An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation
Abstract
:1. Introduction
2. Results
2.1. Zn Concentration and Plant Performance
2.2. Water Quality Properties, Soil Physicochemical Characteristics, and Enzymatic Properties
2.3. Plant Stress Damage and Antioxidant Enzyme Activities
2.4. Glucose Concentration and Key Carbohydrate Metabolism Enzyme Activities
2.5. Trade-off Strategies for Leaf Functional Traits
2.6. Photosynthetic Performances
2.7. Water Relations
3. Discussion
3.1. Nanobubble Treatment Enhances Wheat Plant Performance
3.2. Nanobubble Treatment May Regulate the Ecotoxicity of ZnO-NPs via Changing the Eh and SOC Accumulation
3.3. Nanobubble Treatment Decreased Oxidative Damage, Promoted Energy Metabolism, and Stimulated Root Activity to Remit the Biotoxicity of ZnO-NPs
3.4. Nanobubble Treatment Did Not Yet Effectively Regulate the Biotoxicity of ZnO-NPs to Leaves via Changing Redox State and Energy Metabolism
3.5. Nanobubble Treatment Conferred the Advantage of a Rapid Response to the Biotoxicity of ZnO-NPs via the Trade-off of Leaf Functional Traits, Especially Nutrient Contents
3.6. Nanobubble Treatment Confers the Advantage of a Rapid Response to the Biotoxicity of ZnO-NPs via Water Potential
4. Materials and Methods
4.1. ZnO Nanoparticles and Plant Materials
4.2. Experimental Design
4.3. Determination of Do
4.4. Soil Properties
4.5. Measurement of Soil Enzyme Activities and Enzymatic Stoichiometry
4.6. Measurement of Zn Concentrations in Soil and Roots
4.7. Measurement of Plant Phenotype
4.8. Measurements of Gas Exchange Parameters and the Response Curve
4.9. Measurement of WUE and Leaf Water Potential
4.10. Measurement of Chlorophyll a Fluorescence and Photosynthetic Pigment Concentrations
4.11. Measurement of Root Activity, the Concentrations of ROS and MDA, and Antioxidant Enzyme Activities
4.12. Measurement of Glucose Concentration and Carbohydrate Metabolism Enzyme Activities
4.13. Measurement of the Concentrations of Leaf N and P, PNUE, and N Allocation within the Photosynthetic Apparatus
4.14. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mauter, M.S.; Zucker, I.; Perreault, F.; Werber, J.R.; Kim, J.H.; Elimelech, M. The Role of Nanotechnology in Tackling Global Water Challenges. Nat. Sustain. 2018, 1, 166–175. [Google Scholar] [CrossRef]
- Yin, Y.; Tan, Z.; Hu, L.; Yu, S.; Liu, J.; Jiang, G. Isotope Tracers to Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chem. Rev. 2017, 117, 4462–4487. [Google Scholar] [CrossRef]
- Shen, M.; Liu, W.; Zeb, A.R.; Lian, J.; Wu, J.; Lin, M. Bioaccumulation and Phytotoxicity of ZnO Nanoparticles in Soil-Grown Brassica chinensis L. and Potential Risks. J. Environ. Manag. 2022, 306, 114454. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Sushkova, S.; Behal, A.; Maksimov, A.; Blicharska, E.; Ghazaryan, K.; Movsesyan, H.; Barsova, N. ZnO and CuO Nanoparticles: A Threat to Soil Organisms, Plants, and Human Health. Environ. Geochem. Health 2020, 42, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Blinova, I.; Ivask, A.; Heinlaan, M.; Mortimer, M.; Kahru, A. Ecotoxicity of Nanoparticles of CuO and ZnO in Natural Water. Environ. Pollut. 