BestCRM: An Exhaustive Search for Optimal Cis-Regulatory Modules in Promoters Accelerated by the Multidimensional Hash Function
Abstract
:1. Introduction
2. Results
2.1. Performance of the Method on Recognition of Known CRMs
2.2. Tests on Recognition of Novel CRMs
3. Discussion
4. Materials and Methods
4.1. Basic Definitions
4.2. Problem Definition
4.3. Accelerating by the Hash Function
4.4. Datasets Used for Performance Testing
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyrchanova, O.; Georgiev, P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int. J. Mol. Sci. 2021, 22, 671. [Google Scholar] [CrossRef] [PubMed]
- Deyneko, I.V.; Kasnitz, N.; Leschner, S.; Weiss, S. Composing a Tumor Specific Bacterial Promoter. PLoS ONE 2016, 11, e0155338. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, M.; Qu, X.; Liu, W.; Dou, Y.; Liu, Q.; Shi, D.; Jiang, M.; Li, H. Cis-Regulatory Elements in Mammals. Int. J. Mol. Sci. 2023, 25, 343. [Google Scholar] [CrossRef] [PubMed]
- Deyneko, I.V.; Weiss, S.; Leschner, S. An integrative computational approach to effectively guide experimental identification of regulatory elements in promoters. BMC Bioinform. 2012, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Sahu, T.K.; Rao, A.R.; Vasisht, S.; Singh, N.; Singh, U.P. Computational approaches, databases and tools for in silico motif discovery. Interdiscip. Sci. Comput. Life Sci. 2012, 4, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Deyneko, I.V.; Bredohl, B.; Wesely, D.; Kalybaeva, Y.M.; Kel, A.E.; Blöcker, H.; Kauer, G. FeatureScan: Revealing property-dependent similarity of nucleotide sequences. Nucleic Acids Res. 2006, 34, W591–W595. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L. STREME: Accurate and versatile sequence motif discovery. Bioinformatics 2021, 37, 2834–2840. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, P.M.; Ponomarenko, M.P. Sequence-based prediction of transcription upregulation by auxin in plants. J. Bioinform. Comput. Biol. 2015, 13, 1540009. [Google Scholar] [CrossRef]
- Schwarzl, T.; Sahadevan, S.; Lang, B.; Miladi, M.; Backofen, R.; Huber, W.; Hentze, M.W.; Tartaglia, G.G. Improved discovery of RNA-binding protein binding sites in eCLIP data using DEWSeq. Nucleic Acids Res. 2024, 52, e1. [Google Scholar] [CrossRef]
- Kong, Q.; Chang, P.K.; Li, C.; Hu, Z.; Zheng, M.; Sun, Q.; Shan, S. Identification of AflR Binding Sites in the Genome of Aspergillus flavus by ChIP-Seq. J. Fungi 2020, 6, 52. [Google Scholar] [CrossRef]
- Zhao, K.; Luo, X.; Shen, M.; Lei, W.; Lin, S.; Lin, Y.; Sun, H.; Ahmad, S.; Wang, G.; Liu, Z.J. The bZIP Transcription Factors in Current Jasmine Genomes: Identification, Characterization, Evolution and Expressions. Int. J. Mol. Sci. 2023, 25, 488. [Google Scholar] [CrossRef] [PubMed]
- Pratt, H.E.; Andrews, G.R.; Phalke, N.; Purcaro, M.J.; van der Velde, A.; Moore, J.E.; Weng, Z. Factorbook: An updated catalog of transcription factor motifs and candidate regulatory motif sites. Nucleic Acids Res. 2022, 50, D141–D149. [Google Scholar] [CrossRef] [PubMed]
- Keränen, S.V.E.; Villahoz-Baleta, A.; Bruno, A.E.; Halfon, M.S. REDfly: An Integrated Knowledgebase for Insect Regulatory Genomics. Insects 2022, 13, 618. [Google Scholar] [CrossRef] [PubMed]
- Tognon, M.; Giugno, R.; Pinello, L. A survey on algorithms to characterize transcription factor binding sites. Brief. Bioinform. 2023, 24, bbad156. [Google Scholar] [CrossRef] [PubMed]
- Orlov, Y.L.; Orlova, N.G. Bioinformatics tools for the sequence complexity estimates. Biophys. Rev. 2023, 15, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Jayaram, N.; Usvyat, D.; Martin, A.C.R. Evaluating tools for transcription factor binding site prediction. BMC Bioinform. 2016, 17, 547. [Google Scholar] [CrossRef]
