms25031823
Chicago/Turabian StyleUzzan, Sarit, Ira-Sivan Rostevanov, Elina Rubin, Olivia Benguigui, Said Marazka, Jacob Kaplanski, Riad Agbaria, and Abed N. Azab. 2024. "Chronic Treatment with Nigella sativa Oil Exerts Antimanic Properties and Reduces Brain Inflammation in Rats" International Journal of Molecular Sciences 25, no. 3: 1823. https://doi.org/10.3390/ijms25031823
APA StyleUzzan, S., Rostevanov, I. -S., Rubin, E., Benguigui, O., Marazka, S., Kaplanski, J., Agbaria, R., & Azab, A. N. (2024). Chronic Treatment with Nigella sativa Oil Exerts Antimanic Properties and Reduces Brain Inflammation in Rats. International Journal of Molecular Sciences, 25(3), 1823. https://doi.org/10.3390/ijms25031823