2010, 158, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, L.; Ying, Z.; He, J.; Zhou, L.; Zhang, L.; Zhong, X.; Wang, T. Effects of Dietary Zinc Oxide Nanoparticles on Growth, Diarrhea, Mineral Deposition, Intestinal Morphology, and Barrier of Weaned Piglets. Biol. Trace Elem. Res. 2018, 185, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; McLean, J.E.; Britt, D.W.; Anderson, A.J. Antifungal Activity of ZnO Nanoparticles and Their Interactive Effect with a Biocontrol Bacterium on Growth Antagonism of the Plant Pathogen Fusarium graminearum. Biometals 2013, 26, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wu, Y.; Li, X.; Wei, B.; Li, S.; Wang, X. Toxic Effects of Different Types of Zinc Oxide Nanoparticles on Algae, Plants, Invertebrates, Vertebrates and Microorganisms. Chemosphere 2018, 193, 852–860. [Google Scholar] [CrossRef]
- Garcia-Gomez, C.; Obrador, A.; Gonzalez, D.; Babin, M.; Fernandez, M.D. Comparative Study of the Phytotoxicity of ZnO Nanoparticles and Zn Accumulation in Nine Crops Grown in a Calcareous Soil and an Acidic Soil. Sci. Total Environ. 2018, 644, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Long, J.; Li, J.; Zhang, M.; Ye, X.; Chang, W.; Zeng, H. Effect of Metal Oxide Nanoparticles on the Chemical Speciation of Heavy Metals and Micronutrient Bioavailability in Paddy Soil. Int. J. Environ. Res. Public Health 2020, 17, 2482. [Google Scholar] [CrossRef] [PubMed]
- Avila-Arias, H.; Nies, L.F.; Gray, M.B.; Barreto-Hernandez, E.; Turco, R.F. Soil Activity and Microbial Community Response to Nanometal Oxides Were Not Due Exclusively to a Particle Size Effect. Environ. Sci. Nano 2023, 10, 129–144. [Google Scholar] [CrossRef]
- Chen, C.; Unrine, J.M.; Hu, Y.; Guo, L.; Tsyusko, O.V.; Fan, Z.; Liu, S.; Wei, G. Responses of Soil Bacteria and Fungal Communities to Pristine and Sulfidized Zinc Oxide Nanoparticles Relative to Zn Ions. J. Hazard. Mater. 2021, 405, 124258. [Google Scholar] [CrossRef]
- Du, W.; Sun, Y.; Ji, R.; Zhu, J.; Wu, J.; Guo, H. TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. J. Environ. Monit. 2011, 13, 822–828. [Google Scholar] [CrossRef]
- Rashid, M.I.; Shahzad, T.; Shahid, M.; Ismail, I.M.I.; Shah, G.M.; Almeelbi, T. Zinc Oxide Nanoparticles Affect Carbon and Nitrogen Mineralization of Phoenix dactylifera Leaf Litter in a Sandy Soil. J. Hazard. Mater. 2017, 324, 298–305. [Google Scholar] [CrossRef]
- Verma, Y.; Singh, S.K.; Jatav, H.S.; Rajput, V.D.; Minkina, T. Interaction of Zinc Oxide Nanoparticles with Soil: Insights into the Chemical and Biological Properties. Environ. Geochem. Health 2022, 44, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Peng, Q.; Guo, J.; Zhang, H.; Bai, J.; Mao, H. Effects of Short-Term Soil Exposure of Different Doses of ZnO Nanoparticles on the Soil Environment and the Growth and Nitrogen Fixation of Alfalfa. Environ. Pollut. 2022, 309, 119817. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Li, Y.; Shi, Y.; Li, Z.; Zhang, X.; Liu, T.; Farooq, T.H.; Pan, Y.; Chen, X.; Yan, W. Combined Toxicity of Zinc Oxide Nanoparticles and Cadmium Inducing Root Damage in Phytolacca americana L. Sci. Total Environ. 2022, 806, 151211. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Shaghaleh, H.; Hamoud, Y.A.; Holford, P.; Shao, H.; Qi, W.; Hashmi, M.Z.; Wu, T. Zinc Oxide Nanoparticles: Potential Effects on Soil Properties, Crop Production, Food Processing, and Food Quality. Environ. Sci. Pollut. Res. 2021, 28, 36942–36966. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Shi, Z.; Tong, R.; Adams, C.A.; Shi, X. Arbuscular Mycorrhizae Alleviate Negative Effects of Zinc Oxide Nanoparticle and Zinc Accumulation in Maize Plants-A Soil Microcosm Experiment. Chemosphere 2016, 147, 88–97. [Google Scholar] [CrossRef]