- Tran, N.T.; Huang, C.H. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data. Biol. Direct 2014, 9, 4. [Google Scholar] [CrossRef]
- Krivan, W.; Wasserman, W.W. A predictive model for regulatory sequences directing liver-specific transcription. Genome Res. 2001, 11, 1559–1566. [Google Scholar] [CrossRef]
- Kel-Margoulis, O.V.; Kel, A.E.; Reuter, I.; Deineko, I.V.; Wingender, E. TRANSCompel: A database on composite regulatory elements in eukaryotic genes. Nucleic Acids Res. 2002, 30, 332–334. [Google Scholar] [CrossRef]
- Navarro, C.; Lopez, F.J.; Cano, C.; Garcia-Alcalde, F.; Blanco, A. CisMiner: Genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining. PLoS ONE 2014, 9, e108065. [Google Scholar] [CrossRef]
- Ha, N.; Polychronidou, M.; Lohmann, I. COPS: Detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. PLoS ONE 2012, 7, e52055. [Google Scholar] [CrossRef] [PubMed]
- Bentsen, M.; Heger, V.; Schultheis, H.; Kuenne, C.; Looso, M. TF-COMB—Discovering grammar of transcription factor binding sites. Comput. Struct. Biotechnol. J. 2022, 20, 4040–4051. [Google Scholar] [CrossRef]
- van Bömmel, A.; Love, M.I.; Chung, H.R.; Vingron, M. coTRaCTE predicts co-occurring transcription factors within cell-type specific enhancers. PLoS Comput. Biol. 2018, 14, e1006372. [Google Scholar] [CrossRef]
- Mysickova, A.; Vingron, M. Detection of interacting transcription factors in human tissues using predicted DNA binding affinity. BMC Genom. 2012, 13 (Suppl. 1), S2. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Hu, B.; Collins, J.F. Prediction of synergistic transcription factors by function conservation. Genome Biol. 2007, 8, R257. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Blais, A.; Ioshikhes, I. Identification of cis-regulatory modules in promoters of human genes exploiting mutual positioning of transcription factors. Nucleic Acids Res. 2013, 41, 8822–8841. [Google Scholar] [CrossRef]
- Hu, Z.; Gallo, S.M. Identification of interacting transcription factors regulating tissue gene expression in human. BMC Genom. 2010, 11, 49. [Google Scholar] [CrossRef]
- Stormo, G.D. DNA binding sites: Representation and discovery. Bioinformatics 2000, 16, 16–23. [Google Scholar] [CrossRef]
- GuhaThakurta, D.; Stormo, G.D. Identifying target sites for cooperatively binding factors. Bioinformatics 2001, 17, 608–621. [Google Scholar] [CrossRef]
- Xing, E.P.; Wu, W.; Jordan, M.I.; Karp, R.M. Logos: A modular bayesian model for de novo motif detection. J. Bioinform. Comput. Biol. 2004, 2, 127–154. [Google Scholar] [CrossRef]
- Zhou, Q.; Wong, W.H. CisModule: De novo discovery of cis-regulatory modules by hierarchical mixture modeling. Proc. Natl. Acad. Sci. USA 2004, 101, 12114–12119. [Google Scholar] [CrossRef]
- Chan, B.Y.; Kibler, D. Using hexamers to predict cis-regulatory motifs in Drosophila. BMC Bioinform. 2005, 6, 262. [Google Scholar] [CrossRef]
- Alkema, W.B.; Johansson, O.; Lagergren, J.; Wasserman, W.W. MSCAN: Identification of functional clusters of transcription factor binding sites. Nucleic Acids Res. 2004, 32, W195–W198. [Google Scholar] [CrossRef]
- Aerts, S.; Van Loo, P.; Thijs, G.; Moreau, Y.; De Moor, B. Computational detection of cis-regulatory modules. Bioinformatics 2003, 19 (Suppl. 2), ii5–ii14. [Google Scholar] [CrossRef] [PubMed]
- Sharan, R.; Ovcharenko, I.; Ben-Hur, A.; Karp, R.M. CREME: A framework for identifying cis-regulatory modules in human-mouse conserved segments. Bioinformatics 2003, 19 (Suppl. 1), i283–i291. [Google Scholar] [CrossRef] [PubMed]