- Guo, J.; Li, S.; Brestic, M.; Li, N.; Zhang, P.; Liu, L.; Li, X. Modulations in Protein Phosphorylation Explain the Physiological Responses of Barley (Hordeum vulgare) to Nanoplastics and ZnO Nanoparticles. J. Hazard. Mater. 2023, 443, 130196. [Google Scholar] [CrossRef]
- Josko, I.; Oleszczuk, P. Influence of Soil Type and Environmental Conditions on ZnO, TiO2 and Ni Nanoparticles Phytotoxicity. Chemosphere 2013, 92, 91–99. [Google Scholar] [CrossRef]
- Lahive, E.; Matzke, M.; Svendsen, C.; Spurgeon, D.J.; Pouran, H.; Zhang, H.; Lawlor, A.; Pereira, M.G.; Lofts, S. Soil Properties Influence the Toxicity and Availability of Zn from ZnO Nanoparticles to Earthworms. Environ. Pollut. 2023, 319, 120907. [Google Scholar] [CrossRef]
- Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. Aqueous Dispersions of Nanobubbles: Generation, Properties and Features. Miner. Eng. 2016, 94, 29–37. [Google Scholar] [CrossRef]
- Ushikubo, F.Y.; Furukawa, T.; Nakagawa, R.; Enari, M.; Makino, Y.; Kawagoe, Y.; Shiina, T.; Oshita, S. Evidence of the Existence and the Stability of Nano-Bubbles in Water. Colloids Surf. A Physicochem. Eng. Asp. 2010, 361, 31–37. [Google Scholar] [CrossRef]
- Wu, Y.; Lyu, T.; Yue, B.; Tonoli, E.; Verderio, E.A.M.; Ma, Y.; Pan, G. Enhancement of Tomato Plant Growth and Productivity in Organic Farming by Agri-Nanotechnology Using Nanobubble Oxygation. J. Agric. Food Chem. 2019, 67, 10823–10831. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bastida, F.; Liu, Y.; Liu, Y.; Xiao, Y.; Song, P.; Wang, T.; Li, Y. Selenium Fertigation with Nanobubbles Influences Soil Selenium Residual and Plant Performance by Modulation of Bacterial Community. J. Hazard. Mater. 2022, 423, 127114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Xu, F.; Muhammad, T.; Li, Y. Appropriate Dissolved Oxygen Concentration and Application Stage of Micro-Nano Bubble Water Oxygation in Greenhouse Crop Plantation. Agric. Water Manag. 2019, 223, 105713. [Google Scholar] [CrossRef]
- Hamamoto, S.; Sugimoto, T.; Takemura, T.; Nishimura, T.; Bradford, S.A. Nanobubble Retention in Saturated Porous Media under Repulsive van der Waals and Electrostatic Conditions. Langmuir 2019, 35, 6853–6860. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Nhung, N.T.H.; Wu, Y.; He, C.; Wang, K.; Yang, S.; Kurokawa, H.; Matsui, H.; Dodbiba, G.; Fujita, T. Different Nanobubbles Mitigate Cadmium Toxicity and Accumulation of Rice (Oryza sativa L.) Seedlings in Hydroponic Cultures. Chemosphere 2023, 312, 137250. [Google Scholar] [CrossRef]
- Sha, Z.; Chen, Z.; Feng, Y.; Xue, L.; Yang, L.; Cao, L.; Chu, Q. Minerals Loaded with Oxygen Nanobubbles Mitigate Arsenic Translocation from Paddy Soils to Rice. J. Hazard. Mater. 2020, 398, 122818. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, M.; Zhang, J.; Lyu, T.; Cooper, M.; Pan, G. Reducing Arsenic Toxicity Using the Interfacial Oxygen Nanobubble Technology for Sediment Remediation. Water Res. 2021, 205, 117657. [Google Scholar] [CrossRef]
- Cui, W.; Gao, C.; Fang, P.; Lin, G.; Shen, W. Alleviation of Cadmium Toxicity in Medicago sativa by Hydrogen-Rich Water. J. Hazard. Mater. 2013, 260, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bastida, F.; Zhou, B.; Sun, Y.; Gu, T.; Li, S.; Li, Y. Soil Fertility and Crop Production Are Fostered by Micro-Nano Bubble Irrigation with Associated Changes in Soil Bacterial Community. Soil Biol. Biochem. 2020, 141, 107663. [Google Scholar] [CrossRef]
- Ma, H.; Williams, P.L.; Diamond, S.A. Ecotoxicity of Manufactured ZnO Nanoparticles—A Review. Environ. Pollut. 2013, 172, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, F.; Guo, X.; Qiao, Z.; Zhu, Y.; Jin, N.; Cui, Y.; Yang, M. Research Progress on Bulk Nanobubbles. Particuology 2022, 60, 99–106. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Sun, J.; Dai, H.; Zhang, B.; Xiang, W.; Hu, Z.; Li, P.; Yang, J.; Zhang, W. Nanobubbles Promote Nutrient Utilization and Plant Growth in Rice by Upregulating Nutrient Uptake Genes and Stimulating Growth Hormone Production. Sci. Total Environ. 2021, 800, 149627. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Plascencia-Villa, G.; Mukherjee, A.; Rico, C.M.; Jose-Yacaman, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Comparative Phytotoxicity of ZnO NPs, Bulk ZnO, and Ionic Zinc onto the Alfalfa Plants Symbiotically Associated with Sinorhizobium meliloti in Soil. Sci. Total Environ. 2015, 515, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Faizan, M.; Faraz, A.; Mir, A.R.; Hayat, S. Role of Zinc Oxide Nanoparticles in Countering Negative Effects Generated by Cadmium in Lycopersicon esculentum. J. Plant Growth Regul. 2021, 40, 101–115. [Google Scholar] [CrossRef]
- Baysal, A.; Saygın, H. Effect of Zinc Oxide Nanoparticles on the Trace Element Contents of Soils. Chem. Ecol. 2018, 34, 713–726. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, K.; Zhang, C.; Zhang, X.; Chen, N.; Jia, H. Microscale spatiotemporal Variation and Generation Mechanisms of Reactive Oxygen Species in the Rhizosphere of Ryegrass: Coupled Biotic–Abiotic Processes. Environ. Sci. Technol. 2022, 56, 16483–16493. [Google Scholar] [CrossRef]
- Hall, S.J.; Silver, W.L. Iron Oxidation Stimulates Organic Matter Decomposition in Humid Tropical Forest Soils. Glob. Chang. Biol. 2013, 19, 2804–2813. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Z.; Chen, J.; Castellano, M.J.; Ye, C.; Zhang, N.; Miao, Y.; Zheng, H.; Li, J.; Ding, W. Oxygen Availability Regulates the Quality of Soil Dissolved Organic Matter by Mediating Microbial Metabolism and Iron Oxidation. Glob. Chang. Biol. 2022, 28, 7410–7427. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.A. The Nature and Dynamics of Soil Organic Matter: Plant Inputs, Microbial Transformations, and Organic Matter Stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol. 2008, 42, 5580–5585. [Google Scholar] [CrossRef] [PubMed]
- Lowry, G.V.; Gregory, K.B.; Apte, S.C.; Lead, J.R. Transformations of Nanomaterials in the Environment. Environ. Sci. Technol. 2012, 46, 6893–6899. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.; Lee, I. Effects of Zn and ZnO Nanoparticles and Zn2+ on Soil Enzyme Activity and Bioaccumulation of Zn in Cucumis sativus. Chem. Ecol. 2011, 27, 49–55. [Google Scholar] [CrossRef]
- Mori, T. Does Ecoenzymatic Stoichiometry Really Determine Microbial Nutrient Limitations? Soil Biol. Biochem. 2020, 146, 107816. [Google Scholar] [CrossRef]
- Liu, S.; Oshita, S.; Kawabata, S.; Makino, Y.; Yoshimoto, T. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination. Langmuir 2016, 32, 11295–11302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, Y.; Yang, T.; Kronzucker, H.J.; Shi, W. Factors Influencing the Release of the Biological Nitrification Inhibitor 1,9-Decanediol from Rice (Oryza sativa L.) Roots. Plant Soil. 2019, 436, 253–265. [Google Scholar] [CrossRef]