- Deyneko, I.V.; Kel, A.E.; Kel-Margoulis, O.V.; Deineko, E.V.; Wingender, E.; Weiss, S. MatrixCatch—A novel tool for the recognition of composite regulatory elements in promoters. BMC Bioinform. 2013, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Deyneko, I.V. Guidelines on the performance evaluation of motif recognition methods in bioinformatics. Front. Genet. 2023, 14, 1135320. [Google Scholar] [CrossRef] [PubMed]
- Jacox, E.; Gotea, V.; Ovcharenko, I.; Elnitski, L. Tissue-specific and ubiquitous expression patterns from alternative promoters of human genes. PLoS ONE 2010, 5, e12274. [Google Scholar] [CrossRef] [PubMed]
- Klepper, K.; Sandve, G.K.; Abul, O.; Johansen, J.; Drablos, F. Assessment of composite motif discovery methods. BMC Bioinform. 2008, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Noble, W.S. Searching for statistically significant regulatory modules. Bioinformatics 2003, 19 (Suppl. 2), ii16–ii25. [Google Scholar] [CrossRef] [PubMed]
- Meckbach, C.; Tacke, R.; Hua, X.; Waack, S.; Wingender, E.; Gultas, M. PC-TraFF: Identification of potentially collaborating transcription factors using pointwise mutual information. BMC Bioinform. 2015, 16, 400. [Google Scholar] [CrossRef]
- Marquis, J.F.; Kapoustina, O.; Langlais, D.; Ruddy, R.; Dufour, C.R.; Kim, B.H.; MacMicking, J.D.; Giguere, V.; Gros, P. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 2011, 7, e1002097. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef]
- Sterneck, E.; Muller, C.; Katz, S.; Leutz, A. Autocrine growth induced by kinase type oncogenes in myeloid cells requires AP-1 and NF-M, a myeloid specific, C/EBP-like factor. EMBO J. 1992, 11, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Fields, J. Translationally regulated C/EBP beta isoform expression upregulates metastatic genes in hormone-independent prostate cancer cells. Prostate 2008, 68, 1362–1371. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Minton, A.Z.; Agrawal, V. C/EBPbeta regulates metastatic gene expression and confers TNF-alpha resistance to prostate cancer cells. Prostate 2009, 69, 1435–1447. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Patra, S. Deciphering the rationale behind specific codon usage pattern in extremophiles. Sci. Rep. 2018, 8, 15548. [Google Scholar] [CrossRef]
- Dudek, C.A.; Jahn, D. PRODORIC: State-of-the-art database of prokaryotic gene regulation. Nucleic Acids Res. 2022, 50, D295–D302. [Google Scholar] [CrossRef]
0.90/0.50 | 0.75/0.50 | 0.66/0.50 | 0.50/0.25 | 0.33/0.15 | |
---|---|---|---|---|---|
BestCRM | 2 | 6 | 7 | 5 | 7 |
MatrixCatch | 1 | 4 | 6 | 4 | 5 |
CMA | 0 | 1 | 3 | 0 | 1 |
ModuleSearcher | 0 | 1 | 6 | 1 | 3 |
CisModule | 0 | 0 | 1 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deyneko, I.V. BestCRM: An Exhaustive Search for Optimal Cis-Regulatory Modules in Promoters Accelerated by the Multidimensional Hash Function. Int. J. Mol. Sci. 2024, 25, 1903. https://doi.org/10.3390/ijms25031903
Deyneko IV. BestCRM: An Exhaustive Search for Optimal Cis-Regulatory Modules in Promoters Accelerated by the Multidimensional Hash Function. International Journal of Molecular Sciences. 2024; 25(3):1903. https://doi.org/10.3390/ijms25031903
Chicago/Turabian StyleDeyneko, Igor V. 2024. "BestCRM: An Exhaustive Search for Optimal Cis-Regulatory Modules in Promoters Accelerated by the Multidimensional Hash Function" International Journal of Molecular Sciences 25, no. 3: 1903. https://doi.org/10.3390/ijms25031903
APA StyleDeyneko, I. V. (2024). BestCRM: An Exhaustive Search for Optimal Cis-Regulatory Modules in Promoters Accelerated by the Multidimensional Hash Function. International Journal of Molecular Sciences, 25(3), 1903. https://doi.org/10.3390/ijms25031903