- Miao, A.; Zhang, X.; Luo, Z.; Chen, C.; Chin, W.C.; Santschi, P.H.; Quigg, A. Zinc Oxide Engineered Nanoparticles Dissolution and Toxicity to Marine Phytoplankton. Environ. Toxicol. Chem. 2010, 29, 2814–2822. [Google Scholar] [CrossRef] [PubMed]
- Mudunkotuwa, I.A.; Rupasinghe, T.; Wu, C.-M.; Grassian, V.H. Dissolution of ZnO Nanoparticles at Circumneutral pH: A Study of Size Effects in the Presence and Absence of Citric Acid. Langmuir 2012, 28, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Paschke, M.W.; Perry, L.G.; Redente, E.F. Zinc Toxicity Thresholds for Reclamation Forb Species. Water Air Soil Pollut. 2006, 170, 317–330. [Google Scholar] [CrossRef]
- Li, M.; Ahammedl, G.J.; Li, C.; Bao, X.; Yu, J.; Huang, C.; Yin, H.; Zhou, J. Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling. Front. Plant Sci. 2016, 7, 615. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Li, S.; Yao, K.; Geng, H.; Liu, J.; Wang, Y.; Lin, J. Integrated Metabolomic and Transcriptomic Strategies to Reveal Adaptive Mechanisms in Castor Plant During Germination Stage under Alkali Stress. Environ. Exp. Bot. 2022, 203, 105031. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Guo, J.; Dong, Y.; Wang, Z.; Gong, L.; Li, X. Polystyrene Microplastics Disturb the Redox Homeostasis, Carbohydrate Metabolism and Phytohormone Regulatory Network in Barley. J. Hazard. Mater. 2021, 415, 125614. [Google Scholar] [CrossRef]
- Baena-Gonzalez, E.; Hanson, J. Shaping Plant Development through the SnRK1-TOR Metabolic Regulators. Curr. Opin. Plant Biol. 2017, 35, 152–157. [Google Scholar] [CrossRef]
- Martin, C.; Smith, A.M. Starch Biosynthesis. Plant Cell 1995, 7, 971–985. [Google Scholar]
- Jian, S.; Li, S.; Liu, F.; Liu, S.; Gong, L.; Jiang, Y.; Li, X. Elevated Atmospheric CO2 Concentration Changes the Eco-Physiological Response of Barley to Polystyrene Nanoplastics. Chem. Eng. J. 2023, 457, 141135. [Google Scholar] [CrossRef]
- Zhou, D.; Ning, Y.; Liu, J.; Deng, J.; Rong, G.H.; Bilige, S.; Liu, Y. Effects of Oxidative Stress Reaction for the Eisenia fetida with Exposure in Cd2+. Environ. Sci. Pollut. Res. 2016, 23, 21883–21893. [Google Scholar]
- Singh, A.; Mehta, S.; Yadav, S.; Nagar, G.; Ghosh, R.; Roy, A.; Chakraborty, A.; Singh, I.K. How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave Off in Plants. Int. J. Mol. Sci. 2022, 23, 1995. [Google Scholar] [CrossRef]
- Han, Q.; Huang, B.; Ding, C.; Zhang, Z.; Chen, Y.; Hu, C.; Zhou, L.; Huang, Y.; Liao, J.-Q.; Yuan, S.; et al. Effects of Melatonin on Anti-Oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings. Front. Plant Sci. 2017, 8, 785. [Google Scholar] [CrossRef]
- Ji, W.; LaZerte, S.E.; Waterway, M.J.; Lechowicz, M.J. Functional Ecology of Congeneric Variation in the Leaf Economics Spectrum. New Phytol. 2020, 225, 196–208. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Blonder, B.; Vasseur, F.; Violle, C.; Shipley, B.; Enquist, B.J.; Vile, D. Testing Models for the Leaf Economics Spectrum with Leaf and Whole-Plant Traits in Arabidopsis thaliana. AoB Plants 2015, 7, plv049. [Google Scholar] [CrossRef] [PubMed]
- Blonder, B.; Violle, C.; Enquist, B.J. Assessing the Causes and Scales of the Leaf Economics Spectrum Using Venation Networks in Populus tremuloides. J. Ecol. 2013, 101, 981–989. [Google Scholar] [CrossRef]
- Zhang, H.; Lyu, T.; Bi, L.; Tempero, G.; Hamilton, D.P.; Pan, G. Combating Hypoxia/Anoxia at Sediment-Water Interfaces: A Preliminary Study of Oxygen Nanobubble Modified Clay Materials. Sci. Total Environ. 2018, 637, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, K.; Ishikawa, K.; Borjigidai, A.; Muller, O.; Onoda, Y. Temperature Acclimation of Photosynthesis: Mechanisms Involved in the Changes in Temperature Dependence of Photosynthetic Rate. J. Exp. Bot. 2006, 57, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Nagai, T.; Makino, A. The Rate-Limiting Step for CO2 Assimilation at Different Temperatures Is Influenced by the Leaf Nitrogen Content in Several C3 Crop Species. Plant Cell Environ. 2011, 34, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Q.; Huang, G.; Peng, S.; Li, Y. Temperature Responses of Photosynthesis and Leaf Hydraulic Conductance in Rice and Wheat. Plant Cell Environ. 2020, 43, 1437–1451. [Google Scholar] [CrossRef] [PubMed]
- Haworth, M.; Marino, G.; Centritto, M. An Introductory Guide to Gas Exchange Analysis of Photosynthesis and Its Application to Plant Phenotyping and Precision Irrigation to Enhance Water Use Efficiency. J. Water Clim. Chang. 2018, 9, 786–808. [Google Scholar] [CrossRef]
- Bunce, J. Three Methods of Estimating Mesophyll Conductance Agree Regarding Its CO2 Sensitivity in the Rubisco-Limited Ci Range. Plants 2018, 7, 62. [Google Scholar] [CrossRef]
- Chen, H.; Song, L.; Zhang, H.; Wang, J.; Wang, Y.; Zhang, H. Cu and Zn Stress Affect the Photosynthetic and Antioxidative Systems of Alfalfa (Medicago sativa). J. Plant Interact. 2022, 17, 695–704. [Google Scholar] [CrossRef]
- Rai-Kalal, P.; Jajoo, A. Priming with Zinc Oxide Nanoparticles Improve Germination and Photosynthetic Performance in Wheat. Plant Physiol. Biochem. 2021, 160, 341–351. [Google Scholar] [CrossRef]
- Xiong, D.; Nadal, M. Linking Water Relations and Hydraulics with Photosynthesis. Plant J. 2020, 101, 800–815. [Google Scholar] [CrossRef]
- Edwards, C.E.; Ewers, B.E.; Weinig, C. Genotypic Variation in Biomass Allocation in Response to Field Drought Has a Greater Affect on Yield than Gas Exchange or Phenology. BMC Plant Biol. 2016, 16, 185. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Douthe, C.; Florez-Sarasa, I.; Escalona, J.M.; Galmes, J.; Fernie, A.R.; Flexas, J.; Medrano, H. Opportunities for Improving Leaf Water Use Efficiency under Climate Change Conditions. Plant Sci. 2014, 226, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Philip, J.R. Plant Water Relations-Some Physical Aspects. Annu. Rev. Plant Physiol. 1966, 17, 245. [Google Scholar] [CrossRef]
- Hayat, F.; Ahmed, M.A.; Zarebanadkouki, M.; Cai, G.; Carminati, A. Measurements and Simulation of Leaf Xylem Water Potential and Root Water Uptake in Heterogeneous Soil Water Contents. Adv. Water Resour. 2019, 124, 96–105. [Google Scholar] [CrossRef]
- Roy, M.K.; Takenaka, M.; Isobe, S.; Tsushida, T. Antioxidant Potential, Anti-Proliferative Activities, and Phenolic Content in Water-Soluble Fractions of some Commonly Consumed Vegetables: Effects of Thermal Treatment. Food Chem. 2007, 103, 106–114. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; He, J.-S.; Feng, X. Iron-Mediated Soil Carbon Response to Water-Table Decline in an Alpine Wetland. Nat. Commun. 2017, 8, 15972. [Google Scholar] [CrossRef]
- Deng, L.; Peng, C.; Huang, C.; Wang, K.; Liu, Q.; Liu, Y.; Hai, X.; Shangguan, Z.P. Drivers of Soil Microbial Metabolic Limitation Changes along a Vegetation Restoration Gradient on the Loess Plateau, China. Geoderma 2019, 353, 188–200. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of Soil Enzyme Activity at Global Scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, M.; Kou, Y.; Liu, D.; Liu, Q.; Zhang, Z.; Jiang, Z.; Yin, H. Differential Effects of N Addition on the Stoichiometry of Microbes and Extracellular Enzymes in the Rhizosphere and Bulk Soils of an Alpine Shrubland. Plant Soil 2020, 449, 285–301. [Google Scholar] [CrossRef]
- Gorthi, A.; Volenec, J.J.; Welp, L.R. Stomatal Response in Soybean During Drought Improves Leaf-Scale and Field-Scale Water Use Efficiencies. Agric. For. Meteorol. 2019, 276, 107629. [Google Scholar] [CrossRef]
- Yoo, C.Y.; Pence, H.E.; Hasegawa, P.M.; Mickelbart, M.V. Regulation of Transpiration to Improve Crop Water Use. Crit. Rev. Plant Sci. 2009, 28, 410–431. [Google Scholar] [CrossRef]
- Banks, J.M.; Hirons, A.D. Alternative Methods of Estimating the Water Potential at Turgor Loss Point in Acer genotypes. Plant Methods 2019, 15, 34. [Google Scholar] [CrossRef]
- Campbell, E.C.; Campbell, G.S.; Barlow, W.K. Dewpoint Hygrometer for Water Potential Measurement. Agric. Meteorol. 1973, 12, 113–121. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids-Pigments of Photosynthetic Biomembranes. Method Enzymol. 1987, 148, 350–382. [Google Scholar]
- Fimognari, L.; Dolker, R.; Kaselyte, G.; Jensen, C.N.G.; Akhtar, S.S.; Grosskinsky, D.K.; Roitsch, T. Simple Semi-High Throughput Determination of Activity Signatures of Key Antioxidant Enzymes for Physiological Phenotyping. Plant Methods 2020, 16, 42. [Google Scholar] [CrossRef]
- Jammer, A.; Gasperl, A.; Luschin-Ebengreuth, N.; Heyneke, E.; Chu, H.; Cantero-Navarro, E.; Grosskinsky, D.K.; Albacete, A.A.; Stabentheiner, E.; Franzaring, J.; et al. Simple and Robust Determination of the Activity Signature of Key Carbohydrate Metabolism Enzymes for Physiological Phenotyping in Model and Crop Plants. J. Exp. Bot. 2015, 66, 5531–5542. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, Y.-Y.; Wu, H.-M.; Zhang, F.-F.; Li, C.-J.; Li, X.-X.; Lambers, H.; Lambers, H. Root Exudates Drive Interspecific Facilitation by Enhancing Nodulation and N2 Fixation. Proc. Natl. Acad. Sci. USA 2016, 113, 6496–6501. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.; Stevens, R.J.; Christie, P. Long-Term Application of Animal Slurries to Grassland Alters Soil Cation Balance. Soil Use Manag. 2010, 21, 240–244. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Zu, Y. Plant Biodiversity in a Larch Plantation from the View Point of Photosynthetic Nitrogen Use Efficiency in Northeast China. Landsc. Ecol. Eng. 2009, 5, 147–156. [Google Scholar] [CrossRef]
- Niinemets, U.; Tenhunen, J.D. A Model Separating Leaf Structural and Physiological Effects on Carbon Gain along Light Gradients for the Shade-Tolerant Species Acer saccharum. Plant Cell Environ. 1997, 20, 845–866. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Li, S.; Wang, L.; Li, X. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. Int. J. Mol. Sci. 2024, 25, 1896. https://doi.org/10.3390/ijms25031896
Zhang F, Li S, Wang L, Li X. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. International Journal of Molecular Sciences. 2024; 25(3):1896. https://doi.org/10.3390/ijms25031896
Chicago/Turabian StyleZhang, Feng, Shuxin Li, Lichun Wang, and Xiangnan Li. 2024. "An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation" International Journal of Molecular Sciences 25, no. 3: 1896. https://doi.org/10.3390/ijms25031896
APA StyleZhang, F., Li, S., Wang, L., & Li, X. (2024). An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. International Journal of Molecular Sciences, 25(3), 1896. https://doi.org/10.3390/ijms25031896